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Abstract: The scientific identification of key areas for regional ecological protection represents an
important basis for maintaining regional ecological stability and enhancing regional development.
It is also a developing methodology of landscape ecology (LE) research. The strategic ecological
protection and integrated development of the Yangtze River Delta region is of critical significance for
promoting the construction of ecological civilization in the watershed and improving societal health.
Here, we analyze Anhui Province and select important ecosystem service functions (biodiversity,
carbon fixation, soil conservation function, and water retention) in the study area. We construct
a spatial pattern of ecosystem services for multiple scenarios based on the multi-criteria decision-
making method ordered weighted averaging (OWA), calculate the trade-off degree and conservation
efficiency of each scenario, identify ecological priority conservation areas, use circuit theory to
explore ecological corridors and key areas and to construct regional ecological corridors, and identify
regional pinch points and barrier points which may impede the construction of regional ecological
security patterns. The study area is divided into an ecological protection zone, ecological buffer zone,
ecological transition zone, ecological optimization zone, and ecological governance zone. Our results
show that: (1) the four types of ecosystems in the study area have similar spatial distribution patterns,
with an overall spatial characteristic of “high in the southwest and low in the northeast”; (2) the four
types of ecosystem services in the study area show synergistic relationships at the provincial scale,
but in areas with different natural and geographical characteristics, there are both synergistic and
trade-off relationships between different ecosystem services; (3) a total of 121 ecological source sites
were identified in the study area based on multi-criteria decision making which cover an area of
43,222.26 km2, accounting for 30.87% of the total area of the study area; and (4) a total of 250 ecological
corridors, 54 pinch points, and 24 barrier points were identified in the study area based on circuit
theory. Our results may provide decision support for ecological restoration and land use structure
optimization in Anhui Province and other regions.

Keywords: ecosystem services; synergy and trade-offs; ecological corridors; pinch points; barrier
points; Anhui Province

1. Introduction

The dramatic expansion of human activity and rapid urbanization has led to dramatic
changes in land use worldwide and an increasingly homogenous distribution of species on
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the planet. This has accelerated the rate of species extinction by a factor of 1000 compared
to the typical background rate in Earth’s history. A total of 10–30% of mammals, birds,
and amphibians are on the verge of extinction [1]. The degradation of ecosystem services
has also had a significant impact on societal well-being [2]. In the 1980s, due to the
intense exploitation and ecological destruction of global land, the theory of ecological safety
patterns was proposed, which found traction in ecology [3–5], landscape science, planning,
and geography. The essence of ecological safety patterns is the identification, restoration,
and reconstruction of nodes and corridors which play an important role in the structure
and function of regional ecosystems [6]. It is thus necessary to achieve effective regulation
of ecological processes by ecological safety patterns and to ensure a sustainable supply of
regional ecosystem services, which may subsequently enhance societal well-being [7,8].

Ecological security patterns have been analyzed and discussed in the context of con-
cepts [3,9,10], technical methods [11–14], multi-level network construction [15–17], and
areas with different physical and geographical characteristics [18–20], which have enriched
the theoretical and practical framework of the theory. Most previous efforts which were
concerned with the identification of source sites or protected areas in the construction of
ecological safety patterns employed morphological spatial pattern analysis (MSPA) [21,22],
superimposed the main ecosystem services in the study area, or directly selected ecological
wetlands or forest parks [23,24]. There may be synergies and trade-offs between ecosystem
services [25–27], and these synergies and trade-offs of ecosystem services vary greatly
between different scales or regions [28]. As ecological security patterns are constructed
to protect regional ecological security and enhance societal health [29], unhealthy ecosys-
tem service relationships can seriously affect the sustainable development of regional
economies and societies [15,30]. A more scientific approach to source selection is therefore
particularly important in balancing competing relationships between multiple ecosystem
services. The multicriteria decision-making approach ordered weighted averaging (OWA)
has been shown in a variety of studies to address trade-offs between multiple ecosystem
services when identifying areas for conservation intervention. In 2007, MaRce et al. [31]
proposed a method for the restoration and identification of the connectivity of biological
habitats such as barrier areas and ecological pinch points. Circuit theory complements the
commonly used connectivity model since it is linked to random walk theory and enables
the simultaneous assessment of the contributions of multiple discrete paths. In the circuit
theory model, where landscape types are used as conductive surfaces, landscape types with
low resistance that promote biological flow are assigned high resistance. This methodology
has been widely applied in wildlife corridor design, landscape gene flow, sports ecology,
disease transmission, and other applications [31]. Therefore, the use of OWA to identify
the ecological source with the highest protection efficiency combined with the methods
of circuit theory to identify areas in the ecological corridor that need to be protected and
restored provides a new decision-making method and technical path for building a regional
ecological security pattern in the future.

Anhui Province is located in the Yangtze River Delta city cluster, one of the six largest
urban areas in the world, and its economy has rapidly developed in the 21st century. The
province has seen extensive and frequent construction of cities, highways, and high-speed
railways, which has inevitably damaged the habitats of many species and the living environ-
ment of the people themselves. Recently, the concept of “ecological civilization” has been
introduced, which refers to high-quality regional development and ecological restoration.

