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Abstract: Vegetation phenology does not only serve as a key index of terrestrial ecosystem response to
worldwide climate change but also has a major influence on plant productivity and the carbon cycle.
In the current research, the change of vegetation phenological parameters was studied and the impact
exerted by climate change on phenological phases in northeast China for 1982–2014 was explored
using the latest edition of the Global Inventory Modeling and Mapping Studies Normalized Difference
Vegetation Index (GIMMS NDVI3g) dataset. The results showed that the start of the growing season
(SOS) slightly advanced, the end of the growing season (EOS) showed a significant delay, and the
length of the growing season (LOS) exhibited a significant prolonging at the regional scale. At the
different vegetation types scale, there existed diverse responses of vegetation phenological phases
to climate change for forest, grassland, and cultivated land. Significant decreasing trends in the
SOS occupied 19.1% of the entire research area, whereas pixels with significantly increasing trends
in the SOS accounted for 13.1%. The EOS was delayed in most of the study region (approximately
72.1%). As the result of the variations of SOS and EOS, the LOS was obviously enhanced (p < 0.05)
in 29.7% of the research area. According to the correlation of vegetation phenology with climate
factors, the SOS had a significant negative relationship with the average temperature in springtime,
while the EOS was notably negatively connected to summer total precipitation at the regional scale.
At the pixel scale, the correlation of phenological parameters with climate variables showed strong
spatial heterogeneities. This study contributes to the comprehension of the responses of vegetation
phenology to climate change.

Keywords: climate change; vegetation phenology; GIMMS NDVI3g time series; northeast China

1. Introduction

Phenology is crucial for quantifying the variations of vegetation phenological shifts,
comprehending how climate change affects terrestrial ecosystems, and assessing the terres-
trial vegetation productivity and carbon budget at both the regional and global scales [1–10].

Many previous studies have used traditional field observation approaches to analyse
the interannual variability of vegetation phenology and determine the correlation of pheno-
logical shifts and climate change at the species scale [1,11]. Though in situ ground records
are accurate, they are restricted by the number of observation stations and it is not possible
to acquire continuous and large-scale vegetation phenological information [12]. In contrast,
remote sensing is a powerful method of providing data related to large-scale phenological
events and has been frequently employed in recent years [6]. Many researchers have em-
ployed remote sensing Normalized Difference Vegetation Index (NDVI) data for monitoring
vegetation phenology, mainly derived from platforms such as the Advanced Very High
Resolution Radiometer (AVHRR) [13], Moderate Resolution Imaging Spectroradiometer
(MODIS) [14], Satellite Pour l’Observation de la Terre (SPOT) [15], and Pathfinder AVHRR
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Land (PAL) [16–18]. The latest edition of the Global Inventory Modeling and Mapping
Studies (GIMMS) NDVI3g dataset, based on the AVHRR onboard the National Oceanic
and Atmospheric Administration (NOAA) polar-orbiting satellites, has been released
and the dataset contains satellite image records for more than three decades (1981–2015).
The dataset has been commonly adopted for exploring vegetation phenology responses
to climate change, suggesting that a long-term dataset obtained from a single satellite
sensor is important in monitoring and characterising vegetation phenological trends at
regional, continental, and global scales [2,11]. Vegetation phenological parameters, com-
monly containing SOS, EOS, and LOS, are mainly extracted based on the examination of
four approaches: thresholds, maximum change ratio of the NDVI data, backward-looking
moving average, and curve fitting methods [8,15,19]. The threshold method is simple and
effective, but the selection of the threshold is controlled by human subjective influence. The
maximum change ratio, also known as the derivative method, refers to the calculation of the
maximum and minimum values of the first derivative of the NDVI time series data curve
within a year, and the corresponding dates are regarded as SOS and EOS. Reed et al. [20]
proposed a backward-looking moving average, they calculated the average NDVI value in
the moving window, obtained a time-varying moving average curve, and then identified
the intersection of the moving average curve and the original change curve. The selection
of the size of the moving window is the key to determine the parameters of vegetation
phenology, which verities among different vegetation types. The curve fitting methods
commonly include Logistic function, Gaussian function, and Harmonic function. The
Logistic fuction was early used in researches on the extraction of vegetation phenological
parameters, and the results extracted by this method have good consistency with data of
the phenology observation sites [21,22]. There are similar results among different methods
when exploring SOS dynamics [2,6,19], while EOS based on the logistic approach took
place earlier than the EOS based on other extraction methods [6,19]. The double logistic
method was applied in previous studies of phenological shifts in mid- and high-latitude
areas in the Northern Hemisphere [19].

Due to increasing temperature, earlier SOS, delayed EOS, and prolonged LOS have
been shown in mid- and high-latitude areas in the Northern Hemisphere. For instance,
Myneni et al. [23] investigated the vegetation phenological parameters of the Northern
Hemisphere, finding the advance of SOS by 8 days and delay of EOS by 4 days, resulting in
a LOS prolonged by 12 days during the period of 1982–1991. Tucker et al. [13] extended the
satellite work by Myneni et al. [23] to 1999 and found that variations in the SOS was −5.6,
+3.9, and −1.7 days in the higher Northern Hemisphere for 1982–1991, 1991–1992, and
1992–1999, respectively. Zhu et al. [24] studied the mid- and high-latitude areas of North
America and also pointed out the delay of EOS by 0.551 days year−1 and the extension
of LOS by 0.683 days year−1 during 1982 and 2006. Jeganathan et al. [25] studied the
phenological parameters over the >45◦ N zone by using GIMMS NDVI3g data, conclud-
ing the advance of SOS by 0.58 days year−1 and the delay of EOS by 0.64 days year−1.
Zhao et al. [26] analysed the spatiotemporal variations and features about vegetation phe-
nological shifts above 40◦ N in the Northern Hemisphere and claimed the advance of SOS
by 2.2 days decade−1 and the slight delay of EOS during the initial 21 years (1982–2002),
accompanied by the delay of SOS (3.2 days decade−1, p < 0.05), and the advance of EOS
(4.5 days decade−1, p < 0.05) in the following 11 years (2003–2013). Examination of the
literature cited above reveals that variability in vegetation phenological shifts indeed oc-
curred over the past few decades, but the magnitudes of vegetation phenological shifts
were variable and uncertain among the different studies, including earlier or later SOS,
advanced or delayed EOS, and shorter or longer LOS among different study periods.

