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Abstract: Unmanned aerial vehicle (UAV)-based remote sensing is gaining momentum in a variety
of agricultural and environmental applications. Very-high-resolution remote sensing image sets
collected repeatedly throughout a crop growing season are becoming increasingly common. An-
alytical methods able to learn from both spatial and time dimensions of the data may allow for
an improved estimation of crop traits, as well as the effects of genetics and the environment on these
traits. Multispectral and geometric time series imagery was collected by UAV on 11 dates, along
with ground-truth data, in a field trial of 866 genetically diverse biomass sorghum accessions. We
compared the performance of Convolution Neural Network (CNN) architectures that used image
data from single dates (two spatial dimensions, 2D) versus multiple dates (two spatial dimensions
+ temporal dimension, 3D) to estimate lodging detection and severity. Lodging was detected with
3D-CNN analysis of time series imagery with 0.88 accuracy, 0.92 Precision, and 0.83 Recall. This
outperformed the best 2D-CNN on a single date with 0.85 accuracy, 0.84 Precision, and 0.76 Re-
call. The variation in lodging severity was estimated by the best 3D-CNN analysis with 9.4% mean
absolute error (MAE), 11.9% root mean square error (RMSE), and goodness-of-fit (R2) of 0.76. This was
a significant improvement over the best 2D-CNN analysis with 11.84% MAE, 14.91% RMSE,
and 0.63 R2. The success of the improved 3D-CNN analysis approach depended on the inclu-
sion of “before and after” data, i.e., images collected on dates before and after the lodging event.
The integration of geometric and spectral features with 3D-CNN architecture was also key to the
improved assessment of lodging severity, which is an important and difficult-to-assess phenomenon
in bioenergy feedstocks such as biomass sorghum. This demonstrates that spatio-temporal CNN ar-
chitectures based on UAV time series imagery have significant potential to enhance plant phenotyping
capabilities in crop breeding and Precision agriculture applications.

Keywords: 3D-convolution neural networks; time series; lodging; sorghum

1. Introduction

Lodging negatively affects yield in many crops [1–3]. This damage, defined as the
displacement of plant stems from an upright position [4], is mainly induced by the strong
winds of extreme weather events during the growing season of the crop. Lodging negatively
impacts plant morphology [5], physiological processes [6], and growth [7], as well as
impeding harvesting activities, to significantly reduce the final above-ground yield of
the crop [8–11]. Lodging damage can also introduce the error or loss of phenotypic data
used for selection in breeding, genetic analysis or management decisions [9,10]. Due to its
rapid vertical growth [12] and tall stature of up to 3-4 m, biomass-type Sorghum bicolor (L.)
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Moench is prone to lodging, especially in the second part of the growing season [13]. The
development of digital tools that provide the precise and timely [14] evaluation of lodging
would be beneficial for allowing plant breeders to more accurately assess larger populations
of crops to select lines that suffer less from lodging and accelerate crop improvement [15]
In addition, agronomists and farmers would benefit from the ability to evaluate lodging
damage and associated yield loss when making decisions about the return-on-investment
from harvesting versus insurance claims [16].

Most studies on lodging have relied on in situ visual inspection of the crop by domain
experts, i.e., agronomists or breeders [7,17]. However, such methods require intensive
manual labor and are limited to small spatial areas. Lodging has been monitored using
satellites [14] and aircraft [18], recently including UAVs [3]. Advanced data-based modeling
techniques benefit from the increased resolution of spatial data collected by UAVs, as they
are able to exploit these data to learn relevant features on a given task [19]. Moreover,
high-quality data collection by UAVs is less constrained by cloud cover than when satellites
or higher altitude aircraft are used, enabling more timely field inspections [4]. Multispectral
imagery is the most common source of information for lodging assessment using remote
sensing imagery [4]. Under lodged conditions, the signal of different wavelengths that is
reflected or backscattered to the sensor is altered by the changes in plant geometry and
structure [2,20]. Earlier work [21] successfully demonstrated the integration of spectral and
textural feature images to detect lodged areas of wheat with an 82–91% accuracy. Other
studies [22–24] showed the value of integrating remote sensing imagery and machine
learning to assess lodging damage. The first step in these approaches is a laborious manual
search by domain experts for meaningful color- and texture-based features, which are then
marked to provide inputs for a classification algorithm to perform the pixel-level mapping
of lodging in certain areas [3]. While they represent important advances, there is potential
to increase the accuracy and Precision of the analyses, while also reducing labor. More
recently, the ability of Convolution Neural Networks (CNNs) to maximize information
gained from high-resolution UAV imagery was demonstrated [25,26].

