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Abstract: Lava tubes, a major geomorphic element over volcanic terrain, have recently been high-
lighted as testbeds of the habitable environments and natural threats to unpredictable collapse. In our
case study, we detected and monitored the risk of lava tube collapse on Jeju, an island off the Korean
peninsula’s southern tip with more than 200 lava tubes, by conducting Interferometric Synthetic
Aperture Radar (InSAR) time series analysis and a synthesized analysis of its outputs fused with
spatial clues. We identified deformations up to 10 mm/year over InSAR Persistent Scatterers (PSs)
obtained with Sentinel-1 time series processing in 3-year periods along with a specific geological unit.
Using machine learning algorithms trained on time series deformations of samples along with clues
from the spatial background, we classified candidates of potential lava tube networks primarily over
coastal lava flows. What we detected in our analyses was validated via comparison with geophysical
and ground surveys. Given that cavities in the lava tubes could pose serious risks, a detailed physical
exploration and threat assessment of potential cave groups are required before the planned intensive
construction of infrastructure on Jeju Island. We also recommend using the approach established in
our study to detect undiscovered potential risks of collapse in the cavities, especially over lava tube
networks, and to explore lava tubes on planetary surfaces using proposed terrestrial and planetary
InSAR sensors.

Keywords: lava tube; InSAR; machine learning; detection; Jeju Island

1. Introduction

Lava tubes, a major consequence of lava flow formation, are among the most repre-
sentative geomorphic features in volcanic landscapes. Pioneering works have been accom-
plished to confirm the origin of lava tubes in Hawaiian volcanoes [1–3], Mt. Etna, [4], and
elsewhere. Along with geomorphic interpretation [5,6], numerical modeling of strain [7]
and thermal erosion [8,9] have been used to establish the outline of lava tube development.
Based on the studies listed above, two scenarios have been proposed to understand lava
tube development. First, a solidified lava roof blocked the liquid lava flow, and a single
structured lava tube was created. Second, the repetitive contraction of lava evolved into a
multi-structured lava tube [10,11]. Recent research of lava tubes has focused on compara-
tive analysis, as the lava tubes of solid planets and satellites have been identified by the
spotting of skylights [12,13] and are being proposed as critical habitable environments.

Jeju Island, located on the southern coast of the Korean Peninsula, provides a valuable
testbed for the geological/geomorphic studies of lava tubes due to their high spatial density,
the unique diversity of cave morphology [14], and easy accessibility [15].

The more than 200 lava tubes, which extend up to 4–11 km and are distributed
over an area of 1850 km2, show a large variety of cave structures formed at all sorts of
developmental stages [16]. The key element of the Jeju lava tubes is that they occurred in
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shallow lava flows and there is a tendency toward cave deformation and collapse [17]. Lava
tubes are distributed along the gentle slopes of Jeju Island in some instances close to dense
human settlements. Furthermore, it is estimated that a large number of lava tubes that have
never been identified have already collapsed. This can be confirmed in the investigations
conducted over decades by [18]. Ref. [19] also observed the risks involving potential lava
tubes in Jeju Island, especially the cases of road-cave crossings. The risk of lava tube collapse
is not a concern for Jeju Island alone, as pit craters induced by lava tube collapse have been
identified in Hawaiian and Icelandic lava tubes as well [20,21]. However, lava tube collapse
in Jeju Island is especially significant due to the proximity to high-density settlements and
the shallow depth of the Jeju lava tube system, as reported in [16]. Despite requirements to
regulate risk and geological interests, studies of Jeju lava tube collapse have been limited to
conceptual interpretations [19], in-situ explorations [16,18], and research using geophysical
surveys of potential locations [22]. That is, quantitative analysis is still lacking.

Based on the observations mentioned above, ground stability should be inspected
before recent urban extension and infrastructure construction. For instance, during the
ongoing construction of the second international airport in western Jeju Island, identifying
potential lava tubes is critical to avoid the risk induced by undiscovered cavities. However,
such tasks cannot be achieved with conventional ground exploration and geophysical
data mining approaches that are limited in their coverages and that produce unacceptably
ambiguous data.

Therefore, we tackled the challenge of assessing potential deformation risks caused
by undiscovered lava tube networks through synthesized data interpretation employ-
ing Interferometric Synthetic Aperture Radar (InSAR) techniques [23–25] and other spa-
tial/contextual analyses. Various technical approaches were used to improve the inter-
pretation of line-of-sight (LOS) measurements of InSAR time series analysis at specific
critical points. After combining machine learning techniques, an integrated approach was
proposed to classify the actual deformed signal caused by lava tube instability, referred
to as lava tube induced deformation point (LTDP). Deformation signals derived from
InSAR observation of LTDPs were analyzed with the models constructed by Terrestrial
Laser Scanning (TLS) and the survey results from the geophysical survey. Thus, we aim
to develop a synthesized methodological framework to define subtle clues that will help
identify the most plausible target instability induced by an underground cavity. We expect
that the application of this study is not limited to assessing the risks provoked by lava
tube instability but is of potential use in identifying lava tube development, which has
become of significant interest in the planetary habitat environments. As the planetary lava
tubes of the Moon [26], Mars [27], and Io [28] are proven or proposed, the method has huge
potential combined with proposed planetary InSAR missions [29–32].