In this article, we study Anhui Province with the intention of: (1) assessing the com-
prehensive ecosystem service functions based on four indicators (habitat quality, water
conservation, carbon fixation, and soil retention); (2) measuring the synergy and trade-offs
between different scales and regional ecosystem services; (3) constructing a multi-scenario
ecosystem service pattern, identifying priority protected areas for each scenario, and de-
termining the final ecological source sites by measuring the conservation efficiency and
trade-offs of each scenario based on OWA methodology; and (4) constructing ecological
corridors, simulating the extent of species migration corridors using circuit theory, and iden-
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tifying key areas that are important for maintaining ecological security. This is carried out in
order to provide decision support for land use development and ecosystem management.

2. Materials and Methods
2.1. Study Site

Anhui Province is located in the central region of China, and has the 12th largest
economy in China as of 2020. The province is located between 114◦54′ and 119◦37′ E
longitude and between 29◦41′ and 34◦38′ N latitude, with a total area of 140,100,000 km2

and a population of about 61 million (Figure 1). The Yangtze and Huai rivers cross the
province from west to east. Traditionally, Anhui province is divided into northern, central,
and southern Anhui, with northern Anhui referring to the area north of the Huai River,
including the six cities of ShuZhou, HuaiBei, BengBu, FuYang, HuaiNan, and BoZhou.
Central Anhui refers to the area north of the Yangtze River and south of the Huai River,
including the four cities of HeFei, LuAn, ChuChou and AnQing. South Anhui refers to
the area south of the Yangtze River, including HuangShan, WuHu, MaAnShan, TongLing,
XuanCheng, and ChiZhou. To the north of the Huai River, the terrain is vast and open,
and is part of the Great North China Plain. The central region is between the rivers, with
mountainous hills; the banks of the Yangtze River and the area around ChaoHu Lake
are low and flat, part of the middle and lower reaches of the Yangtze River Plain; and
the south is dominated by mountains and hills. Anhui is located in the transition area
between the warm temperate zone and the subtropical zone. North of the Huai River
has a warm-temperate semi-humid monsoon climate, while south of the Huai River has a
subtropical humid monsoon climate, compatible from north to south. In China, ecological
red line delineation is an important means of maintaining regional ecological security.
In Anhui Province this ecological red line includes biodiversity, water conservation, soil
conservation, and carbon fixation as the main ecosystem service functions.
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2.2. Data Sources

Land use data for the study area were acquired from Landsat 8 OLI remote sensing
imagery for July-August 2020, which were downloaded from the United States Geological
Survey website (https://earthexplorer.usgs.gov/, accessed on 8 July 2021). These data have
a spatial resolution of 30 m and is based on the ENVI 5.2 platform, geometrically corrected
and interpreted using a combination of maximum likelihood supervised classification and
manual visual interpretation. The results of this land use interpretation were validated in
the field using high resolution imagery, with an interpretation accuracy of 86.25%.

Meteorological data were obtained from the China Meteorological Science Data Shar-
ing Service (http://data.cma.cn, accessed on 10 October 2021). Evapotranspiration data
were obtained from the National Ecosystem Observation and Research Network Science
and Technology Resource Service. Ecosystem type datasets were obtained from the re-
sults of the National Ecological Condition Remote Sensing Survey and Assessment. Basic
data such as administrative boundaries of the study area were obtained from the Re-
source and Environment Science and Data Centre of the Chinese Academy of Sciences
(https://www.resdc.cn/, access on 20 July 2021). The Digital Elevation Model (DEM) was
obtained from the Geospatial Data Cloud website (http://www.gscloud.cn/, accessed on
20 July 2021) with a raster size of 90 m. Soil data were obtained from the Chinese Soil Dataset
(v1.1) at the Cold and Dry Zone Science Data Centre (http://data.casnw.net/portal/,
accessed on 5 May 2021). The Normalized Difference Vegetation Index (NDVI) data
was obtained from the National Aeronautics and Space Administration NASA (https:
//ladsweb.modaps.eosdis.nasa.gov/search/, accessed on 20 July 2021), with a spatial
resolution of 250 m. Socio-economic data were obtained from the Statistical Bulletin of
National Economic and Social Development of Anhui Province 2020.

All data were interpolated to a uniform size of 100 m and the coordinates were unified
as WGS_1984_UTM_Zone_50N to facilitate spatial operations and to ensure the accuracy
of the calculation results.

2.3. Research Methodology
2.3.1. Research Framework

This study focuses on the construction of an ecosystem security pattern, a specific mea-
sure to achieve ecological security, and the construction of a system of indicators to address
the goal of the security of terrestrial organisms and societal livelihood and production.

The main ecosystem services in the study area are selected and the trade-offs and
synergies between the ecosystem services are calculated. The multi-criteria decision tool
(IDRISI 17.0) [32] was used to identify the integrated ecosystem services raster with the
highest conservation efficiency and trade-offs by calculating the criteria weights and order
weights. The ecological corridors in the study area were identified based on the ecosystem
services raster using the least-cost path. Circuit theory was used to identify ecological
corridors using the least-cost pathway based on the integrated ecosystem services raster [31].
The migration corridor space was simulated using circuit theory to identify pinch points
and barriers in the migration corridors of species to safeguard regional ecological security
and enhance ecosystem service functions. The framework of our approach is shown in
Figure 2.