A CNN automatically generates representations of complex features, which pro-
vide an advantage over traditional machine learning and are suitable for automated
image-based inference [26]. While CNNs proved to be a powerful image analysis tech-
nique, most studies have only exploited variations along two dimensions in the data,
e.g., the two spatial dimensions of a single image (2D-CNNs) [27]. There is a growing
interest in adopting CNN models capable of exploiting a third dimension of variation,
e.g., along a time series (3D-CNNs) [28]. Additionally, the recent exponential increase in the
number of datasets that feature high-resolution imagery collected at frequent intervals over
a growing season for a single field trial now make this a practical possibility. The method of
3D-CNN architecture was used to predict the end-of-season yield of wheat, barley, and oat
at field scale by integrating UAV time series, weather, and yield monitoring [19]. Sequential
CNN-Long Short-Term Memory (LSTM) network architecture was used to predict soybean
yield at county-scale by integrating MODIS satellite time series, weather, and national yield
data [29]. In a different context, deep learning 3D-convolution-based architectures were uti-
lized and benchmarked against traditional 2D-convolution architectures for hyperspectral
imagery scene classification [29]. Together, these results across different use cases suggest
that 3D CNN architectures can perform better than other architectures by exploiting their
ability to use time as an additional descriptor of the target trait.

In this study, we propose an examination of the effect of time, as an additional feature,
on lodging damage prediction. Specifically, we focus on determining the value of persistent
aerial monitoring using spatio-temporal 3D-CNN time series models based on UAV time
series imagery as inputs to determine both lodging detection and lodging severity.

The first objective is to assess the importance of the visual and near infrared spectral
and geometric features derived from the UAV imagery in the performance of the CNN
models. Second, we test if 3D-CNN model architectures applied to time series imagery
can surpass the performance of a 2D-CNN analysis of images from single dates. Third,
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we perform a comparative evaluation of different time sequence configurations to under-
stand the impact of the number of flights in the predictive sensitivity of 3D-CNN models.
Fourth, we consider the computation time needed for each model as part of the trade-off
models evaluation. Lastly, we utilize activation maps to visualize and interpret CNN
learning and predictive ability in these tasks [30].

2. Materials and Methods
2.1. Experimental Site

A biomass sorghum experiment with an augmented incomplete block design of
1118 plots was planted on 31 May 2019, at the University of Illinois Energy Farm research
facility, Urbana-Champaign (40.065789◦ N,−88.208477◦ W). The trial included (866) diverse
accessions of biomass sorghum in single, four-row plots. In addition, six additional “check”
accessions were planted in 16 four-row plots distributed across each of the 16 blocks,
as was previously described in detail [11]. A storm with strong winds produced lodging
in plots across the experiment 82 days after planting (DAP), as shown in Figure 1. The
ground-truthing survey was implemented immediately after the lodging event between
83–85 DAPs.
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Figure 1. Example plots with different degrees of lodging severity during ground surveying.
(a) non-lodged, (b) lodging severity 1 (mild), (c) lodging severity 2 (moderate), (d) lodging severity 3
(severe).