Previous research has also shown that different vegetation biomes have different
trends of phenological shifts. Wu & Liu [27] detected the spatial and temporal variations
in China’s spring phenology of six temperate biomes during 1982–2006 and found that
earlier spring phenology mainly occurred in temperate deciduous forests, temperate steppe,
and Tibetan alpine vegetation and delayed greening was found in temperate hemi-boreal
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forests, temperate mixed forests, as well as temperate desert. Yang et al. [28] examined the
spatiotemporal patterns of the vegetation EOS for China’s temperate vegetation ecosys-
tems and suggested that the interannual variations in EOS showed a delaying trend in
most ecosystems, containing deciduous broadleaf forests, deciduous needle-leaf forests,
shrublands, and temperate grasslands, expect for the desert and alpine grasslands. Because
cultivated vegetation phenology was subject to anthropogenic activities (e.g. planting,
irrigation, fertilisation, and harvest), cultivated land was not considered in most previous
studies. However, detection of vegetation’s phenological changes in cultivated land is
essential for the exploration of terrestrial vegetation responses to climate change.

Northeast China, located at the mid- and high-latitude areas, shows high sensitivity
to climate change and is experiencing particularly strong temperature increases [29,30].
Moreover, there are abundant resources of farming, forestry, and husbandry. This region
exerts a significant influence on the national forestry and agricultural production. Former
researches have revealed that variations of vegetation phenological parameters have oc-
curred in northeast China [6,15,19,29,31]; however, there are still several limitations and
uncertainties related to previous studies in this region. For example, Li et al. [29] studied
the cropland phenological parameter responses to the variations of agricultural thermal
conditions based on the SPOT NDVI data. However, they did not consider natural vegeta-
tion, including forest and grassland. Zhao et al. [31] detected the variations of vegetation
phenological events by using GIMMS NDVI3g at different regions of interest and stud-
ied the internal correlations between phenology and climate variables (temperature and
precipitation) but lacked an analysis of different vegetation types. Yu et al. [19] analysed
the spatial characteristics of the vegetation phenological parameters and the trends of
change in different vegetation types but lacked a correlation analysis on vegetation and
climate factors.

This study adopted the GIMMS NDVI3g dataset for extracting the vegetation pheno-
logical parameters, identified the change trends in vegetation phenology and studied the
correlation of vegetation phenology with climate factors (temperature, precipitation, and
insolation) at regional, pixel, and different vegetation types scales in northeast China from
1982 to 2014. The current work aimed to (1) quantify the trends of vegetation phenological
parameters of the entire region and various vegetation types, and at the pixel scale and
(2) detect the correlation of vegetation phenological parameters with climate factors. The
study on vegetation phenology in this region can provide further evidence for climate
change and contribute to comprehending the process between terrestrial vegetation and
climate change.

2. Data and Methods

The chart of study workflow is shown in Figure 1. We collected a GIMMS NDVI3g
dataset of vegetation index, meteorological factors including temperature, precipitation,
and insolation, vegetation type data, and phenological observation data during the period
of 1982–2014 in northeast China. In order to achieve consistency between vegetation index
and climate factors, we pre-processed the dates. We used a Savitzky–Golay filtering method
to smooth and reconstruct the NDVI time series. Then, we conducted double logistic fitting
on the extraction of phenological parameters. The phenological records as validation data
were compared to the findings of the current work. Finally, we quantified the trends of
vegetation phenological parameters and detected the correlation of vegetation phenological
parameters with climate factors.
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Figure 1. Flowchart of study.

2.1. Study Area

Northeast China (38◦42′N–53◦35′N, 115◦32′E–135◦09′E), covering Heilongjiang, Jilin,
Liaoning, and eastern Inner Mongolia Autonomous Regions (i.e., Hulun Buir, Tongliao,
Chifeng, and Khingan), locates in the eastern margin of the Eurasian continent and includes
an entire area of approximately 1.24 × 106 km2 (Figure 2). This area has a representative
temperate and monsoon continental climate, with the winter season being long, dry, and
cold and the summer season being short, humid, and mild. The average annual tem-
perature ranges between −1.1 ◦C in the north and 4.4 ◦C in the south, and the annual
total precipitation ranges between <200 mm in the west and 400–700 mm [32] in the east.
Surrounded by mountains, the study area includes the northwestern part of Great Khingan
Mountains, the northeastern part of Lesser Khingan Mountains, the southeastern part of
Changbai Mountains, and the southern part of Liaodong Hills. Plains, such as Sanjiang
Plain, Songnen Plain, and Liaohe Plain, are situated at the northeastern corner and the
central and southwestern parts. In addition, the western tip of the research area is enclosed
by the Hulun Buir Plateau. The co-existence of forest, cultivated land, and grassland shows
a heterogeneous and fragmented pattern, making northeast China exceptionally sensitive
to climate change.

2.2. Data Sources

The GIMMS NDVI3g dataset was from AVHRR on NOAA’s polar-orbiting satellites,
generally regarded as a biophysical parameter that can suggest vegetation “greenness” [1].
The latest NDVI dataset in a consistent long-term series (1982–2014) with the spatial
resolution of 8 km × 8 km and a bi-weekly temporal resolution were acquired based on
the GIMMS group, which has been modified for solar geometry, orbital drift, calibration,
clouds, heavy aerosols, and other impacts unrelated to vegetation change [6,8]. The NDVI
long-term dataset was downloaded from https://ecocast.arc.nasa.gov/data/pub/gimms/,
accessed on 17 January 2018.

https://ecocast.arc.nasa.gov/data/pub/gimms/
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Figure 2. Vegetation types in northeast China and locations of the eight phenological observation sites.

The vegetation type data came from the Institute of Geography at the Chinese Academy
of Sciences, which were digitised from the 1:1,000,000 vegetation map of China [33]. Vegeta-
tion in this study mainly consisted of forest, cultivated land, and grassland (Figure 2). Image
pixels including surface water, urban, and swamp were excluded from the NDVI dataset.

The climate datasets including daily temperature, precipitation, and insolation during
the period of 1982–2014 were gathered at the China Meteorological Data Service Center
(http://data.cma.cn/, accessed on 20 December 2017). The study area includes 104 mete-
orological stations and all meteorological data were verified and examined. The current
work assessed the average temperature, total precipitation, and mean insolation of every
season: spring (May–March), summer (June–August), autumn (September–November), as
well as winter (December–February (next year)). To achieve consistency with the GIMMS
NDVI3g dataset, the climate data were added and rasterised to a spatial resolution of
8 km × 8 km with the Kriging method in ArcGIS 10 (Environmental Systems Research
Institute, Inc., Redlands, CA, USA).

The phenological observation data were provided by the Chinese Phenological Obser-
vation Network (http://www.geodata.cn/, accessed on 20 January 2018). There are eight
typical phenological stations in northeast China: Jiamusi, Mudanjiang, Nenjiang, Dedu,
Haerbin, Changchun, Shenyang, and Gaizhou. The representative plants at each station
were chosen in accordance with the principles of dominant species, length of monitoring
period, and completeness of records from 1982–2008. We analysed the phenological records
of the eight ground phenological observation sites in northeast China, for 1982–2008, and
the results of the phenological records as validation data were compared to the findings of
the current work.

