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Abstract: This paper proposes a new approach to small-object change detection from high-resolution
satellite images. We propose using feature points that can be quickly extracted from satellite images
as a suitable unit of change for small objects and to reduce false alarms. We can perform feature-based
change detection by extracting features from previous and recent images and by estimating change
based on change magnitude of the features. We estimate the magnitude by calculating pixel-based
change magnitude, and counting the ratio of changed pixels around the extracted features. We apply
feature matching and determine matched features as unchanged ones. The remaining feature points
are judged as changed or unchanged based on their change magnitude. We tested our approach
with three Kompsat-3A image sets with a ground sampling distance of 50 cm. We showed that our
approach outperformed the pixel-based approach by producing a higher precision of 88.7% and an
accuracy of 86.1% at a fixed false alarm rate of 10%. Our approach is unique in the sense that the
feature-based approach applying computer vision methods is newly proposed for change detection.
We showed that our feature-based approach was less noisy than pixel-based approaches. We also
showed that our approach could compensate for the disadvantages of supervised object-based
approaches by successfully reducing the number of change candidates. Our approach, however,
could not handle featureless objects, and may increase the number of undetected objects. Future
studies will handle this issue by devising more intelligent schemes for merging pixel-based and
feature-based change detection results.

Keywords: change detection; feature-based; feature points; matching; vehicles; high-resolution
satellite image

1. Introduction

Spatial and temporal resolutions of satellite images have been greatly improved due to
continuous development of space technologies and several innovative satellite constellation
programs [1–3] aiming for near real-time earth observation for defense, security, etc. Ac-
cordingly, interest in the application of satellite images has increased with the expectation
of abundant high-resolution image acquisitions. The improved spatial resolution brings a
diversity of observable objects. Improved temporal resolution offers various new applica-
tions based on detection of changes in time-series satellite images. While change detection
from satellite images has focused on changes in relatively large areas, such as land use
and land cover [4–7], forest [8,9], disaster damaged area [10,11], wetland [12], and coastal
areas [13]. The improved spatial and temporal resolutions should enable change detection
of small objects such as vehicles, roads [14], and buildings [15–17]. Traditional change
detection research has limited observable objects due to the resolution limit of satellite
sensors. We wish to conduct a change detection study on small objects including vehicles
using high-resolution satellite images. Due to the agile nature of small objects of interest,
change in this paper mainly means appearance and disappearance between previous and
recent images.
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Change detection can be classified by the unit of change determination. Traditionally,
changes are estimated on individual image pixels (pixel-based approaches) or a group of
pixels (object-based approaches) [18–21]. Pixel-based approaches estimate change magni-
tude per pixel between time-series images by comparing brightness numbers of a pixel and
its neighbors, and determine changed pixels by thresholding the change magnitude. Object-
based approaches [22] define objects by grouping image pixels with similar properties
or by using pre-determined templates [4,5]. Changes are estimated by considering pixel-
based change magnitude and intrinsic group properties [23,24]. Recently, Wen et al. [25]
introduced object-based change detection using various features as change detection units:
textural, deep, object-based and angular. Textural features included grey level correla-
tion [26,27], morphological profiles [28–30], and Gabor and wavelet features [31]. Deep
features refer to change analysis units in convolutional neural networks [14,32]. Angular
features use surface geometry factors such as elevation and observation angles [33,34].
While pixel-based approaches can determine change intuitively and quickly [19,20], they
may generate noisy results and be vulnerable to radiometric and geometric consistency in
time-series images. Object-based approaches can overcome the problems of pixel-based
approaches [22,23]. However, they require additional processing for object extraction and
analysis [24]. In addition, traditional object-based approaches have been applied mostly to
large-sized objects.