2.3.2. Evaluation of Ecosystem Service Functions

Four types of ecosystems were selected as the screening indicators for this study’s
ecological reserve: habitat quality, soil retention, water retention, and carbon fixation.

In the InVEST model, habitat quality reflects the diversity of species in the study area
and the ability of the ecosystem to provide living conditions for individuals, populations,
and communities, and soil retention indicates the ability of the ecosystem to prevent
erosion and control soil erosion, as well as the ability to store and maintain sediment. In our
approach, water retention refers to the amount of water produced on the surface of a certain

https://earthexplorer.usgs.gov/
http://data.cma.cn
https://www.resdc.cn/
http://www.gscloud.cn/
http://data.casnw.net/portal/
https://ladsweb.modaps.eosdis.nasa.gov/search/
https://ladsweb.modaps.eosdis.nasa.gov/search/
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area, reflecting the ability of the ecosystem to maintain water, and carbon fixation reflects
the ability of the regional ecosystem to regulate climate and improve regional air quality.
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(1) Habitat Quality

The InVEST model is a model used to assess the function of ecosystem services.
Its habitat quality evaluation module can calculate the threat intensity of a source by
considering the radius of stress, spatial weights and spatial attenuation types, based on the
link between land cover and habitat threat sources combined with the habitat adaptation
of other land types and sensitivity to the threat source to obtain the habitat quality of the
area [3]. This is calculated by:

Qxj = Hj

[
1−

(
Dz

xj

Dz
xj + kz

)]
(1)

where: Qxj represents the habitat quality index of raster x in landscape type j; the value
range of Hj is [0, 1], representing the habitat suitability score of landscape type j; k is the
half-saturation constant, which is set according to the accuracy of the data, which is set to
50 in this study; and z is a scale constant, which is generally taken as 2.5. This research is
based on the InVEST model manual and related research which can be found in the Habitat
Quality module parameter table [33].

(2) Water conservation

Water conservation service refers to the amount of water produced on the surface
within a certain area. The current assessment using the water yield module of the InVEST
model is based on the Budyko water-heat coupled equilibrium assumption equation [33]:

Y(x) =
(

1− AET(x)
P(x)

)
× P(x) (2)

where: Y(x) is the annual water production of each grid cell x in the basin (mm); AET(x)
is the actual annual evapotranspiration of grid cell x (mm); P(x) is the annual precipitation
of grid cell x (mm).

(3) Soil retention
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The assessment of the soil retention function is based on the sediment retention
module of the InVEST model, which is calculated mainly from the USLE (Universal Soil
Loss Equation) [21]:

SDR = Ap− Ar = R× K× L× S× (1− C× P) (3)

where SDR is the soil retention amount (t·hm−2), determined by the difference between
potential soil erosion Ap and actual soil erosion Ar; R is the rainfall erosion factor (this
paper is limited by rainfall process data), R values are estimated and verified according
to different types of rainfall data; K is the soil erodibility factor; L and S is the slope
length slope factor; C is the vegetation cover and management factor; and P is the soil
retention measure factor. In the model, P and C are fixed values used to reconcile the actual
deviations in the calculation of soil retention, see Table 1 and [21].

Table 1. P and C values of different land use types.

Land Use
Type Cropland Forest

Land Grassland Water
Bodies

Construction
Land

Bare
Land

P 0.29 0.7 0.5 0.2 0.16 0.27
C 0.27 0.01 0.06 0 0.2 0.35

(4) Carbon Fixation

The scientific assessment of carbon sequestration services can provide a basis for
decision making on regional carbon management for climate change mitigation and is
important for the analysis of climate change [33,34]. The Global Production Efficiency
Model (GLO-PEM)-Carbon Exchange in the Vegetation-Soil-Atmosphere Model (CEVSA)
coupled model was used to estimate the net primary productivity of vegetation to reflect
the regional carbon fixation capacity [35]:

NPP = GPP− Ra (4)

where: NPP represents the net primary productivity of vegetation (g·m−2·a−1), GPP is the
total primary productivity (g·m−2·a−1) and Ra is the autotrophic respiration of vegetation
(g·m−2·a−1).

2.3.3. Screening of Ecologically Prioritized Protected Areas

OWA is a multi-criteria decision model with superimposed combinations of control
factor weights, first proposed by Yager [36], which has been shown to perform well in
balancing the trade-offs between ecosystem services, thus facilitating decision makers to
select the most appropriate scenario for their needs and expectations. Here, we set seven
decision risk factors (α) t at 0.0001, 0.1, 0.5, 1, 2, 10, and 10,000 to obtain seven different risk
factors for the lower ecological priority conservation area screening scenarios. The details
of these calculations can be found in [37,38], and are expressed here as:

Wj = QRIM

(
j
n

)
−QRIM

(
j− 1

n

)
(5)

QRIM(r) = ra (6)

OWAi =
n

∑
j=1

(
ujvj

∑n
j=1 ujvj

)zij, j = 1, 2, . . . , n (7)

where Wj is the order weight over the range (0, 1); a is the decision risk factor over the
range (0, ∞), indicating the decision risk perception of the decision maker based on the
difference in indicator values and subjective weight differences; QRIM is the order weight
calculated using the monotonic increasing rule; zij is the attribute value corresponding to
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an evaluation indicator at any geospatial location i; uj is the the criterion level weights and
vj is the order weight.