A description of the datasets applied in our study is shown in Table 1.

http://data.cma.cn/
http://www.geodata.cn/
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Table 1. Determination of Phenological Parameters.

Type Variables Dataset Spatial
Resolution Source

Vegetation index
(input data) NDVI GIMMS NDVI3g 8 km NASA

Meteorological
factors

(input data)

Temperature,
precipitation,

insolation
- daily

China
Meteorological

Data Service

Vegetation type
(input data)

Forest,
grassland,

cultivated land,
other

1:1,000,000
vegetation map

of China
1:1,000,000

Institute of
Geography at
the Chinese
Academy of

Sciences

Phenological
observation data
(validation data)

Jiamusi,
Mudanjiang,

Nenjiang, Dedu,
Haerbin,

Changchun,
Shenyang, and

Gaizhou

- -

Chinese
Phenological
Observation

Network

To remove errors produced by clouds, atmosphere, ice and snow contamination, and
surface bidirectional reflectance [5,34], we employed a Savitzky–Golay filtering method on
the bi-weekly NDVI dataset for smoothing and reconstructing the NDVI time series [35,36].
Furthermore, we conducted double logistic fitting on the extraction of phenological param-
eters (SOS, EOS, and LOS) [37]. The Logistic fuction was early used in researches on the
extraction of vegetation phenological parameters, and the results extracted by this method
have good consistency with data of the phenology observation sites [21,22]. Moreover, this
method was applied in previous studies of phenological shifts in the mid- and high-latitude
areas in the Northern Hemisphere [19]. In the current research, first, we used the Double
Logistic function shown in Equation (1) to fit the filtered NDVI time series, then derived the
function, and defined the point with the largest NDVI change rate as SOS. We defined the
EOS as the first date after maximum NDVI as the NDVI reduced to 80% of the maximum
value (i.e., 0.8 × [NDVImin + NDVIdiff]). The difference between the EOS and the SOS was
regarded as the LOS [3].

NDVIt = NDVImin + NDVIdi f f

((
1

1 + exp(ri(SOG− t))

)
+

(
1

1 + exp(rd(EOG− t))

)
− 1
)

(1)

where NDVImin represents the minimum value of the annual NDVI; NDVIdiff denotes the
difference of the maximum and minimum values of the annual NDVI; ri indicates the maxi-
mum increase rate of NDVI; and SOG and EOG were theoretical SOS and EOS, respectively.

2.3. Statistical Analysis

We first identified linear trends with the ordinary least squares regression approach to
extract vegetation phenological parameters for the whole research area (Equations (2) and (3)).

y = at + b + ε (2)

a =
∑34

i=1(yi − y)
(
ti − t

)
∑34

i=1(yi − y )2 (3)

where y is the vegetation phenological parameter, t means year, and y and t represent the
average values of y and t, separately. The slope (a) denotes the trend magnitude, b denotes
the intercept, and ε signifies the residual error. The linear regression method was applied
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in further exploring the change in vegetation phenological parameters at the pixel scale
(Equation (4)).

Slope =
n×∑n

i=1 i×VPPi −∑n
i=1 i ∑n

1 VPPi

n×∑n
i=1 i2 − (∑n

i=1 i)2 (4)

where Slope is the trend of vegetation phenological parameter, n equals 33 (1982-2014), i
represents the order of year from 1 to 33 during the research period, and VPPi suggests the
vegetation phenological parameter of the ith year. The vegetation phenological parameters
in 1982–2014 increase as Slope > 0 and decrease as Slope < 0.

During the research, Pearson’s correlation coefficient was measured to identify the
correlations of vegetation phenological parameters with climate factors in northeast China.
Coefficient values range from +1 to−1. A value of 0 suggests that there exists no correlation
among variables. A negative coefficient shows that when one variable reduces, the other
enhances. A positive coefficient implies the same direction of change of these two variables.
Coefficients were calculated at spatial average value and the pixel scales (Equation (5)) [32].

rxy =
∑n

i=1(xi − x)(yi − y)√
∑n

i=1(xi − x)2
√

∑n
i=1(yi − y)2

(5)

where rxy denotes the correlation coefficient of x and y; xi and yi represent the values of
these two variables of the ith year; and x and y refer to the average values of x and y in
1982–2014, respectively.

3. Results

The results showed that the SOS slightly advanced, the EOS showed a significant
delay, and the LOS exhibited a significant prolonging at the regional scale. At the different
vegetation types scale, there exited diverse responses of vegetation phenological phases to
climate change for forest, grassland, and cultivated land. The SOS had a significant negative
relationship with the average temperature in springtime, while the EOS was notably
negatively connected to summer total precipitation. At the pixel scale, the correlation of
phenological parameters with climate variables showed strong spatial heterogeneities.

3.1. Spatial Distribution of Vegetation Phenological Parameters

To identify the spatial distribution pattern for vegetation phenology of northeast China,
this study identified the average values of vegetation phenological parameters in 1982–2014
(Figure 3). Overall, the spatial distribution for all three phenological parameters showed
clear heterogeneity, and there was a substantial difference in spatial pattern between SOS,
EOS, and LOS. First, the SOS occurrence during 1982–2014 widely changed between the
100th day of year (DOY) (approximately 10 April) and the 160th DOY (approximately
10 June) (Figure 3a). There was a relatively early SOS (between the 100th and 130th DOY) in
the Great Khingan Mountains, Lesser Khingan Mountains, Liaodong Hills, and Changbai
Mountains, which were mainly dominated by forest. The regions with late SOS (between
the 140th and 160th DOY) were mostly situated in Sanjiang Plain, Songnen Plain, and
Liaohe Plain, and they were main cropland areas of northeast China. Second, the spatial
pattern of EOS showed a different distribution to SOS (Figure 3b). The EOS mostly occurred
between the 245th DOY (approximately 5 September) and the 280th DOY (approximately
10 October) and presented an enhancing trend from north to south. The earliest vegetation
senescence was situated in the Great Khingan Mountains and Lesser Khingan Mountains,
and mainly occurred between the 245th and 255th DOY. The EOS in the plain regions
(Sanjiang Plain, Songnen Plain, and Liaohe Plain) occurred a little later than the northern
Mountains. The southern Mountains, which included the Liaodong Hills and Changbai
Mountains, had the latest EOS, typically taking place by the end of September. Finally, as a
result of SOS and EOS, the average LOS ranged in 100 - 160 days (Figure 3c). Compared
with other areas of northeast China, the Liaodong Hills and Changbai Mountains had an
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earlier average SOS and later average EOS, thereby showing a longer LOS. Moreover, the
plains areas had the shortest LOS.

Figure 3. Spatial distribution pattern for (a) average SOS, (b) average EOS, and (c) average LOS of
northeast China during 1982–2014.