In this paper, we aim to develop a method for change detection of small objects that
can overcome the problems of pixel-based and object-based approaches. To achieve this,
we propose the use of feature points, often referred to as interest points or keypoints [35,36],
as change detection units. They can be extracted automatically and without heavy image
computation [35,36], and matched with each other through various feature matching tech-
niques [37–39]. We can perform feature-based change detection by extracting feature points
from previous and recent images and by estimating their change magnitude. We estimate
the change magnitude of feature points by calculating pixel-based change magnitude first
and counting the ratio of changed pixels around the extracted features. We also apply
feature matching, and classify matched feature points as unchanged. This should reduce
false alarms. The remaining feature points are judged as changed or unchanged based on
their change magnitude.

Our approach is unique in the sense that change detection based on feature points is
being newly proposed, while there have been previous studies combining change detection
with matching at the patch [40], image [41] and multi-scale level [42]. It is presumed that small
objects have distinctive brightness patterns, and hence, produce feature points. Feature point
analysis should represent the change in status of small objects better than pixel analysis. We
expect our feature-based approach to be less noisy than pixel-based approaches, since feature
points are less sensitive to geometric errors between previous and recent images. We tried
this approach as an attempt to compensate for the disadvantages of highly time-consuming
approaches. It is very difficult to apply computationally expensive supervised, segmentation,
and classification approaches [43,44] to every changed pixel [25]. Applying such an approach
to changed features should be more feasible. We expect that our feature-based approach is
able to represent object changes without supervision to some extent.

The organization of this paper is as follows. Section 2 describes the workflow of the
proposed feature-based change detection. Section 3 describes the dataset, study area and
preparation of ground truth data used for the experiments. Section 4 reports the results
of feature-based change detection and discusses their performance in comparison to a
pixel-based approach. Section 5 concludes the findings of this paper, along with limitations
and future research directions.

2. Feature Point-Based Change Detection Method

This section explains the feature-based, unsupervised change detection proposed
in this paper. Figure 1 shows the processing sequence of our method. We perform pre-
processing on input satellite images, extract feature points from them, and apply feature
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matching. Concurrently, we apply pixel-based change detection. The two processing
sequences are merged by creating change magnitudes of the features. Finally, changed
features are determined.
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2.1. Pre-Processing

Pre-processing is essential to accurate change detection results. We perform ortho-
rectification on input satellite images using Ground Control Points (GCPs) and a Digital
Elevation Model (DEM) to remove pixel location errors and relief displacement due to
surface elevation. For this paper, we used Kompsat-3A images with a ground sampling
distance (GSD) of 50 cm. For ortho-rectification, we used GCPs extracted from the National
Integrated Control Point Database of the National Geographic Information Institute (NGII)
of the Government of Korea, with an expected accuracy of several centimeters, and the
National 5 m Grid DEM generated and maintained by NGII [45]. It is expected that
rectified image grids are aligned with each other to accuracies within two pixels. After
rectification, sub-images were extracted from previous and recent images to carry out the
change detection experiments.

The images used in this paper include a panchromatic band and pan-sharpened
multispectral blue, green, red, and near-infrared bands. For feature extraction and matching,
the panchromatic band was used. For pixel-based change analysis, the pan-sharpened
multispectral bands were used.
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2.2. Feature Extraction

Feature points used in this paper are the points that have distinctive texture patterns,
such as abrupt brightness changes in their vicinity. Feature points are regarded as a means
to describe an arbitrary object, and they have been used to find corresponding points of the
same object through matching [37–39]. In this paper, we wish to check whether they can be a
useful unit of change for small objects. We used Scale-Invariant Feature Transform (SIFT) [35]
and the Accelerated-KAZE (AKAZE) algorithm for extracting feature points [36]. SIFT can
extract features robust to image rotation, affine transformation, and scale [46]. It constructs a
scale space using a Gaussian kernel, generates a Difference of Gaussian (DoG), and localizes
feature points by eliminating low-contrast points. AKAZE uses a nonlinear diffusion filter to
remove noise and highlight edge areas and detect feature points as points with the maximum
response of a Hessian-based filter [36]. The brightness values of ortho-rectified panchromatic
bands were re-scaled from 16 bits to 8 bits, and feature extractors were applied. Through this
processing, a lot of features were generated from previous and recent images. In many cases,
multiple features at very close distances were extracted from a single object. For some very
small objects, no features were extracted. However, to check the capability of feature-based
change detection, we did not apply additional post-processing to filter out these multiple
features or to amend objects without features.