2.2. Lodging Assessment

We utilized a two-stage visual assessment of lodging to provide the data needed for
model training and validation. The steps were to determine: (1) whether each plot was
lodged or non-lodged; and (2) to estimate the severity of lodging, in the plots where it
occurred, in terms of a lodging severity score initially suggested by [10] and adapted in [25]:

Lodging score (1 − 100%) = Lodged area of plot (%) × Lodging severity/3 (1)

Lodging severity was scored on a three-point scale based on the visual evaluation of
the average inclination angle from vertical plant stems in the lodged area of the plot, where
a value of 1 corresponded to mild lodging (0–30◦), 2 corresponded to moderate lodging
(30–60◦), and 3 corresponded with severe lodging (60–90◦), as shown in Figure 1. Lodging
scores had a continuous distribution once the categorical lodging severity was multiplied by
the fraction (%) of the plot that was estimated to be lodged.
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2.3. Aerial Data Collection and Preprocessing

A RedEdge-M (Micasense, Seattle, WA, USA) multispectral sensor (MSI) was used
for imaging to acquire both geometric and multispectral features. The camera included
five spectral bands in the blue (465 to 485 nm), green (550 to 570 nm), red (663 to 673 nm),
rededge (712 to 722 nm), and near-infrared (820 to 860 nm) regions of the electromagnetic
spectrum. The aerial platform utilized was a Matrice 600 Pro hexacopter (DJI, Shenzhen,
China), equipped with a Gremsy T1 gimbal (Gremsy, Ho Chi Minh, Vietnam) used to
mount the MSI sensor. Flights were conducted 11 times in the season between DAPs
31 and 97 under clear sky conditions and around solar noon. Flight altitude was set to
40 m above ground level, resulting in a ground sampling distance (GSD) of 2–3 cm/pixel.
Flight planning considered a 90% forward and 80% side overlapping during image ac-
quisition to ensure successful image postprocessing. Nine black and white square panels
(70 cm × 70 cm) were distributed in the field and utilized as ground control points (GCPs).
A RTK (real-time kinematic) survey was implemented using a Trimble R8 global navigation
satellite system (GNSS) integrated with CORS-ILUC local station to survey the GCPs for
accurate geo-referencing and co-registration of imagery throughout the season. A standard
Micasense calibration panel was imaged on the ground before and after each flight for
spectral calibration. Images were further imported into Metashape version 1.7.4 (Agisoft,
St. Petersburg, Russia) to generate the two types of aerial image features: (1) multispec-
tral and (2) geometric 3D reconstruction of the canopy known as crop surface models
(CSMs) orthophotos.

An early season flight before plant emergence was utilized as ground level reference
for the extraction of the absolute height in the CSM files on subsequent sampling dates
(n = 11). The resulting multispectral and CSM orthophotos were resampled to a common
5 cm/pixel resolution and stacked into one multi-feature and multi-date file object. Image
chips for each plot were generated by clipping the orthophoto stack object using plot
polygons shapefile corresponding to the experimental plot dimensions (2.8 m × 2.8 m),
as shown in Figure 2. Three variations of the image chips were produced: (1) spectral
features from RGB images (RGB); (2) spectral features from RGB, red-edge and NIR bands
(MS); and (3) spectral and geometric features from RGB, red-edge and NIR bands along with
a crop surface model (CSM_MS) (Table 1). These steps were implemented via geopandas,
shapely, and rioxarray libraries in Python 3.7.11.
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Figure 2. Schematic workflow for lodging assessment. Orthophotos stacking, extraction of time-depth
image chips (top) and time-point image chips (bottom) (a). Implementation of lodging detection
(classification) prediction based on time-depth 3D-CNN and time-point 2D-CNN modelling and
ground-truth data as plots labeled as lodged or non-lodged (b). Implementation of lodging scoring
(regression) using time-depth 3D-CNN and time-point 2D-CNN modelling approaches and ground-
truth data as lodging severity scoring (c).
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Table 1. Description of image features, number of flights, number of image features and dimensions
of image chips for the three imaging approaches tested.