3.2. Variations of Vegetation Phenological Parameters
3.2.1. Temporal Variations in Vegetation Phenological Parameters at the Regional Scale

Figure 4 reveals the long-term variations in the vegetation phenological parameters from
1982–2014. As seen in Figure 4a, the vegetation SOS advanced slightly by 0.03 days year−1

while statistically insignificant variation of the SOS was found through the whole study
period. In contrast, the EOS of the total study area presented a strongly obvious delay
of 0.10 days year−1 (p < 0.01) (Figure 4b). Therefore, in association with long-run varia-
tion of the SOS and the EOS, there existed an obvious increase in the LOS at the rate of
0.13 days year−1 (p < 0.05), indicating that northeast China experienced lengthening of
growing season during 1982–2014 (Figure 4c).

3.2.2. Spatial Pattern of Change Trends in The Vegetation Phenological Parameters

The spatial pattern for the temporal linear change trends of the SOS, EOS, and LOS as
well as the consistent 5% significance level from 1982–2014 were computed on the basis
of the 33 years of multi-SOS, multi-EOS, and multi-LOS raster layers (Figure 5). There
existed significant spatial heterogeneity at the pixel scale. The pixels showing decreasing
trends (SOS_trend < 0) occupied 58.8% of the entire study area, implying that an earlier
SOS occurred in more than 50% of the total area (Figure 5a). The percentages of SOS change
trend magnitudes in the ranges of <−0.4, −0.4 to –0.2, and –0.2 to 0 were 4.7%, 21.3%,
and 32.8%, respectively. Moreover, 19.1% of the pixels in the research region presented
obvious (p < 0.05) advancement of the SOS with the main distribution in the Great Khingan
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Mountains, Lesser Khingan Mountains, and Liaodong Hills (Figure 5b). The pixels showing
delaying of the SOS (SOS_trend > 0) occupied 41.2% of the study area, among which 13.1%
presented statistical significance (p < 0.05) (Figure 5a,b). The trend of increasing of SOS
suggests that the SOS was significantly (p < 0.05) delayed in the Plain regions (Sanjiang Plain,
Songnen Plain, and Liaohe Plain). The EOS of most parts in the study region (approximately
72.1%) exhibited delay, with 28% of the pixels indicating significant postponement (p < 0.05)
(Figure 5c,d). The pixels that presented a delayed EOS trend were located at most parts
in the study region, excluding the Liaohe Plain and the Hulun Buir Plateau. The EOS was
particularly strongly delayed in the Lesser Khingan Mountains, the northeastern Songnen
Plain, and southwestern areas of the Changbai Mountains. Due to the variations of SOS
and EOS, there were substantial changes in the LOS of northeast China (Figure 5e,f). The
LOS increased in 68.1% of the total study area and 29.7% significantly increased (p < 0.05).
The increasing change in the LOS were mostly larger than 0.2 days year−1, i.e., the LOS
was prolonged by more than 6.6 days during 1982–2014 in the Great Khingan Mountains,
Lesser Khingan Mountains, southern areas of Liaohe Plain, and Liaodong Hills. In addition,
there were some regions with a shorter growing season that were found in some scattered
regions in the Songnen Plain, Sanjiang Plain, and Liaohe Plain. Overall, the change trends
in the SOS had a relationship with vegetation types (i.e., pixels with significantly earlier
SOS were mostly found in forest areas and pixels with significantly delayed SOS were
mostly distributed in cultivated areas and some grassland areas). The EOS was delayed in
most regions of northeast China. As shown for the SOS and the EOS, pixels with prolonged
LOS were mostly located in forest areas.
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Figure 5. Spatial distribution of the variations in the vegetation phenological parameters of northeast
China during 1982–2014 and statistical test results at 5% significance level. (a,c,e) present changes in
SOS, EOS, and LOS, respectively (days year−1). (b,d,f) present significant changes (5% significance
level) in the start of the growing season (SOS), the end of the growing season (EOS), as well as the
length of the growing season (LOS), separately.

3.3. Relationships between Vegetation Phenological Parameters and Climate Variables
3.3.1. Relationships between Vegetation Phenological Parameters and Climate Variables at
the Regional Scale

In order to detect the variability of vegetation phenological parameters related to
climate factors, we analysed the relationships between the SOS or the EOS and the 15 climate
factors (previous autumn mean temperature, previous winter mean temperature, spring
mean temperature, summer mean temperature, autumn mean temperature, previous
autumn total precipitation, previous winter total precipitation, spring total precipitation,
summer total precipitation, autumn total precipitation, previous autumn mean insolation,
previous winter mean insolation, spring mean insolation, summer mean insolation, and
autumn mean insolation). As shown in Table 2, the correlation coefficient of SOS with
spring mean temperature remained stronger than the correlation coefficient of SOS with
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other climate factors across the whole study area (r = −0.59, p < 0.01), suggesting that
there existed an obvious negative relation between SOS and spring mean temperature.
The advancement of the SOS was attributed to a warmer spring temperature. EOS and
summer total precipitation were obviously negatively correlated (r =−0.34, p < 0.05). These
analyses confirm that summer total precipitation was the leading factor affecting the EOS
in northeast China.

Table 2. Correlation coefficients between vegetation phenological parameters and climate variables
in the entire study area during 1982–2014.

Different Climate Factors SOS EOS

Previous autumn mean temperature −0.09 -
Previous winter mean temperature −0.18 -

Spring mean temperature −0.59 ** −0.03
Summer mean temperature - 0.13
Autumn mean temperature - 0.04

Previous autumn total precipitation 0.23 -
Previous winter total precipitation −0.20 -

Spring total precipitation 0.05 0.02
Summer total precipitation - −0.34 *
Autumn total precipitation - −0.06

Previous autumn mean insolation 0.01 -
Previous winter mean insolation 0.16 -

Spring mean insolation −0.24 −0.10
Summer mean insolation - 0.23
Autumn mean insolation - 0.01

* Correlation was significant at the 5% significance level (2-tailed). ** Correlation was significant at the 1% signifi-
cance level (2-tailed).