2.3. Feature Matching

After feature extraction, we perform feature matching. Our purpose is to classify
matched features whose pixel distance is within a small threshold in previous and recent
images as unchanged, and remove them from further analysis. Matching performed over
the entire image may produce false matches. Therefore, we divide the whole image into
small sections called buckets, and limit feature matching to within each corresponding
bucket. Figure 2a shows how an image is divided into buckets. Feature points within a
bucket of a previous image are compared only with the feature points of the corresponding
bucket from a recent image. Figure 2b is the result of feature matching within a bucket.
The circles in the left and right images in Figure 2b are feature points extracted and lines
connecting them show match results between feature points. Matched features are shown
as the same color. The yellow boxes show successfully matched features.
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matching results in one bucket.

Feature matching is executed with brute force-based K Nearest Neighbors (KNN) [47].
KNN matching searches k pairs of feature points by matching one feature point to k feature
points. Since matching is performed on multi-temporal ortho-images, the positions between
matched feature points should be the same or similar for unchanged objects. Therefore,
when the pixel distance between matched feature points is smaller than a threshold, we
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can determine the feature points as the points from the same unchanged object. They are
classified as unchanged and removed from follow-up change analysis.

2.4. Pixel-Based Change Analysis

After the pre-processing step, as shown in Figure 1, a pixel-based change detection
process is carried out in parallel with feature extraction and matching. For generation
of a pixel-based change magnitude map, we use the Multivariate Alteration Detection
(MAD) algorithm [48–51], which is a well-known pixel change analyzer. Here, we restate
its principle for the completeness of this paper. The MAD generates transformed images W
and P from images X and Y having n spectral bands as in Equation (1).

W = atX = a1X1 + · · ·+ anXn (1)

P = btY = b1Y1 + · · ·+ bnYn (2)

where X1 to Xn and Y1 to Yn are the brightness values of each band in images X and
Y, respectively, and a1 to an and b1 to bn are the transformation coefficients for images
X and Y, respectively. The transformation coefficients are calculated by the covariance
among the original images X and Y and the correlation between the transformed images
W and P to maximize the deviation between two images [48,49]. The MAD calculates
changes as the difference between transformed images W and P, as shown in Equation (3).
The MAD is invariant to changes in gain and offset settings in measuring devices and to
linear radiometric and atmospheric correction schemes [49].

MAD = W − P (3)

The changed area can be highlighted and detected by maximizing the deviation.
For this paper, The MAD was applied to the green, red, and near infra-red bands of the
Kompsat-3A images.

After change magnitude generation, changed pixels are determined by thresholding
the change magnitude. Determination of the optimal threshold value is of great importance
for accuracy and performance in change detection. In this paper, our focus is on proposing
feature-based change detection and checking its performance with respect to pixel-based
approaches. Therefore, we used various threshold values repeatedly, and checked the
performance of change detection per threshold. For a given threshold, a pixel-based change
map was generated and delivered for the next process of feature-based change analysis.

2.5. Feature-Based Change Analysis

Feature-based change analysis is carried out using the unmatched feature points and
a pixel-based change map. A region of interest (ROI) of a small pixel size, say 3 × 3 pixels,
is defined at a feature point as its center. The ratio of changed pixels to all pixels within
the ROI is calculated. This ratio can represent the magnitude of change or the probability
of change for the feature point. This ratio can be analyzed further for optimal change
detection performance. In this paper, we set a ratio of 0.5 as the threshold of change for the
sake of simplicity and to focus on the theme of the paper. Figure 3 shows the process of
classifying changed feature points using one ROI. Figure 3a shows a pixel-based change
map over a test site. Figure 3b is an enlarged sub-image around a ship, and Figure 3c is a
selected ROI showing changed pixels in white and unchanged pixels in black.
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2.6. Performance Analysis