Model Name Image Features Type of Features N Features N Flights Image Chip Size 4

RGB RGB 1 Spectral 3 1–11 48 × 48 × 3–33
MS RGB, Re 2, NIR 2 Spectral 5 1–11 48 × 48 × 5–55

CSM_MS RGB, Re, NIR, CSM 3 Spectral and geometric 6 1–11 48 × 48 × 6–66
1 R = red, G = green, B = blue spectral bands. 2 Re = red edge, NIR = near-infrared spectral bands. 3 CSM = Crop
surface model. 4 Image chip size = N pixels (width) × N pixels (height) × Depth (N flights × N features).

2.4. CNN Modelling

The core component of the CNN algorithm is the convolution operation, where a set
of trainable kernels are applied to the input image to generate a set of spatial features that
describe the target predictor [31]. The model learns basic features in the first layers and
more complex feature representations at deeper layers. The final output of a CNN is a set
of features maps; depending on the use case, these can be directly utilized or fed to a fully
connected layer either in classification or regression tasks. The 3D-CNN architecture is
a variation of the traditional 2D architecture [32]. It utilizes all the standard CNN architec-
ture features but adopts a third dimension, which in this case was the temporal descriptor of
the target trait across the stack of images. The 3D-convolution layer operation was applied
with a learnable three-dimensional kernel considering the spatio-temporal characteristics
of the image chip as width (number of pixels) × height (number of pixels) × depth (time
sequence length).

2.5. CNN Implementation and Metrics

Customized CNN architectures were utilized in this study. After trial and error for lodg-
ing detection, the backbone feature generator of the 2D-CNN architecture included two 2D-
convolution layers and one flatten layer (Figure 3a). Meanwhile, for lodging severity, it con-
sidered three 2D-convolution layers and one flatten layer (Figure S1a). The rest of the archi-
tecture included a fully connected sigmoidal (classification) or linear (regression) layers heads,
respectively. The 2D-convolution’s kernel filter size was set to (3 pixels × 3 pixels × N fea-
tures). The 3D-CNN architecture considered two 3D-convolution layers (Figure 3a and
Figure S1b). The 3D-convolution’s kernel filter moved in three dimensions instead of
two, as with the 2D-convolution filter, not only from left to right and from top to bottom,
but also forward and backward. Thus, its kernel’s size was set to (3 × 3 × 2–9-time se-
quence lengths) operating at the sequence of each feature over time. The following settings
were common to all CNN architectures: convolution layers set to 32 features, zero padding,
stride equal to one with no overlapping, and rectified linear unit as activation function
were considered (Figure 3 and Figure S1). Batch normalization in the first convolution layer,
2D-max-pooling was set to two following each convolution, with 3D-max-pooling equal
to two over the spatial dimensions, equal to one over the depth dimension, and equal to
two following the last convolution operation of the 3D architecture, and 50 percent features
dropout prior to the flatten layer step was also adopted.

A 2D-CNN model analysis was conducted on data from individual dates, either before
or after the lodging event. This tested the importance of the timing between the lodging
event, ground-truthing, and aerial data collection. The following four dates of flights
were tested:

• DAP 75: 7 days prior to lodging, labeled as ‘75 (1)’;
• DAP 83: 1 day after lodging, labeled as ‘83 (1)’;
• DAP 88: 6 days after lodging, labeled as ‘88 (1)’;
• DAP 97: 15 days after lodging, labeled as ‘97 (1)’.

where the values of 1 in parentheses indicate the analysis of data from a single date.
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Figure 3. Diagram of custom CNN architectures utilized to assess lodging. The 2D-CNN (a) and
3D-CNN models (b) for lodging detection: CNN architectures for lodging severity can be found in
itectures for lodging severity can be found in Supplemental Materials, Figure S1a,b.