The evaluation results were classified into three levels based on the quantile classifica-
tion method, and the highest level of the evaluation layer was used as the priority protected
area under different risk scenarios. The final priority protected area for ecosystem services
was determined by calculating the conservation efficiency and trade-offs of the priority
protected areas under each risk scenario, according to:

Ei =
ESi
ESo

(8)

trade-o f f = 1−

√
n∑n

k (wk − 1
n )

2

n− 1
, 0 ≤ trade-o f f ≤ 1 (9)

where Ei is the conservation efficiency of the ith ecosystem service in the priority protected
area; ESi is the average value of the ith service in the ecological protected area; ESo is
the average value of the i ecosystem services in the whole study area. When Ei > 1, the
conservation efficiency in the priority protected area is higher than that of the study area as
a whole; conversely, when Ei < 1, the conservation efficiency in the priority protected area
is lower than that of the study area as a whole.

2.3.4. Construction of Ecological Security Patterns in Anhui Province

(1) Landscape resistance surface construction

Landscape resistance surfaces are an important step in the calculation of regional
ecological corridors and are used to reflect the degree of difficulty that species have in mi-
grating between regions [7]. We use the inverse of habitat quality to construct the landscape
resistance surface in Anhui Province, and the nighttime light data and topographic position
index were used as factors to correct the landscape resistance surface. The nocturnal light
data reflects human economic activities, and the terrain position index reflects the ability
of species to move over natural barriers during migration. The data were processed to
non-zero values that do not affect the actual resistance surface composition as follows:

RZ = R0 × NTL× TL (10)

TL = ln
[(

E
E
+ 1
)
×
(

S
S
+ 1
)]

(11)

where RZ is the corrected resistance value for each raster in the study area, R0 is the initial
resistance value based on the inverse of the habitat quality, NTL is the nighttime light index,
TL is the topographic position index, E and E represent the elevation value of any raster
and the average elevation value of the study area, respectively, and S and S represent the
slope value of any raster and the average slope value of the study area, respectively.

(2) Ecological security pattern construction

The effective construction and maintenance of regional ecological safety patterns can
contribute to the integrity of ecosystem structure and function, the conservation of biodi-
versity and the maintenance of ecosystem services, and can also lead to an enhancement
of societal well-being, the achievement of sustainable development, and, ultimately, the
safeguarding of regional ecological safety.

Circuit theory has been demonstrated to simulate the spatial movement of organisms,
identify ecological corridors, and identify pinch points and barriers which have a significant
impact on regional ecological security patterns [39,40]. The circuit theory-based Linkage
Mapper 2.0.0 (https://linkagemapper.org/, accessed on 20 July 2021) and Circuitscape
4.05 (https://circuitscape.org/about/, accessed on 20 July 2021) software are based on
circuit theory and model the connectivity of different landscapes. This model uses the
statistical properties of electrical charges to link circuit theory to the ecology of movement.

https://linkagemapper.org/
https://circuitscape.org/about/
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The software integrates the LCP (last-cost path) method for the construction of ecological
corridors. The ‘pinch point mapper’ and ‘barrier mapper’ modules are used to identify
the pinch point and barrier point, respectively. The pinch point identifies areas important
for the connectivity of the study area by obtaining the current flow between the source
sites. The barrier points represent important barriers to species translocation. Restoration
of these areas will enhance regional ecological stability and facilitate species migration.

The identification of important ecological source sites is useful for researchers or policy
makers to assess the scientific validity of relevant ecological policies, and the importance of
ecological source sites in maintaining the overall connectivity of the region can be quantified
by using Circuitscape’s Centrality Mapper tool to calculate centrality, which quantifies the
contribution of ecological source sites. Here, we construct a landscape resistance surface
based on land use data, nighttime light index (NTL), and topographic relief (TL), and
construct regional ecological corridors using circuit theory to identify key areas affecting
regional ecological stability, and finally construct a regional ecological safety pattern.

3. Results
3.1. Spatial Distribution Patterns of Ecosystems

The spatial pattern of ecosystem services in the study area is shown in Figure 3.
The four types of ecosystems have similar spatial distribution patterns, with an overall
spatial divergence of “high in the southwest and low in the northeast”, which is closely
related to the regional geographical context. The average habitat quality index in the study
area is 0.487 and the average carbon fixation value is 338.58 g·m−2·a−1. The overall distri-
bution pattern is mainly related to land use types, with high values for forest and grassland
and low values for construction land and unused land. The difference in soil retention
function in the study area is more obvious, with a maximum value of 55,897.7 t·ha·a−1 and
a mean value of 717.67 t·ha·a−1. The average value of water content is 247.40 mm, which is
significantly influenced by climatic conditions and tends to decrease from south to north.
This is related to the fact that Anhui Province is located in a region where the temperate
semi-humid monsoon climate interacts with the sub-humid monsoon climate.