For performance analysis, we manually measured the boundaries of changed objects
and unchanged objects. They were used as references to analyze the performance of change
detection. Accuracy, precision, recall, false alarm rate, F1-score, and Area Under the Curve
(AUC) were used as performance indices. Accuracy is the ratio of correctly classified
groups—true positive (TP) and true negative (TN)—versus all groups, including incorrectly
classified groups—false positive (FP) and false negative (FN). In this paper, positive is
the decision that change occurred. Precision is the ratio of true positives to all detected
changes (TP and FP). The recall is the ratio of true positives to all changed references (TP
and FN). The false alarm rate is the ratio of false positives to all unchanged references (FP
and TN). F1-score is the weighted average of precision and recall. Performance indices
were calculated using Equations (4)–(8) [6,15,17].

An AUC [27] value is calculated as the area under the Receiver Operating Characteris-
tic (ROC) curve [34], which represents the relationship between the values for normalized
recall and false alarm rate. When the false alarm value is low and the recall value is high,
detection performance is good. Therefore, a higher AUC value indicates good performance.
For this paper, AUC was calculated from the ranges between zero and 0.1 false alarms to
compare feature-based and pixel-based change detectors in low-false-alarm regions.

Accuracy =
TP + TN

TP + TN + FN + FP
(4)

Precision =
TP

TP + FP
(5)

Recall =
TP

TP + FN
(6)

False Alarm rate =
FP

FP + TN
(7)

F1 − score = 2 × Precision × Recall
Precision + Reecall

(8)

3. Dataset and Study Area

For the experiments, we used three Kompsat-3A image sets taken over Incheon,
Chilgok, and Seoul in South Korea. Table 1 shows the image acquisition dates for previous
and recent images within the image sets. The time difference between previous and recent
images was less than 10 days to minimize brightness changes due to seasonal differences.
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Table 1. Temporal specifications of the Kompsat-3A image sets.

Study Area Incheon Chilgok Seoul

Acquisition dates of previous images 18.01.19 18.10.24 17.02.23

Acquisition dates of recent images 18.01.27 18.11.01 17.02.24

Figure 4 shows the images used for the experiments. The areas selected for study from
each dataset had many changed and unchanged small objects, such as buses, trucks, ships,
and containers. Study areas are marked with red boxes in Figure 4. From the Incheon
images, one coastal area was selected. From the Chilgok images, one rural area was selected.
From the Seoul images, one downtown area along the Han River was selected. The previous
and recent images of each study area are shown in Figure 5.
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From each dataset, changed and unchanged small reference objects were extracted by
manually digitizing the object boundaries. Since there were a lot of small objects within the test
sites, we could not extract all of them. We extracted some representative objects with clear object
boundaries widely distributed within the test areas. Extracted reference objects are shown in
Figure 6. Objects marked in orange are the changed reference objects, and those marked in
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green are the unchanged reference objects. The extracted objects range from relatively large
sizes, such as ships and containers, to small sizes, such as trucks and small vehicles. To increase
the number of unchanged reference objects, the roofs of small buildings were included. Table 2
shows the quantity of reference objects and their average sizes in pixels and in square meters.
The average changed object size in Incheon was larger than other sites due to the very large
ships docked in the harbor. The average unchanged object size in Chilgok is larger than the
others because agricultural fields were included as unchanged references.
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Table 2. The quantity and sizes of reference objects.

Incheon Chilgok Seoul

Number of changed objects 400 82 149

Number of unchanged objects 350 35 152

Average size of changed objects (pixels/m2) 660/165 196/49 90/23

Average size of unchanged objects (pixels/m2) 398/100 1114/278 266/66

4. Results and Discussions

This section describes the results of feature-based change detection experiments carried
out on the three test datasets, compares their performances in comparison to the MAD and
discusses the advantages and drawbacks of our proposed approaches.