Based on the context, we first introduce the characteristics of the target area together
with data sets in Section 2. The methodology details were introduced in Section 3. The
outputs from spatial analysis of lava tubes and InSAR deformation analyses were re-
ported in Section 4. Further interpretation, discussion, and conclusions were presented in
Sections 5 and 6.

2. Test Site and Data Sets
2.1. Geological Background of Lava Caves

Jeju Island was overall investigated in this study, where lava tubes distributed through-
out the island are shown in Figure 1. The United Nations Educational, Scientific, and Cul-
tural Organization (UNESCO) evaluated the unique geological landscape and designated
nine geological attractions in 2010 and three more in 2014. The presence of lava tubes and
involved volcanic cones are highly distinguished among them.

It is worth noting that there are conflicting theories about the origin of volcanism on
Jeju Island. One theory interprets the entire island as a shield volcano [33], while another
suggests that it is a composite volcano [34–36]. Also, according to a study conducted by [37],
Jeju Island was formed based on the accumulation of outpoured lava flows and pyroclastic
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rocks erupting from a polygenetic composite volcano. The materials were intercalated or
underlain by the Seogwipo Formation [38].

According to the extensive fieldwork and interpretation of stratigraphy, the alkali-
basalts lava effusion on land started about 1 Ma years ago and continued until the
Holocene [37,39–41]. Furthermore, [37] demonstrated that there have been extensive
post-depositional volcanic activities on land after the termination of sedimentation of the
Seogwipo Formation since about 0.5 Ma. Such studies conclusively proposed that volcanic
eruptions from 0.3 Ma to 0.1 Ma must have shaped the body of Jeju Island. Also, volcanic
eruptions from 0.1 Ma to the Holocene constructed the present topography of Jeju Island
and its various types of lava tubes. The rocks distributed at lower land areas in the eastern
and western regions are predominantly transitional basalts, tholeiitic basalts, and andesite
in composition, compared with those in the northern and southern regions. This petrologi-
cal evidence proposed that lava tubes were primarily formed due to volcanic activities in
1.88~0.5 Ma and the post-depositional period (0.5 Ma~Holocene) [37,42,43], which implies
that the lava tubes might have originated from the numerous lava events in the Quaternary
(see Figure 1a). Although the number of lava tubes is different and has gradually increased
according to survey works, Jeju volcanic Island exhibited more than 179 well-documented
lava tubes, including 144 lava tubes and 35 sea caves since February 2016 [18]. Among
these 179 caves, 122 caves were scattered in the eastern (22%) and western areas (51%) of
Jeju City and the eastern areas of Seogwipo (19%). A total of 200 lava tubes have been
identified in Jeju Island in the recent research conducted by [16].

It has been proven that lava tubes only exist with basalt low-viscosity lava flow, known
as pahoehoe lava (see Q1 unit in Figure 1b). However, the progressive discovery of lava
tubes since 1990 somehow conflicted with such findings. Some major lava tubes cross the
basaltic andesite lava flow, known as ‘a‘ā lava, presented as Q2 in Figure 1b, and have far
higher viscosity (refer to [5,14,44] for a detailed explanation of the evolution processes of
Jeju lava tubes). Lava tubes are usually connected to cinder cones, as shown in Manjang cave
and Geomun Orum cinder cones systems illustrated in Figure 1c. Photos and TLS results in
Figure 1d present a few lava tubes morphologies, including shallow caves populated in
‘a‘ā lava flows (in Geamcheon and Chogiwak caves) and other ordinary cave developments
in pahoehoe lava flow (in Gamnamdap and Manjang cave, see following sections).

Research conducted by [44] showed that 27 of the 37 examined lava tubes faced severe
collapse and destruction problems. Most lava tubes in Jeju Island show that internal and/or
external failure and destruction problems resulted from disconnected lava tubes. The
investigation was conducted on 27 out of 179 roads over the lava tube. Results showed that
37% (e.g., Sunggul, Cheamchongul, Chogiwatgul, Jungryugul, Bangdyi cave, Manjang cave
Yongchun cave, Susan cave, Michun cave, Bilraemot cave, Bullalit cave) of the 27 examined
lava tubes faced serious collapse and destruction problems. Moreover, 55 crossroads located
over six natural monument caves out of 27 caves already had problems that required urgent
actions to protect citizens in the cave tours. Thus, a series of practices is required to address
the issue regarding the collapsed and destroyed lava tubes, including (1) safe policy for
roads over tubes; (2) a geophysical engineering survey of 27 lava tubes on mega-sized
construction sites; (3) Cave Geographic Information Systems (CGIS) implementation for
systematic operation and management, and (4) a safe guide panel on the dangerous sites in
Jeju Island.
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Figure 1. Geological context and lava caves of Jeju Island. (a) Lava tubes in detailed geological units 
associated with cinder cones and lava flows. (b) Lava tube distribution, bedrock geology, and road 
networks. (c) The topography of Jeju Island is shown and locations of major study sites are labeled. 
Hereafter, a map projection is WGS 84 geographic coordinate system unless otherwise noted. (d) 
TLS point distributions demonstrating internal structures and on-site photos collected in Geam-
cheon, Chogiwak caves. Geological units and background geology, together with cone volcanoes 
distribution, are based on [38]. The lava tube distribution is taken from [16]. Photos in Chogiwak 
cave were taken from the Korean Cultural Heritage Administration. 