3.2. Trade-Offs and Synergies between Ecosystem Services

20,000 attribute points in the study area were randomly selected and the normalized
values of the four ecosystem services were extracted to the attribute table by ArcGIS
tools [41]. Pearson’s correlation analysis was used to investigate the synergy and trade-offs
between the four ecosystem services at multiple scales, including the whole of Anhui
province, the plain area in northern Anhui, the hilly area in central Anhui, the mountainous
area in southern Anhui, and the Anhui section of the Yangtze River basin (Figure 4).

These results show that the four types of ecosystem services were synergistic at the
provincial scale, with a high synergistic relationship between HQ and SDR (0.556). The
synergistic relationship between HQ and WY (0.106) was weaker than that between other
ecological synergistic services. There is a high trade-off between HQ and WY in the
northern Anhui Plain, with a correlation coefficient of −0.689, a relatively weak trade-off
between SDR and WY (−0.089), and synergistic relationships between WY and CF (−0.141)
and HQ and CF (0.083). There is a high trade-off between HQ and WY (−0.667), a relatively
weak trade-off between SDR and WY (−0.163), and a synergistic relationship between the
rest of the ecosystem services in the region around the Yangtze River Basin. It is noteworthy
that in the central Anhui Hills region, there are trade-offs between WY and SDR (−0.03209),
HQ and CF (0.487), and the trade-offs between HQ and WY (−0.549) are relatively strong
in different regions.

3.3. Identification of Ecological Reserves under Multi-Criteria Decision Evaluation

We now take the synergies and trade-offs between ecosystem services to select suitable
ecological reserves to maintain regional ecological security to the maximum extent possible.
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The bit-order weights for each scenario were obtained by setting seven different levels of
risk coefficients based on the ecosystem services in Anhui Province in 2020 (Table 1).

Model operations were performed using the MCE (multi-criteria evaluation) module of
the IDRISI platform based on the ordered weight operator in Table 1 to obtain the integrated
ecosystem service raster layers under different risk scenarios (Figure 5). This was carried
out to maximize the selection of suitable ecological reserves and maintaining regional
ecological security under the presence of synergies and trade-offs in ecosystem services.
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The order weights are calculated for a risk factor a of 0.0001 to reflect the situation
when α approaches a zero limit. In this case, the order weight of w1 is 1, and the decision
maker will get the most optimistic evaluation result, but also the highest risk. The order
weights of the other three ecosystem services are 0 (i.e., the ecological reserve is selected only
considering the carbon fixation function, and the spatial pattern of integrated ecosystem
services is obtained as shown in Figure 5). As the risk factor a gradually increases, the order
weights of the four ecosystem services gradually change, resulting in seven scenarios.

The evolution from Scenario 1 to Scenario 7 can be regarded as the evolution from
a better state to an extremely poor state. The evaluation results were classified into three
levels by the quantile classification method, and the highest level of evaluation results was
used as the priority conservation area under different risk scenarios (Figure 6).
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For the screening of ecological reserves, it is important to consider both the functions
provided by the ecological source sites themselves and the human demand for ecosystem
services. We find here that synergies and trade-offs between ecosystem services exist in the
study area, so protection efficiency and trade-offs were calculated for priority protected
areas under each risk scenario (Tables 2 and 3). The higher protection efficiency and trade-
off scenarios were selected to ensure the highest synergies and lowest trade-offs between
ecosystem services for the re-occurrence scenarios.

Table 2. Order layer weight under multiple scenarios.

Scenario Risk
Factor a

Decision Maker’s Risk
Attitude w1 w2 w3 w4

OWA

1 0.0001 Extremely optimistic 1.000 0.000 0.000 0.000
2 0.1 Optimistic 0.871 0.062 0.039 0.028
3 0.5 Relatively optimistic 0.500 0.207 0.159 0.134
4 1 No preference 0.250 0.250 0.250 0.250
5 2 Relative pessimism 0.063 0.187 0.313 0.437
6 10 pessimistic 0.000 0.001 0.055 0.944
7 1000 (∞) Extremely pessimistic 0.000 0.000 0.000 1.000

Note: After standardization, the ecosystem service layers are arranged in descending order of the mean value to
obtain w1–w4

Table 3. Protection efficiency and trade-off of priority conservation areas for ecosystem services.

Scenario Risk
Factor a

Protection Efficiency

Trade-OffHabitant
Quality

Carbon
Fixation

Water Con-
servation

Soil
Retention

1 0.0001 0.86 0.79 1.22 1.23 0
2 0.1 0.51 0.75 1.02 2.06 0.17
3 0.5 2.52 0.98 1.56 0.68 0.63
4 1 2.44 1.32 1.70 0.79 1
5 2 1.28 2.31 1.06 1.05 0.68
6 10 0.56 1.66 0.44 1.88 0.07
7 1000 0.92 1.67 0.42 1.73 0
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Anhui Province.