4.1. Feature Extraction Results

Feature extraction was applied to the test images. Table 3 shows the number of
feature points extracted from each test area. The numbers of feature points extracted for
changed reference objects and unchanged reference objects are also shown. Please note
that features were not extracted from all reference objects. Some small objects without
internal texture patterns did not produce features. Among the datasets tested, features
were not extracted from 4.1% of the changed reference objects (26 out of 630) with AKAZE,
and from 2.3% of the objects (15 out of 630) with SIFT. Changed objects without features
decrease the change detection accuracy of our feature-based change detector, and prevent
normalized recall from converging to 1. One can improve the feature extractor to reduce
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the number of featureless objects, and hence, to increase change detection accuracy. In this
paper; however, feature-based change detection was tested without additional handling of
featureless reference objects.

Table 3. Results of feature extraction.

Study Area Extractor Type

Number of Extracted Features References with Features/
Total Reference Objects

From the Total Area From Changed
References

From
Unchanged
References

Changed Unchanged

Incheon
AKAZE 389,192 4972 2216 383/400 283/350

SIFT 642,565 5743 3321 390/400 336/350

Chilgok AKAZE 617,735 523 601 82/82 35/35
SIFT 954,061 448 1111 82/82 35/35

Seoul
AKAZE 136,619 608 954 139/148 138/152

SIFT 123,946 449 634 143/148 139/152

Total
AKAZE - - - 604/630 456/537

SIFT - - - 615/630 510/537

4.2. Feature Matching Results

Table 4 shows the results from feature matching. The results were analyzed based
on the number and ratio of matched features and those of unmatched features from
among features taken from the overall test areas, from changed reference objects, and from
unchanged reference objects. The ratio of matched features was about 60% with AKAZE
and 54% with SIFT from among the overall features extracted from the test areas. It is very
interesting to note that these numbers dropped to about 11% for features from changed
reference objects, and that they increased to about 78% with AKAZE and to 68% with SIFT
for features from unchanged reference objects. Nearly 90% of features in changed objects
were unmatched, whereas 70% to 80% of features in unchanged objects were matched.
Feature matching results indicate the status of change in the objects that the features belong
to. Therefore, we could treat matched feature points as unchanged and remove them from
further analysis.

Table 4. Feature matching results.

Study
Area

Extractor
Type

Overall In Changed References In Unchanged References

Unmatched Matched Unmatched Matched Unmatched Matched

Incheon
AKAZE 171,782 217,410 4614 358 558 1658

SIFT 314,575 327,990 5226 517 1231 2090

Chilgok AKAZE 220,090 397,645 398 125 97 504
SIFT 413,291 540,770 334 114 305 806

Seoul
AKAZE 66,391 70,228 476 132 156 798

SIFT 66,779 57,167 335 114 108 526

Total
AKAZE 40.07% 59.93% 89.92% 10.08% 21.51% 78.49%

SIFT 46.18% 53.82% 88.78% 11.22% 32.45% 67.55%

Figure 7 shows the results from feature extraction and matching with the three test
datasets. Within each dataset, feature extraction results (left images), matched features
(middle images), and unmatched features (right images) are shown in both previous and
recent images. Figure 7 also shows the changed reference objects in orange polygons and
the unchanged reference objects in green polygons. We can visually check that features
within unchanged objects matched, and that features from changed objects did not match.
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4.3. Change Analysis Results

The unmatched features were processed further for change analysis. Pixel-based
change magnitude maps were generated for each test dataset by applying the MAD algo-
rithm. Changed pixels were determined by choosing a threshold value for the magnitude
of pixel changes. As mentioned before, we performed feature-based change detection
experiments repeatedly with various thresholds.