2.2. Data Sets 
The technology of space geodesy, such as InSAR data analysis, is widely used to ob-

serve minor surface migration over a long period. This has been successfully exploited to 
detect underground stability caused by depressurization, cavity creations, and subtle sur-
face creep [45–48]. Thus, we expected the surface deformation on shallow lava tubes and 
cavities in Jeju Island are in the scope of InSAR observation accuracy estimated to be a few 
millimeters. In terms of data availability and spatiotemporal coverages for reliable InSAR 
processing, the only feasible data set is Sentinel-1 SAR imagery [49]. Sentinel-1 SAR im-
agery acquired by two SAR-satellite constellations, Sentinel-1A and 1B operating from 
2015 and 2016 respectively, is freely available on the public domain, Sentinel data hub 
(https://scihub.copernicus.eu/, accessed on 7 January 2022). Therefore, the Sentinel-1 con-
stellation provided six days of revisit time, which is enough to construct the InSAR time 
series network. Their Interferometric Wide-swath mode (IW) operation with Terrain Ob-
servation and Progressive Scans SAR (TOPSAR) imaging makes available precise moni-
toring of the target area with a moderate spatial resolution (20 m in azimuth and 4 m in 
range) and 250 km wide swath coverage [49]. Its C-band wavelength especially guarantees 
relatively minor ionospheric errors carrying long-wavelength artifacts compared to L-
band SAR data. Since the estimated surface deformation over lava tubes is insignificant 
compared to the external error components, we were obliged to use InSAR time series 
analysis to obtain the displacement velocity. Detailed specifications of SAR images asso-
ciated with time-series InSAR analyses were introduced in Section 4. 

Terrestrial Laser Scanning was applied to observe the cave in this study. A number 
of subsurface morphologies in lava tubes were established by TLS to demonstrate their 
stability as shown in Figure 1d. Laser scanning was conducted using FARO Focus3D X330 
laser scanner and GPS receiver. The point density of laser scanning was set as 15 mm. 
Targets were pre-installed to be used as a joint point for data merging and as an inspection 

Figure 1. Geological context and lava caves of Jeju Island. (a) Lava tubes in detailed geological
units associated with cinder cones and lava flows. (b) Lava tube distribution, bedrock geology,
and road networks. (c) The topography of Jeju Island is shown and locations of major study sites
are labeled. Hereafter, a map projection is WGS 84 geographic coordinate system unless otherwise
noted. (d) TLS point distributions demonstrating internal structures and on-site photos collected
in Geamcheon, Chogiwak caves. Geological units and background geology, together with cone
volcanoes distribution, are based on [38]. The lava tube distribution is taken from [16]. Photos in
Chogiwak cave were taken from the Korean Cultural Heritage Administration.

2.2. Data Sets

The technology of space geodesy, such as InSAR data analysis, is widely used to
observe minor surface migration over a long period. This has been successfully exploited
to detect underground stability caused by depressurization, cavity creations, and subtle
surface creep [45–48]. Thus, we expected the surface deformation on shallow lava tubes and
cavities in Jeju Island are in the scope of InSAR observation accuracy estimated to be a few
millimeters. In terms of data availability and spatiotemporal coverages for reliable InSAR
processing, the only feasible data set is Sentinel-1 SAR imagery [49]. Sentinel-1 SAR imagery
acquired by two SAR-satellite constellations, Sentinel-1A and 1B operating from 2015 and
2016 respectively, is freely available on the public domain, Sentinel data hub (https://
scihub.copernicus.eu/, accessed on 7 January 2022). Therefore, the Sentinel-1 constellation
provided six days of revisit time, which is enough to construct the InSAR time series
network. Their Interferometric Wide-swath mode (IW) operation with Terrain Observation
and Progressive Scans SAR (TOPSAR) imaging makes available precise monitoring of the
target area with a moderate spatial resolution (20 m in azimuth and 4 m in range) and
250 km wide swath coverage [49]. Its C-band wavelength especially guarantees relatively
minor ionospheric errors carrying long-wavelength artifacts compared to L-band SAR data.
Since the estimated surface deformation over lava tubes is insignificant compared to the
external error components, we were obliged to use InSAR time series analysis to obtain the
displacement velocity. Detailed specifications of SAR images associated with time-series
InSAR analyses were introduced in Section 4.