3.3.2. Relationships between Vegetation Phenological Parameters and Climate Variables at
the Pixel Scale

To deeply evaluate the impacts of climate variables on the vegetation phenological
parameters of northeast China, the research computed the correlation coefficients between
SOS and EOS with 15 climate factors during 1982–2014 for all pixels (Figures 6 and 7).
The percentages of the obvious significant (p < 0.05) correlation between vegetation phe-
nological parameters and climate factors are presented in Table 3. There were no strong
effects of previous autumn temperature, previous autumn total precipitation, and previous
autumn insolation on the vegetation SOS (Figure 6a,d,g, and Table 3). SOS and previous
winter mean temperature were significantly positively correlated, being mainly located in
central Songliao Plain (Songnen Plain and Liaohe Plain) (approximately 6.10%) (Figure 6b,
Table 3). Figure 6c showed that the SOS in the Great Khingan Mountains, Lesser Khingan
Mountains, Changbai Mountains, and Liaodong Hills were significantly and negatively
related to spring mean temperature in 47.42% of the whole research area. However, the
SOS in the Hulun Buir Plateau, central Songliao Plain were positively related to spring
temperature, occupying 19.04% of the entire study area (Table 3). The research indicated
the spring mean temperature exerted a significant influence on the vegetation SOS, espe-
cially for forests. There existed a negative correlation between the SOS and the previous
winter total precipitation in most parts of the study area (approximately 74.14%) (Figure 6e,
Table 3). According to the spatial distribution concerning the correlation between SOS
and spring precipitation, there existed the obvious negative correlation in the Hulun Buir
Plateau and the southwestern Songnen Plain and Liaohe Plain (Figure 6f). A positive corre-
lation between the previous winter mean insolation was found in the Hulun Buir Plateau,
central Songliao Plain, eastern and southwestern Changbai Mountains, and Liaodong
Hills, accounting for 61.85% of the study area (Figure 6h, Table 3). There was a negative
correlation in most areas of northeast China (approximately 81.24%) between the spring
mean insolation and the SOS (Figure 6i, Table 3), indicating that increased insolation can
advance the SOS in northeast China from 1982–2014. Overall, the SOS in most of the forest
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areas was controlled by the spring temperature and the SOS in the central Songliao Plain
was governed by previous winter temperature and previous winter insolation (Figure S1).

Figure 6. Correlation of SOS with climate variables of northeast China during 1982–2014. (a,b,c)
present correlations of SOS with previous autumn mean temperature, previous winter mean temper-
ature, and spring mean temperature, respectively. (d,e,f) present correlations of SOS with previous
autumn total precipitation, previous winter total precipitation, and spring total precipitation, respec-
tively. (g,h,i) present correlations of SOS with previous autumn mean insolation, previous winter
mean insolation, and spring mean insolation, respectively.
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Figure 7. Correlation of EOS and climate variables of northeast China in 1982–2014. (a,b,c) present cor-
relations between EOS and spring mean temperature, summer mean temperature, and autumn mean
temperature, respectively. (d,e,f) present correlations between EOS and spring total precipitation,
summer total precipitation, and autumn total precipitation, separately. (g,h,i) present correlations
between EOS and spring mean insolation, summer mean insolation, and autumn mean insolation,
respectively.
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Table 3. Percentage of total study area under different types of correlation between vegetation
phenological parameters and climate variables during 1982–2014 (5% significance level).

Correlation
SOS (%) EOS (%)

Previous
Autumn

Previous
Winter Spring Spring Summer Autumn

Temperature

Significant Negative
Correlation 2.51 6.10 47.42 4.18 4.18 3.88

No Significant
Negative Correlation 55.53 57.20 33.54 50.63 40.22 51.27

No Significant Positive
Correlation 41.06 32.60 17.94 43.52 50.84 40.80

Significant Positive
Correlation 0.90 4.10 1.10 1.67 4.76 4.05

Precipitation

Significant Negative
Correlation 0.82 11.94 6.88 10.18 12.17 2.43

No Significant
Negative Correlation 32.26 62.20 35.62 57.68 37.31 50.56

No Significant Positive
Correlation 62.53 25.00 54.10 30.66 46.44 45.31

Significant Positive
Correlation 4.39 0.86 3.40 1.48 4.08 1.70

Insolation

Significant Negative
Correlation 1.14 0.44 10.54 2.53 5.98 2.00

No Significant
Negative Correlation 56.35 37.70 70.70 52.66 48.46 46.79

No Significant Positive
Correlation 40.73 55.48 18.56 42.39 34.18 46.96

Significant Positive
Correlation 1.78 6.37 0.20 2.42 11.38 4.25

Figure 7 exhibits the spatial distribution of the correlation of vegetation EOS with
climate factors. The EOS was weakly positively related to spring mean temperature, which
was mainly observed in Sanjiang Plain, Songnen Plain, and the eastern Hulun Buir Plateau,
while a significant negative correlation was seen from the southern Lesser Khingan Moun-
tains (approximately 4.18% of the total study area) (Figure 7a, Table 3). As shown in
Figure 7b, the EOS was significantly positively correlated to the summer temperature in the
Great Khingan Mountains and the northern Lesser Khingan Mountains, which constituted
approximately 4.18% of the total study area, suggesting that the increased summer tem-
perature can lead to the delayed EOS in high-latitude forest (Table 3). However, there was
an obvious negative correlation of EOS with summer temperature across some scattered
regions in the Sanjiang Plain, eastern Songnen Plain, and northeastern Liaohe Plain, which
are dominated by croplands (Figure 7b). There existed an obvious positive correlation
of EOS with autumn mean temperature in some regions of the Changbai Mountains and
Liaodong Hill, and a notably negative correlation in the central Songliao Plain (Figure 7c).
EOS and spring total precipitation were strongly negatively correlated in some regions of
the Hulun Buir Plateau and Sanjiang Plain, Songnen Plain, and Liaohe Plain, accounting for
10.18% of the entire study area (Figure 7d, Table 3). The spatial distribution of correlation
of EOS with summer precipitation (Figure 7e) revealed an obvious negative correlation of
EOS in the Great Khingan Mountains and the northern Lesser Khingan Mountains with
summer precipitation, indicating that the delayed EOS in these areas could be attributed
to the decreased summer precipitation. In contrast, EOS and summer precipitation of
the Hulun Buir Plateau, the northern Songnen Plain, the southwestern Liaohe Plain, the
southern Sanjiang Plain, the southwestern Changbai Mountains, and Liaodong Hill were
positively correlated. In these areas, the EOS was delayed because of the increased summer
precipitation. In the steppe-dominated regions of the Hulun Buir Plateau, there existed



Remote Sens. 2022, 14, 705 15 of 23

an obvious negative correlation between EOS and autumn precipitation (Figure 7f). The
spatial pattern of correlation of EOS with summer mean sunshine duration demonstrated
that the EOS of northern forest areas (Great Khingan Mountains and northern and southern
Lesser Khingan Mountains), the central Songliao Plain, and the eastern Sanjiang Plain, were
mostly positively related to the summer insolation, especially in the Great Khingan Moun-
tains, the northern and southern Lesser Khingan Mountains with a significant correlation at
the 5% level and that the EOS in the other regions was negatively related to summer mean
insolation (Figure 7h). Overall, the EOS in northern forest (Great Khingan Mountains) was
dominated by summer precipitation and summer insolation, the EOS in southern forest
(Changbai Mountains and Liaodong Hills) was governed by autumn temperature, the EOS
in the Hulun Buir Plateau dominated by grassland was related to autumn precipitation,
and the EOS in cultivated land was governed by various factors including summer temper-
ature, autumn temperature, spring precipitation, and autumn insolation, indicating that
the factors driving EOS in cultivated land were complex (Figure S2).