Feature change magnitude was defined as the ratio of changed pixels within the ROIs
of the features. Changed features can be determined by choosing an appropriate threshold
value for the magnitude of feature change. In this paper, we used ROIs with the size of
3 × 3 pixels and a feature-change threshold value of 0.5. We classified feature points into
changed and unchanged features using the threshold.

Figures 8–10 show original images, pixel-based change maps for a given pixel thresh-
old value, and feature-based change maps overlaid on the pixel-based change maps.
The meaning of orange and green polygons is the same as before. We can compare the
differences in pixel-based and feature-based change detection results. Many areas judged as
changes in the pixel-based approach were determined to be unchanged in the feature-based
approach. Feature-based change detection reduced false detection of unchanged objects
while maintaining correct detection in changed objects. In Incheon, it was possible to
detect changes in ships and shipments, and remove the falsely detected areas of unchanged
buildings. In Chilgok and Seoul, it was possible to detect changes in small buses, trucks,
and vehicles in parking lots and roads, and to remove errors from unchanged objects and
areas of natural change. As mentioned earlier, several featureless changed objects of very
small size were not detected. From the images, we can visually confirm that the use of
feature points improves change detection performance with small objects, and compensates
for the disadvantages of pixel-based approaches.
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Figure 8. Comparison of pixel-based and feature point-based change detection results for Incheon:
(a) before images, (b) after images, (c) pixel-based results, and feature-based results using (d) SIFT,
and (e) AKAZE.
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Figure 10. Comparison pixel-based and feature point-based change detection results for Seoul: (a) before
images, (b) after images, (c) pixel-based results, and feature-based results using (d) SIFT, and (e) AKAZE.

4.4. Analysis of Change Detection Performance

We analyzed the performance of the proposed feature-based change detection quanti-
tatively, and compared the results with pixel-based change detection. With the pixel-based
approach, pixels in the changed and unchanged reference objects were used for perfor-
mance analysis. We checked whether they were classified as changed or unchanged pixels.
With the feature-based approach, features extracted from the reference objects were used
for performance analysis. We checked the number of features classified as changed or
unchanged features.
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ROC curves were generated by repeatedly performing pixel-based and feature-based
change detection with various thresholds for pixel-change magnitude. Unlike pixel-based
change detection, the feature-based approach does not converge to 1 owing to falsely
matched features in changed reference objects. Instead, we generated ROC curves up to
the false alarm rate of around 0.2. We compared the performance of feature-based change
detection against pixel-based change detection in low-false-alarm regions.

Figure 11 shows the ROC curves for the test areas. We can see that feature-based
change detection outperformed pixel-based detection at low false–alarm rates. However,
we clarify that one may prefer pixel-based approaches if one needs to detect as many
changes as possible, despite high false alarm rates. Table 5 shows the accuracy, precision,
false alarm rate, recall, F1-score, and AUC. The first five numbers were estimated by setting
the pixel-change threshold value to produce a false alarm rate close to 0.1. The AUC was
calculated by accumulating the area under ROC curve for false alarm rates from 0 to 0.1.
The numbers in the table also favor feature-based change detection.
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Figure 11. The ROC curves for pixel-based and feature point-based change in (a) Incheon, (b) Chilgok,
and (c) Seoul. X-axis represents false alarm rate and Y-axis recall.

Table 5. Performance of pixel-based and feature-based change detection in the reference objects.