In addition, various configurations of input data from sequences of dates were ana-
lyzed using 3D-CNN architecture to test the sensitivity of predictions to variations in the
length of the time sequence and the contribution of dates before and after the lodging event.
The following six sequence configurations were built:

• DAPs 69,83: 13 days prior plus 1 day after lodging, labeled as ‘69_83 (2)’;
• DAPs 75,83: 7 days prior plus 1 day after lodging, labeled as ‘75_83 (2)’;
• DAPs 69,75,83: 13 and 7 days prior plus 1 day after lodging, labeled as ‘69_75_83 (3)’;
• DAPs 83,88,97: 1, 6 and 15 days after lodging, labeled as ‘83_88_97 (3)’;
• DAPs 62,69,75,83: 20, 13 and 7 days prior plus 1 day after lodging, labeled as

‘62_69_75_83 (4)’;
• DAPs 31,38,42,49,55,62,69,75,83: all available dates prior to lodging plus 1 day after

lodging, labeled as ‘31:83 (9)’.

where the values of 2 to 9 in parentheses indicate the analysis incorporating data from
between two and nine dates.

CNN models were implemented in Python Keras API, Tensorflow-GPU version
2.7.0 using a NVIDIA GeForce RTX 3070 (8GB of GPU memory). The combination of
different types of features, CNN architectures, and dates of flights or time sequence lengths
resulted in the implementation of 60 models (Table S1). Half of these models were used
to assess lodging detection, while the other half assessed lodging severity. In each of
these tasks, 12 models were based on the 2D-CNN architecture, as a result of combining
three types of features (Table 1) and the four dates of aerial data collection. The remaining
18 models were based on the 3D-CNN architecture, as a result of combining three types of
features (Table 1) and six different configurations based on different lengths of time and
the inclusion of data from dates before or after the lodging event. Each model fitting was
iterated 10 times using a random training and testing partition to ease the convergence of
the models’ prediction metrics.

The full set of 1118 image chips were used to assess lodging detection, with 662 plots
labeled as non-lodged, and 456 plots labeled as lodged during on-the-ground field survey-
ing. The 456 plots labeled as lodged were further considered to assess lodging severity. In
both tasks, training dataset was split (70:30) into training and testing datasets. The training
dataset was split further (80:20) into training and validation datasets. The validation dataset
was used to optimize the models’ performance and prevent overfitting during training.
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Binary cross-entropy and mean square error were used as loss functions in each of the
tasks, respectively. Models were trained up to 400 epochs using the early stop setting with
lambda value 0.01 to ensure efficient training time. Learning rate and decay parameters
were initialized with 0.01 and 0.001 values, respectively. The test dataset was utilized to
expose the models to unseen data to evaluate the generalization ability of the models.

The overall accuracy (OA), Precision, and Recall were utilized as evaluation metrics to
determine the performance of the models on lodging detection. The metrics are described
in Equations (2)–(4):

OA =
TP + TN

TP + FN + FP + TN
(2)

Precision =
TP

TP + FP
(3)

Recall =
TP

TP + FN
(4)

In Equations (2)–(4), TP (true positive) is defined as lodged plots correctly classified
as lodged plots. TN (true negative) is defined as non-lodged plots correctly classified as
non-lodged plots. FP (false positive) is defined as non-lodged plots incorrectly classified as
lodged plots. FN (false negative) is defined as non-lodged plots incorrectly classified as
lodged plots.

The mean absolute error (MAE), the relative root mean square error (RMSE) and coeffi-
cient of determination (R2) were utilized as evaluation metrics to determine the performance
of the CNNs in lodging severity score. Each metric is described in Equations (5) and (6):

MAE =
1
n ∑n

i=1|yi− ŷi| (5)

RMSE =

√
1
n ∑n

i=1 (yi− ŷi)2 (6)

R2 = 1−
[
∑N

i=1 (yi− ŷi)2/ ∑N
i=1 (yi− yi)2

]
(7)

In Equations (5)–(7), y, ŷ, and y are the observed, predicted, and observed mean
lodging severity scores values of the ith plot, and n is the total number of samples within
the study area. The computation time and GPU memory used were computed using
a custom callback function and custom calls to NVIDIA-smi in Python during model
implementation, respectively. Time was computed as seconds per epoch during model
training, and the GPU memory usage was computed as the maximum percentage of GPU
used during model implementation.