3.4. Phenological Parameters of Different Vegetation Types
3.4.1. Temporal Variations in Phenological Parameters within Different Vegetation Types

The trends of change in phenological parameters within different vegetation types
can be found in Table 4. The SOS for the forest and the grassland showed a non-significant
advancing trend, whereas there existed a weak delaying trend for cultivated land. In
contrast to SOS, the EOS showed delaying trend for all three vegetation types. The EOS for
forest was significantly (p < 0.01) delayed at a rate of 0.16 days year−1. For cultivated land,
the EOS showed a significant (p < 0.05) delaying trend with a rate of 0.08 days year−1. The
change trend of the EOS was lowest for grassland, with 0.02 days year−1 delay. The earlier
SOS and the later EOS help enhance the LOS in forest as well as grassland. In terms of forest,
there existed a significant (p < 0.05) prolonging in the LOS at a rate of 0.22 days year−1.
The LOS for cultivated land showed a non-significant increase at a rate of 0.09 days year−1,
which was related to the later EOS. In general, the lengthened LOS in northeast China from
1982–2014 was attributed to the later EOS for the forest and the cultivated land, whereas
the extension of LOS for grassland was mainly caused by the earlier SOS.

In addition, to further explore the trends of changes in SOS, EOS, and LOS in diverse
vegetation types, we calculated the number of pixels showing changes at significance levels
at 5% (Tables 5–7). As shown in Table 5, there were significantly more pixels showing
a significant decrease in the SOS than those showing significant increase for the forest
and the grassland, indicating that many pixels showed significantly earlier SOS in the
forest and the grassland areas. However, the number of the pixels presenting the obvious
reduction in the SOS for the cultivated land was significantly less than the number of pixels
denoting significant increase, suggesting that many pixels showed significantly later SOS
in the cultivated areas. The number of pixels presenting obvious increase in the EOS for the
forest was much higher than the pixels showing significant decrease (Table 6). In addition,
the number of pixels denoting an obvious increase in the EOS for the cultivated land was
obviously higher when compared with the number pixels showing a significant decrease. In
contrast, the number of pixels denoting an obvious increase in the EOS was slightly higher
than the number of pixels denoting an obvious increase in grassland areas. As the combined
change trends in SOS and EOS, the number of pixels presenting the obvious increase in
the LOS for forest was significantly higher than the number showing a significant increase,
indicating that many pixels exhibited significantly lengthened LOS in the forest areas
(Table 7). Similarly, the number of pixels of obvious increase in the LOS for the grassland
area was notably higher than the counts of pixels showing a significant decrease. However,
there existed no notable difference in the LOS for the cultivated area between the numbers
of pixels showing significant increase and significant decrease, indicating that there was no
significant change in the LOS for the cultivation area in northeast China for 1982–2014.
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Table 4. Trends of change in vegetation phenological parameters in three vegetation types of northeast
China for 1982–2014.

Different Vegetation Types SOS EOS LOS

Forest –0.06 0.16 ** 0.22 *
Cultivated land 0.06 0.08 * 0.02

Grassland –0.07 0.02 0.09
* Correlation was significant at the 5% significance level (2-tailed). ** Correlation was significant at the 1% significance
level (2-tailed).

Table 5. Pixel numbers containing different trends in SOS of three vegetation types in northeast
China for 1982–2014 (5% significance level).

Vegetation
Types

Significant
Decrease

No Significant
Decrease

No Significant
Increase

Significant
Increase

Forest 1804 4142 2411 514
Cultivated land 665 1731 2101 1395

Grassland 1322 1938 999 661

Table 6. Pixel numbers containing different trends in EOS of three vegetation types of northeast
China for 1982–2014 (5% significance level).

Vegetation
Types

Significant
Decrease

No Significant
Decrease

No Significant
Increase

Significant
Increase

Forest 137 953 4572 3198
Cultivated land 498 1442 2450 1497

Grassland 526 1924 1655 799

Table 7. Pixel numbers containing different trends in LOS of three vegetation types of northeast
China for 1982–2014 (5% significance level).

Vegetation
Types

Significant
Decrease

No Significant
Decrease

No Significant
Increase

Significant
Increase

Forest 371 1318 3690 3481
Cultivated land 963 1870 1994 1059

Grassland 544 1206 1864 1290

3.4.2. Relationships between Vegetation Phenological Parameters and Climate Variables
within Different Vegetation Types

To further analyse the variability of vegetation phenological parameters (SOS and EOS)
related to climate variables, the research computed the correlation coefficients between
SOS and EOS and climate factors in different vegetation types (Tables 8 and 9). Table 8
shows the correlation coefficients between SOS and nine climate factors of the forest, the
cultivated land, and the grassland. For the forest areas, the correlation coefficients between
SOS and spring mean temperature (r = −0.7, p < 0.01) were stronger than the coefficients
between SOS and the other variables, proving that the spring temperature was the leading
factor of SOS and warmer spring temperature, which caused an earlier SOS to the forest. In
the cultivated areas, significant negative correlations were found between SOS and spring
mean temperature and spring mean insolation. It acknowledges spring precipitation and
insolation as key drivers which can influence greening of cultivated land and low rainfall
and insolation in the spring may lead to a later SOS. In grassland areas, there existed
an obvious negative correlation of SOS with spring mean insolation. Table 9 presents
the correlation coefficients between EOS and climate factors in different vegetation types.
EOS and summer total precipitation were significantly negatively correlated (r = −0.35,
p < 0.05), suggesting that low rainfall in the summer would lead to later EOS in the forest
areas. In the cultivation areas, EOS was insignificantly correlated with climate variables.
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Nevertheless, there existed several weak correlations between EOS and summer mean
temperature, between EOS and spring and summer total precipitation, and between EOS
and autumn mean insolation. For the grassland areas, we observed a notable negative
correlation between the EOS and the autumn total precipitation, implying that high rainfall
in the autumn may cause the EOS to advance.

Table 8. Correlation coefficients between SOS and climate factors in different vegetation types of
northeast China in 1982–2014.

Climate Factors
Vegetation Types

Forest Cultivated Land Grassland

Previous autumn mean temperature −0.02 −0.04 −0.23
Previous winter mean temperature -0.28 −0.05 0.03

Spring mean temperature −0.70 ** −0.36 * −0.24
Previous autumn total precipitation 0.28 0.09 0.12
Previous winter total precipitation −0.18 −0.11 −0.30

Spring total precipitation 0.12 0.11 −0.16
Previous autumn mean insolation −0.04 −0.01 0.13
Previous winter mean insolation 0.04 0.25 0.23

Spring mean insolation −0.12 −0.36 * −0.36 *
* Correlation was significant at the 5% significance level (2-tailed). ** Correlation was significant at the 1% significance
level (2-tailed).