Study
Area Method Precision Accuracy False

Alarms Recall F1 AUC_0.1

Incheon
Pixel 0.9354 0.8519 0.1088 0.8311 0.8801 0.0682

AKAZE 0.9499 0.9009 0.1069 0.9045 0.9266 0.0850
SIFT 0.9404 0.8896 0.0967 0.8816 0.9100 0.0741

Chilgok
Pixel 0.7674 0.8247 0.0715 0.5729 0.6560 0.0464

AKAZE 0.8950 0.8425 0.0765 0.7495 0.8158 0.0814
SIFT 0.7851 0.8454 0.0702 0.6362 0.7028 0.0491

Seoul
Pixel 0.6271 0.8010 0.1004 0.5059 0.5600 0.0280

AKAZE 0.8159 0.8393 0.1090 0.7582 0.7860 0.0680
SIFT 0.8363 0.8283 0.1009 0.7283 0.7786 0.0537

Mean
Pixel 0.7766 0.8259 0.0936 0.6366 0.6987 0.0475

AKAZE 0.8869 0.8609 0.0975 0.8041 0.8428 0.0781
SIFT 0.8539 0.8544 0.0893 0.7487 0.7971 0.0590
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In the first performance comparison mentioned above, the number of features was
used for feature-based change detection, while the number of pixels was used for pixel-
based change detection. As the second performance comparison, we represented the
results of feature-based change detection as pixels, and compared the performance against
pixel-based change detection. The change map from the pixel-based approach was first
segmented into changed regions, and the feature change results were then overlaid on the
change regions, as shown in parts (d) and (e) of Figures 8–10. The regions with changed
features were accepted as the results of feature-based change detection and the regions
without changed features were removed from the final results of feature-based change
detection. We counted the number of pixels after the removal of the regions without
changed features. In this way, the performance of pixel-based and feature-based change
detection was compared in the pixel domain. Table 6 shows the performance in the pixel
domain using the same threshold value for the pixel-change magnitude. The table shows
that precision, accuracy, and false alarms improved under the feature-based approach.
Recall decreased slightly due to the problem of featureless changed objects. Nevertheless,
our feature-based approach outperformed the pixel-based approach when performance
analysis was carried out in the pixel domain.

Table 6. Performance of change detection results in the pixel domain.

Study
Area Method Precision Accuracy False

Alarms Recall F1

Incheon
Pixel 0.9488 0.7972 0.0746 0.7295 0.8248

AKAZE 0.9659 0.7994 0.0480 0.7189 0.8243
SIFT 0.9584 0.7970 0.0592 0.7211 0.8230

Chilgok
Pixel 0.7059 0.8283 0.1210 0.7053 0.7056

AKAZE 0.8358 0.8693 0.0556 0.6870 0.7541
SIFT 0.7756 0.8520 0.0826 0.6933 0.7321

Seoul
Pixel 0.5677 0.7955 0.1948 0.7664 0.6522

AKAZE 0.6430 0.8300 0.1337 0.7215 0.6800
SIFT 0.6074 0.8131 0.1544 0.7156 0.6571

Mean
Pixel 0.7408 0.8070 0.1301 0.7337 0.7275

AKAZE 0.8149 0.8329 0.0791 0.7091 0.7528
SIFT 0.7805 0.8207 0.0987 0.7100 0.7374

As the final performance comparison, we compared pixel-based and feature-based
change detection in the object domain. We checked the number of correctly detected objects
among the changed and unchanged reference objects. Since the pixel-based and feature-
based approaches we used do not determine changes per object, we instead converted
pixel-based and feature-based change detection results into object-based results: if more
than half of all the pixels of the reference objects were determined as changes, we considered
the objects to be changed. ROC curves were generated based on the number of successfully
detected objects. Figure 12 shows the ROC curves. As before, the figure shows that our
feature-based approach produced improved recall at the given false alarm rate. Table 7
shows the performance of pixel-based and feature-based change detection in the object
domain using the same threshold value for pixel change magnitude. As expected, the false
alarm rates decreased in feature-based approaches and precision and accuracy increased.
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Figure 12. The ROC curves for pixel-based and feature point-based approaches with respect to the
number of object changes in (a) Incheon, (b) Chilgok, and (c) Seoul. X-axis represents false alarm rate
and Y-axis recall.

Table 7. Performance of change detection results in the object domain.