Terrestrial Laser Scanning was applied to observe the cave in this study. A number
of subsurface morphologies in lava tubes were established by TLS to demonstrate their
stability as shown in Figure 1d. Laser scanning was conducted using FARO Focus3D X330
laser scanner and GPS receiver. The point density of laser scanning was set as 15 mm.
Targets were pre-installed to be used as a joint point for data merging and as an inspection
point. The targets were installed without interfering with the point cloud acquisition

https://scihub.copernicus.eu/
https://scihub.copernicus.eu/
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inside the cave. Once the scan was finished, the scanned point cloud models collected in
multiple stations were registered to form one complete model in the FARO SCENE 5.4 data
post-processing software. Given the parameters such as the number of points, the number
of repetitions, and the search range, the registration error value was calculated within
±2 mm. After that, noise removal and geo-referencing were performed based on ground
control points to construct a fully co-registered 3D cave model for three lava caves. TLS
missions in those lava caves were conducted as part of the Jeju lava tube exploration project
led by the Jeju provincial government in collaboration with the nomination committee of
UNESCO geological attractions. However, due to the absence of height data fields over
some parts and inaccurate co-registration with ground coordinate caused by a difficult
observation environment (it was totally dark at some sections of the tube), the TLS data
sets are limited for accurate measurement. Therefore, we only employed TLS as auxiliary
data for the 2D shaping of cave morphology rather than as base data for the numerical
brittle deformation model.

3. Methods

Figure 2 shows the data processing flow to detect LTDPs combining InSAR time series
analysis, spatial analysis, and machine learning methods with subsequent interpretation.
Since expected deformation caused by undiscovered lava tubes is supposedly small and
highly localized among the large InSAR observational coverage, the strategy in this study
was to perform investigations based on multiple clues. InSAR time-series analysis, so-called
Persistent Scatterers (PS), was the core component in the strategy. Persistent Scatterers were
used to monitor the temporal migration on specific scatterers, such as crossing points of
roads and lava tubes [50,51].
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Regarding the implementation, PS analysis first extracted all pointwise deformations.
Then the PS observation points were pre-filtered by the extracted mask through spatial
analysis. Classification by machine learning algorithms was then employed to classify all
pre-filtered PS points into several categories. The results were interpreted to identify LTDP
candidates over undiscovered lava tubes.

The PS method exploits strong scatterers in time series interferograms, which are
paired by a common master image and a sufficient number of slave images. The obser-
vations and error component terms of InSAR to be handled in algorithms of time series
analyses are expressed as follows:

∆ϕobs = ∆ϕDint + ∆ϕatm + ∆ϕorb + ∆ϕtopo + ∆ϕion +ϕnoise (1)

∆ϕDint = ∆ϕint −ϕtopo (2)

where ∆ϕobs is the phase difference of interferogram, ∆ϕDint is the phase difference by
target topography only, ∆ϕorb is the phase difference by inaccurate orbital information,
∆ϕtopo is the phase difference by inaccurate base topography, ϕnoise is the other phase noise,
∆ϕatm is the phase difference by atmospheric phase components, and ∆ϕion is the phase
difference caused by delay in the ionosphere. In different time series InSAR networking
methods, for instance, a master to multi-slaves in PS and multi-masters to multi-slaves
in small baseline subsets (SBAS) technique [52], the error components were interpolated
and canceled accordingly. In this study, we aim to precisely trace individual scatterer’s
behavior; thus PS became the primary InSAR time series technique.

The core idea of the PS algorithm is to discriminate Persistent Scatterers with constant
responses for amplitude dispersion and to address error estimations using iterative non-
linear equations. PS processing was initiated by a master to multi-slave interferogram
network construction. Stable PS observations were then taken for the base of network
inversion. The network was inverted together with the filter-out of error components,
called atmospheric phase screen (APS) in each slave to master pair, which is mainly
induced by ∆ϕatm and ∆ϕtopo components as described in Equation (1). The APS canceling
procedure was iteratively applied by an increasing number of PS points up to the final
estimation of ∆ϕDint. Then, the deformations in topography in each PS can be driven
on the condition that ϕnoise is negligible. Although PS requires a large number of image
stacks, the accuracy of InSAR deformation is up to 1 mm/year [53]. On the contrary, the
PS algorithm often suffers from a lack of observation density and PS variants were often
introduced. In this study, the target area has quite large areas’ rocky/low vegetation land
cover with stable rock scatterers. Therefore, we were able to employ the conventional
PS algorithm to observe the temporal migration with high precision. The density of
extracted scatterers was also observed to be sufficient for further interpretation. The PS
procedure applied in this study is summarized in Figure 2b. The procedure of InSAR time
series analysis was conducted by SARscape, a commercial InSAR processor. For InSAR
processing, the orbital files were updated by the ESA Precise Orbit Determination (POD)
service (https://aux.sentinel1.eo.esa.int/, accessed on 7 January 2022). Shuttle Radar
Topography Mission (SRTM) DEM v 3.0 with 30 m resolution was used as the base DEM
for InSAR processing. The connection graph of employed interferograms for the PS time
series in this study is given in Figure 3.

https://aux.sentinel1.eo.esa.int/
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4. Results
4.1. InSAR Time Series

As mentioned above, Sentinel-1 SAR images are optimal data for this study as the time
series of the PS network covered a two-year period with 72 images in descending mode as
shown in Figure 3. Unfortunately, Sentinel-1 ascending mode coverage over Jeju Island
only has a few pairs, which are not adequate for any time series analysis; thus, ascending
mode InSAR time series data is not available in this study. The basic characteristics of
Sentinel-1 imagery are summarized in Table 1.