Table 9. Correlation coefficients between the EOS and climate factors in different vegetation types of
northeast China in 1982–2014.

Climate Factors
Vegetation Types

Forest Cultivated Land Grassland

Spring mean temperature −0.15 0.10 0.10
Summer mean temperature 0.21 −0.15 0.15
Autumn mean temperature 0.16 −0.05 −0.17

Spring total precipitation 0.13 −0.15 −0.12
Summer total precipitation −0.35 * −0.15 −0.14
Autumn total precipitation 0.05 −0.02 −0.34 *

Spring mean insolation −0.01 −0.09 −0.19
Summer mean insolation 0.32 −0.05 0.18
Autumn mean insolation −0.01 −0.23 0.16

* Correlation was significant at the 5% significance level (2-tailed).

4. Discussion
4.1. Variations in Vegetation Phenological Parameters over the Last 33 Years

It is important to note that there are many approaches to extracting the vegetation
phenological parameters from a variety of long-term NDVI datasets, but there is not yet a
universal method [38]. Therefore, the results vary between studies, which can be attributed
to using different NDVI dataset sources and different extraction methods. The results of
our study illustrated that most SOS dates ranged in the 100th–160th DOY, which was in
consistence with numerous former researches. Zhao et al. [31] concluded that the average
SOS in northeast China firstly happened between the 110th and 150th DOY. In addition,
Tang et al. [2] showed that the SOS dates in the Great Khingan Mountain area of northeast
China were widely distributed from the 90th to 150th DOY. In our study, the EOS mostly
occurred between the 245th and the 280th DOY and showed an increasing trend from north
to south. The latest EOS took place in southern Mountains, containing the Liaodong Hills
and Changbai Mountains. The Liaodong Hills and Changbai Mountains, which are strongly
affected by monsoons, are situated at comparatively low latitudes, which possess more
suitable hydrothermal situations than other areas, and thereby the EOS in these regions
arrived later [31]. The results of Liu et al. [6] illustrated an EOS between the 250th and
290th DOY in northeast China by employing a double logistic method which employed
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the same method as our study. Because of the similar SOS but earlier EOS, the LOS in
our research was lower than the results in Yu et al. [19]. As shown by Liu et al. [6], the
EOS based on the double logistic approach took place earlier than the EOS based on other
extraction methods. Moreover, we analysed the phenological records of the eight ground
phenological observation sites in northeast China, for 1982–2008, and discovered that the
SOS mostly took place between the 105th and 150th DOY and the EOS was mainly between
the 250th and 290th DOY. The results of the phenological records were in line with the
findings of the current work, implying that the vegetation parameters extracted by using
the double logistic method in our study were reliable.

Earlier SOS, delayed EOS, and prolonged LOS have been investigated in many pre-
vious studies. On a hemispheric scale, Julien and Sobrino [39] revealed advancement in
SOS with a rate of 0.38 days per year and postponement in EOS by 0.45 days year−1 during
1981–2003. Stockli and Vidale [40] found that there was an earlier SOS by 0.54 days year−1

and a prolonged LOS by 0.96 days year−1 in Europe during 1982–2001. In temperate
China, the advance in SOS was 0.79 days year−1. Meanwhile, the delay in EOS was
0.37 days year−1 during the period from 1982–1999. However, the SOS presented a slow
advancing trend with the study period being extended. For example, Jeong et al. [1] showed
the advance in SOS by 0.29 days year−1 during the initial research period in 1982–1999, but
the advance of the SOS subsequently slowed, at a rate of 0.02 days year−1 in the later period
(2000–2008). Moreover, Zhao et al. [31] revealed that the average SOS failed to present a no-
table advancing trend (0.04 days year−1) over northeast China during 1982–2013. Although
the magnitudes of phenological parameters were slightly different, the results of our study
revealed that advanced SOS, postponed EOS, and prolonged LOS were consistent with
some previous literature. The differences between the results may be attributed to different
study periods, different study areas, different extraction methods, and the application of
different datasets.

Different vegetation types had different phenological shifts [26–28]. Some previous
studies mainly focused on the average regional-scale trends, ignoring the spatial hetero-
geneity among diversity of vegetation types. The current work not only analysed the
change of vegetation phenological parameters at the regional scale but also demonstrated
changes in vegetation phenological parameters in three main vegetation types of northeast
China. According to Figure 5 and Table 4, we found the advance in SOS and delay in EOS,
and the LOS was obviously prolonged in most forest and grassland areas of northeast
China, whereas the SOS was mainly delayed in cultivated regions. Tables 5–7 indicate that
the number of pixels of cultivated land with a significantly delayed SOS was much higher
than those for forest and grass, and the number of pixels of forest with significantly delayed
EOS and prolonged LOS was much higher than that for cultivated land, indicating that
the change of the LOS in forest areas was more positive than that in cultivated land under
the background of climate change. This may be related to the geographical situations for
the reason that the forests in northeast China are located in relatively humid regions [41]
and the forests belong to natural vegetation, thereby requiring no artificial governance and
interference from humans. In addition, Shrestha et al. [42] proved that a notable earlier
SOS occurred in the forest area. Zhao et al. [31] noticed the delay of SOS in cultivated land
during the period of 1982–2013. Our results are in line with these previous studies.