Study Area Domain

Changed Object Unchanged Object

Precision Accuracy False
Alarm Recall F1Correctly

Detected
Miss

Detected
Correctly
Detected

False
Detected

Incheon
Pixel 291 109 313 37 0.8053 0.8872 0.1057 0.7275 0.7995

AKAZE 300 100 330 20 0.8400 0.9375 0.0571 0.7500 0.8333
SIFT 278 122 335 15 0.8173 0.9488 0.0429 0.6950 0.8023

Chilgok
Pixel 62 20 21 14 0.7094 0.8158 0.4000 0.7561 0.7848

AKAZE 67 15 28 7 0.8120 0.9054 0.2000 0.8171 0.8590
SIFT 64 18 26 9 0.7692 0.8767 0.2571 0.7805 0.8258

Seoul
Pixel 126 22 116 36 0.8067 0.7778 0.2368 0.8514 0.8129

AKAZE 108 40 138 14 0.8200 0.8852 0.0921 0.7297 0.8000
SIFT 104 44 138 14 0.8067 0.8814 0.0921 0.7027 0.7820

Mean
Pixel - - - - 0.7738 0.8269 0.2475 0.7783 0.7991

AKAZE - - - - 0.8240 0.9094 0.1164 0.7656 0.8308
SIFT - - - - 0.7977 0.9023 0.1307 0.7261 0.8034

4.5. Discussion

Based on the three performance comparisons, we observed that the feature-based
approach outperformed the tested pixel-based approach. By considering features as a
unit of change, and by applying feature matching, we could successfully remove many
false alarms and noisy changes. We also observed a drawback to our approach, in that it
could not handle featureless objects. Feature points (red circles) were not extracted from
objects at small sizes or with low contrasts, as shown Figure 13. Since our approach relies
on features to decide on change or no change, featureless objects are removed from the
decision. This increases omission errors, and hence, decreases precision. This is the reason
our approach could not reach a recall of 1 in Figures 11 and 12.
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We might address this problem by using pixel-based change detection on featureless
objects. In this paper, we used pixel-based change detection simply to calculate the magni-
tude of feature change. Perhaps we need more intelligent schemes for merging pixel-based
and feature-based change detection results. This issue, however, is left as a future research
topic. We tested two representative feature extractors, AKAZE and SIFT, for feature-based
change detection. We observed that both feature extractors led to the change detection
performance in favor of our feature-based approach.

5. Conclusions

In this paper, we proposed a new change detection approach using feature points
for detecting small object changes from high-resolution satellite images. We showed that
feature points could be pre-classified as changed and unchanged objects through a feature
point matching process to decrease false alarm rates. We also showed that feature point-
based change analysis could improve change detection performance in terms of changed
pixel, changed feature point, and changed object detection. Our test results with three
Kompsat-3A image sets confirmed that our approach outperformed a pixel-based approach
by producing higher precision and recall at a fixed false alarm rate. For a false alarm rate of
10%, our approach achieved an averaged precision rate of 88.7% and an averaged accuracy
of 86.1%, while a pixel-based approach achieved 77.7% and 82.6%, respectively. The time of
the research processing was less than 5 min, excluding the pre-processing.

One can classify traditional change detection from satellite images based on the unit
of change determination: pixel-based, feature-based, and object-based. Our approach
offers a new feature-based approach, which is less noisy than pixel-based approaches
and faster than object-based approaches. This may produce clues to small object changes
without extensive texture or object analysis compared to existing feature-based or object-
based approaches. One may also classify traditional change detection as supervised or
unsupervised based on the usage of prior knowledge. Our approach is an unsupervised
one, which can be applied as a pre-processor for a sophisticated and time-consuming
supervised approach such as deep learning [11,14,27,32] and neural networks [4,6,16].
Major contribution of this paper is that a unique approach of using feature points was
proposed for unsupervised change detection.

We also observed the limitation of our approach that it cannot handle featureless
objects, because we use features as the only unit of change. We might overcome this
problem by implementing more intelligent schemes for merging pixel-based and feature-
based change detection results, and by using both merged features and merged pixels as
units of change determination. This will be left to future research.
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