Table 1. Characteristics of employed Sentinel-1 images.

SAR Image Parameters

Image number 72
Time coverage 1 January 2016–22 December 2018

Heading angle (deg) −167.107
Incidence angle (deg) 44.0

Relative Orbit 134
Acquisition time 06:32 KST (GMT + 9)

Although InSAR techniques have been effectively used for natural and artificial surface
deformation observations, land surface monitoring caused by instability on the subsurface
cavity would be a challenge due to the expected low deformation rate as long as the
observation does not cover the collapsing phase of the lava tube.

Figure 4a shows the LOS displacements extracted via the PS time series analysis in
the target area together with the corresponding average phase coherences (Figure 4b). The
stable reference point of InSAR deformations was carefully chosen based on the stability
and dispersion of phase coherence and deformation rate. The time series LOS surface
deformation demonstrates that the displacements on a large number of PS points are quite
tiny (<1 mm/year). However, there are a few obvious strong regional deformations. We
may consider such regional LOS migrations as either different thermal dilations of bedrocks
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induced by weather change or different brittle deformations of bedrocks responding to
large-scale dynamic stress [54,55] in geological units. However, the ground subsidence in
Seogwipo sediment was interpreted as an effect of loading by ongoing heavy construction
projects in Seogwipo. As PS observations certainly come from localized scatterers such
as artificial structures or significant rocky objects, it implies that there is plausible surface
migration induced by various localized instabilities, including potential LTDPs.
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4.2. Machine Learning for Point Classification

Despite long historical research work, the distribution pattern of lava tubes remains
unclear. One clue to reveal the pattern is the involvement with low viscosity lava flow,
known as pahoehoe lava [56]. However, as shown in Figure 1, the spatial extent of pahoehoe
lava flow and distribution of lava tubes are not highly correlated. Therefore, we tried to
constrain the potential distribution of lava tubes using other evidence. We created a density
map of lava tubes (179 in total) with the weighted values of their lengths and the co-kriging
interpolation as shown in Figure 5b. The other useful information to spot the subsurface
lava cavity is the existence of a permeable geological structure (PGS) so-called “Sumgol”,
which assigns the collapse locations of the lava cavity or the vertical joints or cracks over
lava flows [57]. It is presumably related to the distribution of undiscovered lava tubes. We
digitized the PGSs and applied the distance transformation with the city block sampling
method [58] as shown in Figure 5d. The convolution of two spatial distributions was
proposed to represent subsurface cavities by lava flow. The convolution corresponds to the
simple additions of the two materials as we do not apply any weighting. The gridded data
sets assigned as the distribution of PGS and the footprints of lava tubes were employed
to further process InSAR data sets as a constraint. The other data sets extracted from the
geospatial information were used for the ground truth and validation. The details are
described in Section 5.
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Lava tube instability has been also identified by the structural analyses employing
Finite Element Method (FEM) in [59,60] and demonstrated in the fieldwork reported in [44].
As surface deformation was evident, InSAR time series analysis capable of observing a
wide area was proposed to observe displacement induced by lava tubes. In particular,
PS velocities present LOS directional behaviors on localized landscape objects; thus, PS
was used to identify the LTDP and associated risks. Meanwhile, the sinkholes detected by
InSAR analyses previously performed by [46,47,61] were proposed as comparable study
cases as the cavities induced by underground sinkholes and lava tubes would cause similar
surface deformations. Although we were able to extract a large number of deformation
candidates based on the InSAR analysis results, the technical difficulties in discriminating
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potential LTDP remain as follows: (1) there are false LTDP caused by other factors such as
regional subsidence, thermal dilations, and failures of InSAR algorithms; (2) the behavior
of LTDP is not clear, as we do not have precise ground truth; (3) the domains to be tested as
target LTDP are enormous because the PS observations included more than 200,000 points
all over Jeju Island.

To address these difficulties, we introduced machine learning methods. First, we
built the training datasets based on the spatial analyses and the geological/demographic
contexts. The established ground truth data sets were then feedforwarded to the training
stage of the proposed machine learning methods. Subsequently, we classified all PS target
points using trained machine learning platforms. The extracted points as LTDPs were
re-analyzed in the comparison of background context and validation data sets.