Activation mapping visualization [33] was implemented to better understand the
ability of the CNNs to use the information contained in the image arrays to deliver the
output prediction. The importance of the image regions in the prediction can be identified
by projecting back the weights of the output layer on to the convolutional feature maps,
using this technique [30]. The following steps were used to generate activation maps in
both tasks, as described in [34]. First, the CNN model was utilized to map the input image
to the activations of the last convolution layer as well as the output predictions. Then,
the gradient of the predicted class (classification) or value (regression) for the input im-
age, with respect to the activations of the last convolution layer, was computed. Lastly,
each image channel in the feature map array was multiplied by how important this channel
was with regard to the predicted class or value, then all the channels were summed to
generate the corresponding activation map. In essence, this provides a measure of how
strongly portions of the image contribute to the predictions made by the CNN, and it can
be expressed and visualized as a false-color scale.
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3. Results
3.1. Lodging Detection

The overall accuracy (OA) of 2D-CNN predictions of the lodging that occurred during
the storm 82 DAP was very limited when analyzing images collected seven days prior to
the lodging event used as a reference baseline (75 DAP; 0.61 to 0.73). After this, it increased
substantially for images collected one day after the lodging event (83 DAP; 0.82 to 0.85),
and then declined to moderate levels for images collected six to fifteen days after the
lodging event (88 and 97 DAP; 0.73 to 0.75; Figure 4a). This variation in OA was associated
with parallel changes in both Precision (Figure 4c) and Recall (Figure 4e).

Remote Sens. 2022, 14, x FOR PEER REVIEW 9 of 18 
 

 

V  

Figure 4. Evaluation of lodging detection prediction in testing data for 2D models by DAP and 3D 
models by number of time frame sequences considered via OA (a, b), precision (c, d) and recall (e, 
f) metrics. Computation time for 2D-CNN (g) and 3D-CNN implementation (h) with a batch size of 
32 samples for model training step. 

3.2. Lodging Severity 
When predicting lodging severity, the patterns of variation in the performance of 3D-

CNN and 2D-CNN analyses across the various data input scenarios mirrored those ob-
served for lodging detection, but the benefits of 3D-CNN over 2D-CNN were greater (Fig-
ures 5a–f). This was specifically the case when the additional information found in the 
geometric and spectral features of CSM_MS data were leveraged over the progressively 
simpler image features of MS, and then RGB, data by the 3D-CNN (Figures 5b,d,f). The 
predictive ability of the 3D-CNN analyses of CSM_MS data was comprehensive (MAE = 
9.44−10.06%, RMSE = 11.88−12.62%, R2 = 0.72−0.76) whenever imagery from dates before 
and after the lodging event (83 DAP) were used. Predictive ability declined only slightly 
from its maximum when images from only two dates were used or when images from 
across nine dates were used (Figures 5b,d,f). By comparison, when CSM_MS data from 

Figure 4. Evaluation of lodging detection prediction in testing data for 2D models by DAP and 3D
models by number of time frame sequences considered via OA (a,b), Precision (c,d) and Recall (e,f)
metrics. Computation time for 2D-CNN (g) and 3D-CNN implementation (h) with a batch size of
32 samples for model training step.

There were only modest effects on the OA of the 2D-CNN analysis when the number
of image features was increased by adding multispectral or geometric information to RGB,
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except when analyzing pre-lodging images (75 DAP; Figure 4a). In that specific case, adding
CSM data increased OA mainly by increasing Precision (Figure 4c), but also through gains
in Recall (Figure 4e).