Scenarios 1, 4, and 7 represent three classical scenarios. Scenarios 1 and 7 represent a
decision maker who is only concerned with one ecosystem service, while Scenario 4 reflects
a completely neutral decision-making objective, where the decision maker considers all
ecosystem services to be equally important (this is an ideal scenario). Scenario 5 was found
to have the highest overall conservation efficiency and trade-offs, so Scenario 5 was used as
the basis for screening ecological reserves. Scenario 5 ecological reserves are mainly located
in the eastern part of Anhui and the southern part of the Yangtze River, two areas with
more woodland and grassland distribution and excellent ecological environment, while the
ecological source areas in the northern Anhui Plain have a greater disadvantage in terms of
quantity and quality compared to the first two areas.
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Using ArcGIS software to perform raster transfer and aggregation operations, we
selected protected areas greater than 5 km2 as ecological source sites in the study area, and
obtained 121 ecological source sites. The average patch area of ecological source sites in
the study area is 357.21 km2, and the largest patch area is 22,072.11 km2. Most ecological
source sites are located in the area south of the Yangtze River, followed by the hilly area in
central Anhui, while the number and scale of ecological source sites in the northern Anhui
Plain are quite small.

3.4. Identification of the Elements of the Ecological Safety Pattern

The basis for the construction of ecological safety patterns consists of four types of
elements: ecological reserves, ecological corridors, pinch points, and barrier points. The
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resistance surface was calculated based on high biodiversity (the higher the biodiversity,
the lower the resistance value). Results were corrected by the nighttime light index and the
topographic position index (Figure 7), and the spatial extent of the corridor for terrestrial
migration was simulated using circuit theory (Figure 8).
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Figure 7. Spatial pattern of landscape resistance surface in Anhui Province.

The simulated corridors varied in width (Figure 8b), with narrower corridors repre-
senting fewer alternative pathways for organisms to pass through. The narrowest corridors
are located around the city of HeFei, where the land use type is mainly construction land
and ecological resistance is high. The ecological corridors are basically distributed along
the protective forests on both sides of rivers and highways, and there is strong interfer-
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ence from human construction activities around the corridors, which has a high risk of
ecological degradation.
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In addition, the ecological corridor is short and narrow due to the high concentration
of human activities near the built-up area, which leads to a high degree of fragmentation of
ecological sources and a high level of ecological resistance (Figure 8). Potential ecological
corridors of greater width are mainly located in the areas south of the Yangtze River,
between the Dabie Mountains and the ecological source lands near the Langya Mountains
in ChuZhou, while those of greater width face less ecological pressure.

The Linkage Mapper identified 250 ecological corridors in the study area, with a total
length of 4500.09 km. 151 corridors with a length of more than 10 km and 11 corridors with
a length of more than 50 km were identified, mainly in the area north of the Yangtze River.
The Dabie Mountains, the Southern Anhui Mountains, and the Yangtze River form a special
geographic environment, resulting in significant differences in the ecological environment
between the north and the south of Anhui.

The Centrality Mapper was used to identify the important ecological source sites
with the highest regional centrality scores, and found that the Dabie Mountains and
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Chao Lake in western Anhui Province are important patches connecting the north-south
ecological source sites in Anhui Province (Figure 8a). The pinch point Mapper was used to
identify important pinch points (54) which may affect the connectivity of regional ecological
corridors (Figure 8c), mainly found in the hilly areas in central Anhui and the mountainous
areas in southern Anhui. The main composition of the pinch points in these areas is
woodland and grassland, while the main composition of the pinch points in the northern
Anhui plain is arable land and woodland. Overall, the spatial distribution is point-like.
The Barrier Mapper module was used to identify barrier points (24) which may affect the
transfer of terrestrial species (Figure 8d), with the main land composition being construction
land and water. The average area of the barrier points is 16.15 km2, and the largest barrier
point area is 29.76 km2.

Spatial analysis using ArcGIS found that the main land type is construction land
especially around the main urban area of HeFei. The overall distribution of the barrier
point area is cluster-like (mainly composed of construction land and farmland (Figure 9)).
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3.5. Ecological Security Patterns in Anhui Province

We calculate the difference between the minimum cumulative resistance surface
of ecological source land expansion and the minimum cumulative resistance surface of
town expansion based on ecological protection zones and towns. The natural breakpoint
classification method was used to extract ecological buffers, which, together with the
ecological corridors and pinch points identified in the study area, form the ecological
security pattern of the study area (Figure 10).