Table 2 and Figure 6 show the standards to define training data sets and their locations.
As [44] described, the road crossing with lava tubes or the cavities on lava flows often caused
the roof failures of corresponding lava tubes/cavities. We investigated the deformation
patterns of PS observations on road-crossing points with Manjang cave and all PGSs.
We choose Manjang cave as the most deformation-fragile case because of the shallow
structure of the lava cave (see the following discussions), extensive length, and high
interaction with tourist activities. On the contrary, PGS was originally created by the
vertical failures of lava cavities, and the proximity to roads supposedly indicates instability
and deformations. With 177 InSAR observations (77 on Manjang cave and 100 on PGS s)
in road crossing areas, we discovered that the deformation patterns could be classified
as (1) minus LOS migrations (<−1 mm/year) which imply vertical subsidence, so-called
V-migration patterns, and (2) positive LOS migrations (>0.75 mm/year) which are almost
impossible as vertical deformations due to the rocky surface of lava flow hence might
refer to horizontal deflections, so-called H-migration patterns. Thus, 50 V-migrations and
17 H-migrations were assigned as the training data. It was noted that some minus LOS
migrations might be induced by horizontal creep to the LOS direction in the SAR sensor.
However, this portion in V-migration should be minor as the major contribution to LOS
direction is up- and downward deformation [62]. Interestingly, around PGS, the majority
of deformations (>70%) are V-migration, while H-migration occupied 50% of deformation
points in Manjang cave. It fits the hypothesis that vertical failures in PGSs mainly induce V-
migration patterns, but a large cavity such as Manjang produced the H/V-migration pattern
together. Therefore, we constructed the training vectors of potential lava tubes combining
two migration patterns together. Their behaviors included highly variable signals perhaps
involved with seasonal effects as shown in Figure 7a,b, where changes possibly induced by
thermal expansion are noticed in the summertime. H-migration patterns were introduced
as the secondary indicator of the potential instability of the lava cavity. The stable PS
points with no significant variation were excluded for the input data of machine learning
applications. However, we observed that two kinds of deformation patterns might be
misrecognized as genuine LTDPs. The first one is the deformation induced by regional
subsidence, and the second is the structural deformation, such as newly built buildings.
The regional subsidence is clearly observed in Seogwipo sediment, perhaps caused by
regional condensations by heavy mass loading (see Figures 1 and 6). Therefore, the strong
minus deformations (<−2 mm/year) in Seogwipo sediment were chosen as the training
vectors of regional subsidence. The stable behavior is shown in Figure 7c, in which the
variation is quite different from the PGS-road-crossing or tube-road-crossing regions. The
instability of individual structures was chosen on the opposite side of Jeju City areas where
large buildings are populated. Since there are many deformations with random changing
patterns, the average behavior is uniform and is shown in Figure 7d. Because there are not
enough training points, the pattern of H-movement varies (Figure 7e).
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Table 2. The number and standard of training data.

Number
of Points

Selection Standard
(Velocity (mm/Year) and

Standard Deviation
(Std.dev.))

Constraints

V-migrations 50 Velocity < −1.0
Std.dev. > 0.5

Soumgol and Manjang
cave around road

crossing

H-migration 17 Velocity > −0.75
Std.dev. > 0.5

Soumgol and Manjang
cave around road

crossing
Regional

subsidence 483 Velocity < −2
Std.dev. > 1.0 Seogwipo sediment unit

Instability points
by artificial structures 433 Velocity < 4.5

Std.dev. > 1.0 Jeju City area
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Figure 6. Training point locations of V-migration, H-migration, regional subsidence, and instability
points by artificial structures for machine learning. The training vectors for regional subsidence
were chosen in Seogwipo City, where Jeju Island’s only sediment unit exists. Training vectors for
instability caused by artificial structures were built in the Jeju City area, where the largest buildings
are concentrated.
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Figure 7. Deformations and standard deviations for training vectors on (a) collapse (PGS)-road
crossing points, (b) Manjang cave-road crossing points, (c) deformation points in Seogwipo sediments,
(d) deformation points in Jeju City urban area, and (e) deformations points on H-migrations. A five-
window-sized moving average filter was applied to the original data set to observe the trend in the
time domain.

Once the training vectors were established, point classification was conducted. We
employed two algorithms—random forest (RF) [63,64] and gradient boosting (GB) [65,66]
methods. RF uses multiple decision tree construction in the training stage and bootstrap
aggregation of their outputs as an ensemble method. Thus, it is effective to prevent
overfitting and upgrading modeling accuracy. Since [67] presented its applications for
classification, it has been widely used, and the capability for manipulating spatial data
sets has been demonstrated. GB is an algorithm to exploit residual fitting of the model
as a boosting approach; it is known as a classifier with high precision. We applied both
algorithms on PS points screened by the mask through the spatial analyses. As a result,
it was observed that the RF outputs have significant problems detecting H-migrations, as
only 1% of instability points were classified as H-migrations. Therefore, we excluded RF
results for further analyses. The detected H/V-migrations in potential LTDPs using the GB
algorithm are presented and discussed in Section 5.
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5. Discussions

By overlaying the potential LTDPs on the strength of the spatial analysis mask, some
insight into undiscovered lava tubes was revealed and shown in Figure 8a in which, 1034 V-
migrations and 245 H-migrations were detected. The small portions of H-migrations
(<0.0 mm/year) and V-migrations (>0.0 mm/year) were first cut off from LTDP to simplify
analysis. Then, we split strong and weak migration points (Figure 8c,d) from the histogram
distribution of V/H migrations.
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Figure 8. Distribution of LTDPs on (a) spatial analysis mask and pahoehoe lava flow and (b) geological
units together with estimated clusters implying potential lava tube networks. (c) Histogram of V-
migration points and average deformation/standard deviation/2nd polynomial regression of strong
V-migration points and (d) Histogram of H-migration points and average deformation/standard
deviation/2nd order polynomial regression of strong H-migration points.