4.2. Relationships between Vegetation Phenological Parameters and Climate Factors

In studies of vegetation phenology, variations are mostly attributed to climate vari-
ables, including temperature and precipitation, while the impacts of light situations on
phenological shifts, such as light intensity and photoperiod, are generally ignored [6]. In
general, solar radiation is investigated as the main parameter of light influencing vegetation
at the regional scale. Furthermore, several former researches have indicated that there exists
the time lag between vegetation growth and climate factors [11,43]. Therefore, when detect-
ing the correlations between the vegetation phenological parameters and climate variables,
we not only calculated the correlations between phenological parameters and temperature,
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precipitation, and insolation in the same season (spring and autumn), but also computed
that in the previous season. Many studies have shown that a warmer spring enables an
earlier SOS and longer LOS in mid- and high-latitude areas in the Northern Hemisphere [2].
The obtained results were in line with the former findings. This could be found that there
existed an obvious negative association of SOS with spring mean temperature, indicating
that warmer spring temperature would lead to an earlier SOS, especially in forest areas
of northeast China. Warm temperatures in spring will speed up the accumulation of heat
and advance the resumption of active growth [44,45]. Recent studies have shown that
warmer winter temperatures possibly postpone the accomplishment of chilling demands
and slow the dormancy breaking process, and thus lead to a later SOS [46]. However, an
insignificant negative correlation of SOS with winter mean temperature was detected at the
regional scale in our study. Obvious positive correlations between SOS and winter mean
temperature and between SOS and winter mean insolation were found in southwestern
Songnen Plain and northern Liaohe Plain, whereas the SOS was delayed, indicating that
increasing winter temperature and insolation in these areas caused a delay in SOS and
the importance of winter temperature and insolation in determining vegetation greening
in the coming year. In addition, an obvious negative correlation of SOS with spring total
precipitation was observed in Hulun Buir Plateau, suggesting that spring precipitation
significantly controlled vegetation growth in the next year, especially in the semi-arid
areas. Precipitation was considered a leading factor influencing the process of greening
and duration of vegetation of arid and semi-arid regions [47]. Compared with the negative
association between the SOS and temperature, EOS and summer mean temperature were
positively correlated. Vegetation leaf senescence is mostly regulated by cumulative cold
temperatures below the threshold temperature [48], thus increased summer temperature
can lead to delayed EOS. EOS and summer total precipitation were significantly negatively
correlated across the study area, especially in the Great Khingan Mountains. Since northeast
China is located at a high latitude and features cool temperatures, increased precipitation
in summer could lead to an enhancement in cloud cover, reduced solar radiation and soil
temperature, as well as stopped water absorption of the root system from near-frozen
soil [49]. Furthermore, we found that there existed an obvious positive correlation of EOS
with summer insolation distributed in the northern forests in northeast China, suggesting
that an increased insolation in summer will lead to a delay in EOS. Through analyzing the
correlations of EOS with climate factors, the dormancy of vegetation was in significant
association with temperature, precipitation, as well as insolation in the previous season.

4.3. Uncertainties

Our results revealed the positive response of LOS in forest to climate change, while
the LOS in cultivated land showed a steady change trend. Phenological events for forest
were mainly controlled by climate factors, whereas phenological shifts in cultivated land
rigorously influenced by human activities were influenced by both climate change, and
planting, crop type, irrigation, fertilisation, and harvest [11]. The LOS duration strongly
affects the interannual variations of plant growth and also profoundly impacts the vegeta-
tion gross and net primary production (NPP) and the net carbon dioxide uptake [38,50,51].
Piao et al. [52] revealed the strong correlation of changes in growing season with those in
NPP. The NPP is a major factor in adjusting carbon uptake in terrestrial ecosystems, and
alterations in growing season of vegetation can exert a substantial role in the variability in
atmospheric carbon magnitude and content [53]. The prolonged LOS of forest in northeast
China may lead to increases in NPP and enhance the carbon uptake capacity of territorial
ecosystems. A shorter LOS was found in the Sanjiang Plain and most areas of the Liaohe
Plain dominated by cultivated land and grassland, indicating a reduction in the risk of
environmental damage, such as cold damage and hailstones in these regions. However, the
production of cropland was related to LOS, so we will further study the effects of changes in
the LOS on the production of cropland in future. Moreover, we only analysed the impacts
of climate factors (including temperature, precipitation, and insolation) on the vegetation
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phenological parameters, and ignored other variables such as the effects of latitude, the
changes in land use and land cover, and the variations in atmospheric CO2 concentrations,
thus these factors will be taken into consideration in future researches.

5. Conclusions

In the current work, we analysed the variations and characteristics of vegetation phenological
parameters of northeast China during 1982–2014 at three scales and checked the associations
between phenological parameters and climate factors. The main conclusions were:

1. The SOS exhibited a slight advancing trend, and the EOS showed an obvious delaying
trend. Meanwhile, the LOS presented an obvious prolonging trend at the regional scale.

2. At the different vegetation types scale, the SOS for the forest and the grass showed
non-significant advancing trends, while there was a weak delay for the cultivated land.
The EOS exhibited delaying trends for forest, cultivated land, and grassland. The
opposite change trends in the earlier SOS and the later EOS enhanced LOS in forest
and grassland. The LOS for cultivated land showed a non-significant increasing trend.

3. The pixels showing significant earlier trends in the SOS accounted for 19.1% of the
whole research area with the leading distribution in the Great Khingan Mountains,
Lesser Khingan Mountains, and Liaodong Hills, while the pixels that showed signif-
icant delayed trends in the SOS accounted for 13.1% and were mostly found in the
plains. The EOS exhibited a delaying trend in most of the study region (approximately
72.1%) except for the Liaohe Plain and the Hulun Buir Plateau. Due to the changes in
SOS and EOS, there were clear changes in the LOS of northeast China. The LOS in
29.7% of the whole study area exhibited obvious prolonged trends.

4. According to the correlation of vegetation phenology with climate factors, the SOS
had an obviously negative correlation with spring mean temperature and the EOS
was obviously negatively connected to summer total precipitation at the regional
scale. For the forest areas, the warmer spring temperature may result in an earlier
SOS. In the cultivated areas, the precipitation and insolation in spring were the main
drivers of SOS. In the grassland areas, there existed an obvious negative correlation
between the SOS and the spring mean insolation. A significant negative correlation
was observed between the EOS and the summer total precipitation, suggesting that
low rainfall in summer would lead to a later EOS in the forest areas. For the grassland
areas, high rainfall in autumn may cause an advancing of the EOS. At the pixel scale,
the relationships between the phenological parameters and climate variables showed
strong spatial heterogeneities. In addition, the SOS was dominated by the spring
temperature in most forest areas. The EOS in northern forests was dominated by
summer precipitation and summer insolation, whereas the EOS in southern forests
was governed by autumn temperature. The EOS in the Hulun Buir Plateau, which
is dominated by grassland, was related to autumn precipitation, and the EOS in
cultivated land was governed by various factors including summer temperature,
autumn temperature, spring precipitation, and autumn insolation.

Our results further our understanding of the decadal changes in vegetation phenology
in the mid- and high-latitude regions of Northern Hemisphere and provide a good reference
for detecting the regional vegetation ecosystem responses to climate change. Moreover, the
obtained results suggested the impacts of scale on studying vegetation phenology; i.e., dif-
ferent results of changes in phenology were attributed to the examination of different scales.
The responses of diverse vegetation types to climate change were variable, particularly
between natural vegetation and vegetation that is governed by human activities. There
was a lag effect between the vegetation phenology and climate factors. Scale, vegetation
type, and the effect of lag should be completely considered in future phenological research.

Supplementary Materials: The following are available online at https://www.mdpi.com/article/
10.3390/rs14030705/s1, Figure S1: Maximum correlation between the start of the growing sea-
son (SOS) and climate variables in northeast China during 1982–2014, Figure S2: Maximum cor-
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relation between the end of the growing season (EOS) and climate variables in northeast China
during 1982–2014.
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