The area of ecological reserves in southwest Anhui and south of the Yangtze River
is much larger than that in central and northern Anhui, and has more dense ecological
corridors, which is closely related to the excellent natural background of Anhui Province.
The densest corridors are found in the hilly areas of central Anhui, where the ecological
source areas play an important role in linking the plains of northern Anhui with the
mountainous areas of southern Anhui and where the protection of ecological source areas
and ecological buffers should be increased in order to prevent the effectiveness of species
movement in the province. Another large number of pinch points and barrier points occur
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in the hilly areas of central Anhui, such as around the city of HeFei. This is a region of rapid
economic development and high anthropogenic activity, but superior natural conditions are
in conflict with economic construction, so an ecological corridor is critical here to maintain
the ecological stability of the region and prevent the uncontrolled expansion of construction
land. The ecological sources that play an important role in the connectivity of the study
area are identified and classified into primary, secondary, and tertiary ecological sources.
Primary ecological sources are key areas that influence the connectivity of all ecological
sources, including those that provide the basis for human economic development, animal
and plant survival, and those which provide important habitats for the migration of species.
The ecological buffer zone is an important barrier to human activity, acting as a back-
up resource for the expansion of ecological source sites, but also separating them from
external disturbances and serving to reconcile economic and social activities with ecological
conservation. It covers 19.7% of the study area, and the intensity of construction in the
ecological buffer zone needs to be controlled in an orderly manner in the future to prevent
its barrier role from weakening or disappearing.
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4. Discussion
4.1. A Model for Collaborative Governance of Ecological Security Patterns in the Context of
Regional Differences in Ecosystem Services

Ecological co-governance is a relatively new term which is increasingly mentioned
in China and around the world [42,43]. Ecological governance considers understanding
the ecological environment while simultaneously emphasizing complexity and adaptabil-
ity [44]. The lack of effectiveness in ecological governance between different regions is
often due to the decentralization of powers between governments and the lack of synergy
of efforts, which can lead to degradation of the ecological environment in different regions,
watersheds, and localities.

The special natural environment of Anhui Province has created different spatial pat-
terns of ecosystem services. The distribution of each ecosystem service by city in Anhui
Province is shown in Figure 11. The differences in ecosystem services between regions
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in southern Anhui are clear. There are higher levels of ecosystem services in southern
Anhui, where the overall ecological environment of HuangShan City is at the highest level
in Anhui Province. Conversely, urban ecosystem services in northern Anhui are at a lower
level. The differences in ecological environment between different regions result in different
policy governance, and ecological damage is often transregional, common for cities along
the Huai River and the Yangtze River [45].
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Long-term externalities such as unpaid or low-paid use of the water ecosystem and
inadequate investment return mechanisms can make the negative externalities of cross-
border pollution between upstream and downstream particularly serious. For example, in
a related study [46,47], it was shown that the mean values of Pb, Cd, Cr, Hg, As, Zn, Ni, and
Cu in mining soils in the Yangtze River Economic Zone exceeded the background values,
while agricultural non-point source pollution such as COD, TN, and TP in the hilly areas
of the upper Yangtze River Plain increased substantially between 2005 and 2015. The root
cause of this phenomenon is a failure of the market and the absence of the government [48].
Therefore, it is necessary to strengthen cross-regional ecological governance to promote
the internalization of the social costs of negative externalities in the river basin, and to
transform the private environmental costs of individual regional governments into social
environmental costs for the entire river basin by constructing an effective governmental co-
operation system and emphasizing inter-governmental accountability. In this way, regional
ecological construction becomes a shared responsibility between governments. Different
regions have different natural geographical characteristics, resulting in different starting
points for the ecological environment [49].

Anhui Province is region with complex physical geography of plains, hills, and moun-
tains, which woodlands and grasslands mainly in the Dabie Mountains and around the
HuangShan Mountains, and arable land in the areas north of the Yangtze River. The spatial
differences in ecosystem services are apparent, and therefore the management measures
and strategies for maintaining ecological security patterns may vary from region to region.
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In this regard, different strategies are proposed for the construction of ecological security
patterns in Anhui Province. The buffer zones around ecological source areas in southern
Anhui Province and in the Yangtze River Delta region need to be strengthened in the future,
and corridors and buffer zones should be built on the basis of the existing scale of ecological
source areas. In central Anhui Province, the proportion of water areas is higher than that
in southern Anhui Province, so the construction of wetland parks around large water
areas such as Chaohu Lake can be strengthened in response to regional characteristics.
The ecological corridor in northern Anhui is mainly composed of arable land, which is
less stable and lacks a place for species to stay during migration, so the construction of
the ecological corridor should focus on the maintenance of the ecological reserve itself.
The construction of ecological corridors should therefore focus on the maintenance of the
ecological reserves themselves [50].

4.2. Identification of Sites in Conflict between Ecological Protection and Urban Expansion

Rapid urbanization can lead to a conflict between ecological protection and urban
construction land expansion, and habitat patches are strongly influenced by changes in
surrounding land use, becoming increasingly fragmented and islanded and seriously threat-
ening regional biodiversity. Development and construction should be strictly prohibited
in source areas, and should be restricted in buffer zones as a protective barrier for the
ecological source areas. We show the current land use map of Anhui Province and overlay
the urban construction land with the source lands and buffer zones for analysis in order to
identify conflicting land use between ecological protection and urban expansion (Figure 12).
This conflict zone is 358.73 km2, indicating that the current urban expansion has caused
some disturbances to habitat protection.

Remote Sens. 2022, 14, x FOR PEER REVIEW 20 of 24 
 

 

in order to identify conflicting land use between ecological protection and urban expan-
sion (Figure 12). This conflict zone is 358.73 km2, indicating that the current urban expan-
sion has caused some disturbances to habitat protection. 