First, potential LTDPs around the Jeju City area might include lots of instability in-
duced by individual building structures rather than the potential lava tubes. The constraints
identifying LTDPs on the undiscovered lava tubes are: (1) LTDPs should be distributed
as a linear form in the direction of the lava flow, which is mostly from the cinder cone as
the source of lava flows to the coastline; (2) V/H-migrations must be distributed together;
(3) the lava tube networks producing LTDPs might cause regional linear deformation.

Overlaying the H/V-migrations and the geological units is shown in Figure 8b. We
defined the locations of potential lava networks from group A to G as assigned ellipses.
The major axis of the ellipse is the estimated direction of the involved lava flow. The most
interesting and distinguished group is B1, which originated from the Gama cinder cone
to the coastal area. It has a well-distinguished V/H-migrations along a pahoehoe lava
flow. Around the Gama cinder cone, there is a 2 km length underground tunnel built by
the Japanese army during World War II (WWII) and that becomes unstable. Although the
military tunnel might cause unstable points, the spatial extent of group B1 is too large
to be considered as the consequence of the WWII military tunnel. However, it is worth
noting that more than 700 WWII military tunnels are widely distributed in Jeju Island,
and a large number of them are in structural failure and/or not discovered. This is the
reason we classified the points only within the spatial analysis mask defined in Section 4.1.
Group B2 has a similar context, directed from a cinder cone to the coastline. The other
obvious potential LTDP group is A1, which certainly fits the direction of a Basalt-Trachyte
unit (see Figure 1b) and follows the terminus of a lava flow. Since only a few lava tubes
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are identified there, we proposed an extensive and undisclosed lava tube network over
A1. Group A2 is proposed as a lava tube trail, as it fits very well with an independent
Basalt-Trachyte lava flow unit starting a cinder cone, as shown in Figure 1b. Although the
trail of potential LTDPs is unclear, groups D1 and D2 should be noticed, as the area will
soon be reconstructed for the international airport. Groups E and C coincided with the trails
of the two biggest lava tubes, the Manjang (length > 7.4 km)-Yunchen (length > 2.4 km)
cluster and Bilremot (length > 11.7 km) cave, respectively. The average deformation pattern
of detected V-migration (“strong” part < −1.82 mm/year) shown in Figure 8c is more
similar to that of the cave-road-crossing points in Figure 7a than other training data. The
average H-migration pattern (“strong” part > 1.1 mm/year) in Figure 8d is quite different
from H-migration training vectors but has a steady increase as expected. The geophysical
exploration employing ground penetration radar (GPR) and electrical resistivity surveys
reveal plausible underground caves which were presumably collapsing or being inundated
by seawater around coastlines in area E [68].

Regarding the instability points around Manjang cave (E), it corresponds to the exit of
Manjang cave which has shallow a double cave structure as shown in Figure 9a. Groups
F1–F3 demonstrate the potential LTDPs and alignment with lava flow directions from
cinder cones to the coastline. Groups G1 and G2 are ambiguous as their alignments do
not fit with lava flow directions in that area. Although subsidence and/or alignment
with corresponding lava flow was not observed, constant attention to the potential LTDP
distribution in the south-western side is still required. Along the northern coastline, some
lava tubes are at the risk of collapsing due to their shallow cavity and proximity to road-
crossing (see the Geamcheon and Gamnamdap caves shown in the laser scanned data given
in Figure 9b together with Figure 9a 2D profile of the Manjang cave). The potential LTDP
distributions in the northwestern coastline, Jeju city areas, and Seogwipo tourist complex
(red dotted ellipses in Figure 8b) are irregularly distributed along the coastline and ongoing
construction places; thus are not likely genuine signals of lava tubes.

The issue is whether these 3D cave structures create deformations as observed in
InSAR analyses. Since numerical modeling, for instance, the FEM using 3D cave data and
estimated tensile stress, is beyond the scope of this study, clues can be found in precedent
studies regarding tunnel stability. In particular, [69] established the relationship between
the dimensions of collapsing parts, which are defined with L1, L2, and radius R on the
approximated circular cavity as shown in Figure 9c, stresses, and material properties.
The cave shape of Figure 9c was extracted from the TLS of Gamnamdap cave, and it
fits well to the known cave geometry in Jeju Island. Thus, the displacement induced by
collapse will be dominated by the vertical way but mixed with the horizontal deformations
which are applied symmetrically at the center of the approximated circular shape as
shown in [70]. Therefore, H-migrations detected by PS InSAR mainly contained part
of horizontal deformations directed toward the SAR sensor. In contrast, the detected V-
migrations represented mainly vertical and horizontal deformations away from the SAR
sensor position. The magnitude of deformations around circular tunnels is very different,
according to the applied tensile stress, materials properties (hard/soft rocks and soil), and
the dimension of the tunnel. If the tunnel depths are limited to very shallow (<10–20 m),
the deformation values calculated in the case studies vary from sub-millimeter depending
on the scenarios [70–72]. However, the fractures in the weathering wall of the lava tubes
and the relatively weak brittle strength of basaltic rocks, combined with anthropogenic or
structural stresses certainly cause sufficiently high deformations, which can be detected by
InSAR observations.
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Figure 9. Examples of 2D/3D cave models and instability check. (a) The 2D profile of Manjang caves
and the location of detected LTDPs on the terminus of the tube, which are digitized from [56]. (b) 3D
LiDAR map in Gamnamdap cave with thin topography. (c) Diagram of expected deformations on
cross-sectional lava tube (H: depth of cave, R: radius of approximated circular shape on lava tube,
L1 and L2: the lengths of upper and lower parts of collapsing part, dh and dv: hypothesized H/V
deformations at certain collapsing points). Refer to Figure 1 to identify cave locations. The map
projection system of (b) is Korea 2000/Central Belt 2010.
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InSAR LOS migrations can be expressed using the quantities in Figure 9c and the
relationship by [73] as

displos = −sinθcosαdisph + cosθdispv (3)

where displos is LOS displacement, disph, and dispv are horizontal and vertical displacements,
θ represents the incidence angles and α is the heading angle.

Thus, the observed displos can be estimated using the angles in Table 1 and Equation (3)
in the case of Figure 9c.

H-migration = 0.694dh − 0.719dv

V-migration = −0.694dh − 0.719dv (4)

Equation (4) explains the relatively small H-migrations compared to the V-migrations
even on the same cavities as well as mixed V/H migrations over a potential cave as stated.

In the end, we identified a group of potential LTDPs using InSAR observation and
spatial analyses. To prove the reliability of this approach, we employed the road-crossing
survey by [18] to measure the known collapses of lava tubes. Among 27 ongoing collapses
of lava tubes in this survey, 14 caves have H or V migrations within the buffer zones
built by their length, and seven caves have both H-V migrations (refer to Figure 10a).
However, adequate validation of detected H-V migrations as LTDPs should be conducted
based on the ground truth if possible. Reliable ground truth was provided by GPR and
the electricity resistivity survey conducted by the [68] around Manjang cave, assigned as
‘E’ in Figure 8). A total of 23 GPR and electricity resistivity survey tracks together with
detected anomalies that were presumably part of undetected lava tube trails were presented
compared to the H-V migration points by PS analysis (Figure 10b). The coincidence of H-V
migration points and geophysical anomalies is not strong, but there are a few detections
of geophysical anomalies within H-V migrations by PS analysis. Considering that spatial
overlap between PS coverage hindered by vegetation and the small number of geophysical
tracks are intrinsically limited, such detection of geophysical anomalies by spaceborne data
demonstrated the potential of the InSAR approach for LTDP detections.

Even though some deep instabilities would not be revealed as the surface topographic
deformations, the estimated PS measurement in this study is capable of discriminating
LTDP with considerable accuracy. However, the concern that remained unresolved in
this study is eradicating the false/pseudo-LTDPs, which can lead to incorrect conclusions
regarding the spatial distribution of lava tube networks. In future studies, a detailed
validation is necessary using a planned GPS/electricity resistivity survey together with
InSAR analysis or perhaps employing a corner reflector for synchronized observation.
Near future SAR/InSAR missions, such as the L-band NASA-ISRO Synthetic Aperture
Radar (NiSAR) [74] and P-band BIOMASS missions [75], will be particularly interested, in
terms of coverage and penetrating powers to replace or enhance existing approaches, such
as gravitation data sets [76], ground-penetrating radar [26], morphological analyses and
spotting of skylight [13,77].
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6. Conclusions

The geological importance of lava tubes in Jeju Island has been noted with the discov-
ery of extraterrestrial lava tubes and their habitable environments. Since the risk caused
by such a geological environment is not regularly monitored, both the known and the
undisclosed lava tube networks in Jeju Island should be investigated. Moreover, with the
construction of the second international airport in western Jeju, significant concern has
been raised regarding the risk imposed by the instability of the hidden lava tube network.
To address this issue, the present study conducted an InSAR campaign and subsequent
machine learning applications, together with spatial analyses of geological clues. By em-
ploying a data fusion approach of InSAR and machine learning, we detected a number
of potential LTDPs, demonstrating a plausible distribution of what would be classified
as instabilities of the undiscovered lava tube networks, based on their peculiar patterns
confined in thin corridors and on their deformation behaviors. In particular, the LTDP
groups on the eastern coast showed the best-fit observation of the existence of unknown
cave networks, a finding that was supported by the results of the geophysical surveys.
However, some false/pseudo-LTDPs remained due to instabilities from other artificial
structures and regional condensations.

This study yielded two main lessons. First, the study elucidates a procedure to spot
shallow lava tube networks and identify their risks by integrating various data sources.
However, the outcomes also demonstrated the need to fuse groundworks such as GPS
and corner reflector over suspected deformations to clarify InSAR results. Future InSAR
missions with better penetration will be useful, as they will be able to detect subsurface
deformation signals. Combining structural analyses to classify InSAR signals using esti-
mated instability is a highly useful approach and will be the aim of future iterations of this
study. Second, adding to the existing methods of discovering terrestrial/extraterrestrial
lava tubes, we proved that an InSAR survey is an effective tool for detecting lava tube
networks. Considering proposed planetary InSAR missions, this tool may potentially be
applied to lava tubes on planetary surfaces.
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