 
Figure 12. Conflict areas between ecological land and urban expansion. 

The conflict areas are mainly concentrated along the Yangtze River, near HeFei, and 
around the Dabie Mountains. These areas are where human economic activities are fre-
quent and many highways and railway lines exist. Three regions, HeFei, LuAn, and An-
Qing, have a large proportion of conflict areas (Figure 13), accounting for 16.4%, 12.8% 
and 10.8% of the total, respectively. HeFei is the capital of Anhui Province and has a high 
rate of urban expansion and spillover to the surrounding districts and counties, with more 
conflict patches surrounding it. The Dabie Mountains in LuAn are an important water-
conserving area for Anhui Province and the Yangtze River Delta region, but urban con-
struction in the past 20 years has encroached on a large amount of woodland and grass-
land, causing a decline in the quality of the internal ecological environment, and causing 
damage to human well-being in the region. This has also caused some encroachment on 
the surrounding wetlands. The city of HuangShan, on the other hand, has a smaller area 
of conflict. HuangShan is the core city of HuiZhou and is developing rapidly with a par-
ticularly strong tourism industry but is less affected by human activities and maintains a 
good overall ecological quality. 
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The conflict areas are mainly concentrated along the Yangtze River, near HeFei, and
around the Dabie Mountains. These areas are where human economic activities are frequent
and many highways and railway lines exist. Three regions, HeFei, LuAn, and AnQing,
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have a large proportion of conflict areas (Figure 13), accounting for 16.4%, 12.8% and 10.8%
of the total, respectively. HeFei is the capital of Anhui Province and has a high rate of
urban expansion and spillover to the surrounding districts and counties, with more conflict
patches surrounding it. The Dabie Mountains in LuAn are an important water-conserving
area for Anhui Province and the Yangtze River Delta region, but urban construction in
the past 20 years has encroached on a large amount of woodland and grassland, causing
a decline in the quality of the internal ecological environment, and causing damage to
human well-being in the region. This has also caused some encroachment on the surround-
ing wetlands. The city of HuangShan, on the other hand, has a smaller area of conflict.
HuangShan is the core city of HuiZhou and is developing rapidly with a particularly strong
tourism industry but is less affected by human activities and maintains a good overall
ecological quality.
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4.3. Discussion on Weakness of This Research

There are different levels of ecosystem service trade-offs between different regions
and scales, so the screening of ecological reserves may not be comprehensive. The width of
ecological corridors has been the focus here, and we only simulated the spatial movement
of species migration with the help of circuit theory. Further research is needed to deter-
mine more detailed corridor widths, as these pathways effectively link ecological space for
wildlife to land use policy. In times of conflict between ecological protection and economic
development, unsuitable corridors may cost more in terms of economic and human re-
sources to create and are more likely to be impossible to implement [51]. At the same time,
screening and calculating the structural indicators and functional connectivity indicators of
the ecological corridor on the overall, internal horizontal and vertical scales of the corridor
will help to improve the theory and method of regional ecological corridor construction.

5. Conclusions

We selected and analyzed four ecosystem services (habitat quality, carbon storage, soil
and water conservation, water retention) in Anhui Province, and a multi-criteria decision-
making method, OWA, was introduced to construct a multi-scenario spatial pattern of
ecosystem services. We calculated the trade-offs and conservation efficiency of each scenario
and determined the spatial extent of the priority ecological reserves. We also employed
circuit theory to construct regional ecological corridors and identify regional pinch points
and barrier points, and to construct regional ecological safety patterns for pinch points and
barrier points. Our main conclusions are as follows:



Remote Sens. 2022, 14, 527 20 of 22

(1) The four types of ecosystems in Anhui Province have similar spatial distribution
patterns, with an overall spatial variation of “high in the southwest and low in the
northeast”, an average habitat quality index of 0.487, an average carbon fixation of
338.58 g·m−2·a−1, an average soil retention of 717.67 t·ha·a−1, and an average of
247.40 mm for water retention. The main reason for the spatial pattern of the four
types of ecosystem services is the physical geography of the province.

(2) The results of the Pearson correlation analysis revealed that the four types of ecosystem
services were synergistic at the provincial scale, but in areas with different natural
geographical characteristics, there were synergies and trade-offs between various
ecosystem services. The results of the study provide support for the introduction of
ordered weighted averaging to construct a spatial pattern of ecosystem services in
multiple scenarios and validate the need to consider the trade-offs between different
ecosystem services in determining ecological source areas.

(3) Seven integrated ecosystem service scenarios were constructed using OWA, and eco-
logical reserves were selected based on conservation efficiency and trade-offs. A total
of 150 ecological source sites were selected and retained, which cover an area of
47,344.59 km2 and account for 33.77% of the total area. In addition, 355 ecological
corridors, 686 pinch points, and 248 barrier points were identified using circuit theory.
The regional ecological security pattern was constructed by dividing ecological protec-
tion zones, ecological buffer zones, ecological transition zones, ecological optimization
zones, and ecological management zones.
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