Applying a 3D-CNN analysis to images from multiple sampling dates produced
modest improvement in the OA for lodging detection compared to a 2D-CNN analysis of
data from single dates (Figure 4a). OA was greatest (0.86–0.88) when the 3D-CNN only
analyzed imagery collected from 2 to 3 dates that straddled the lodging event (Figure 4b).
However, performance only declined marginally when images from more dates, both
before and after the lodging event, were included, and results were especially robust when
geometric features were combined with spectral features (CSM_MS) compared to RGB
or multispectral (MS) features alone (Figure 4a). This was consistent with the greatest
gains in the performance of 3D-CNN over 2D-CNN occurring when using CSM_MS data
compared with MS or RGB. The geometric features included in CSM_MS were particularly
important for maintaining high levels of Precision and Recall, which decreased for 3D-CNN
analysis of RGB and MS as the number of dates of data collection increased (Figure 4d–f).
When considering the computation resources, the time required for 2D-CNN (Figure 4g)
was significantly lower than 3D-CNN (Figure 4h). The computation time of 3D-models
followed an exponential response when increasing the number of flights, with a maximum
of 9 seconds per epoch (Figure 4h). A progressive increase in computation time between
3D-RGB, MS and CSM_MS using 3–9 numbers of flights was also notable (Figure 4g).
The GPU usage was 40–50% for 2D-CNN (Figure S2a) and markedly higher 75–94% for
3D-CNN models with a slow increase in GPU usage when increasing the number of flights
in the models (Figure S2b).

3.2. Lodging Severity

When predicting lodging severity, the patterns of variation in the performance of
3D-CNN and 2D-CNN analyses across the various data input scenarios mirrored those
observed for lodging detection, but the benefits of 3D-CNN over 2D-CNN were greater
(Figure 5a–f). This was specifically the case when the additional information found in
the geometric and spectral features of CSM_MS data were leveraged over the progres-
sively simpler image features of MS, and then RGB, data by the 3D-CNN (Figure 5b,d,f).
The predictive ability of the 3D-CNN analyses of CSM_MS data was comprehensive
(MAE = 9.44–10.06%, RMSE = 11.88–12.62%, R2 = 0.72–0.76) whenever imagery from dates
before and after the lodging event (83 DAP) were used. Predictive ability declined only
slightly from its maximum when images from only two dates were used or when images
from across nine dates were used (Figure 5b,d,f). By comparison, when CSM_MS data
from only the three dates following the lodging event were used, R2 decreased and error
increased (Figure 5a–f).

Despite being significantly less capable than the best 3D-CNN models, for the 2D-CNN
analysis of images from one day after the lodging event that occurred, 82 DAP was able
to predict lodging severity moderately well (MAE = 11.84%, RMSE = 14.90%, R2 = 0.63;
Figure 5a,c,e). However, the ability to predict lodging severity progressively declined using
imagery that was collected six, and then fifteen, days after the lodging event (Figure 5a,c,e).
Additionally, almost no variance in lodging severity across the sorghum population could
be explained by a 2D-CNN using images collected 7 days prior to the lodging event. As
with 3D-CNN models, the extra spectral and geometric features in the CSM_MS dataset,
compared to the MS and RGB data, aided improved predictions of lodging severity. The
computation time required for 2D-CNN (Figure 5g) was significantly lower than 3D-
CNN (Figure 5h). The computation time of 3D models followed an exponential response
when increasing the number of flights, with a maximum of 3.5 s per epoch (Figure 5h).
A progressive increase in computation time between 3D-RGB, MS and CSM_MS using
3–9 number of flights was also notable (Figure 5g). The GPU usage was 24–43% for
2D-CNN (Figure S2c) and markedly higher (68–91%) for 3D-CNN models, with a more
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markedly increased allocation of GPU usage when increasing the number of flights in the
models (Figure S2d).
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Figure 5. Evaluation of lodging severity prediction in testing data for 2D models by DAP and
3D models by number of time frame sequences via MAE (a,b), RMSE (c,d) and R2 (e,f) metrics.
Computation time for 2D models (g) and 3D models (h) with a batch size of 32 samples during model
training step.

3.3. Interpretation of CNNs Predictions via Activation Mapping Visualization

The superior performance of 3D-CNN analysis over 2D-CNN analysis can be vi-
sualized for the scenarios of each type with greatest predictive power (i.e., 2D-83 and
3D-69:83 for CSM_MS) using receiver operating characteristic (ROC) curves, observed
versus predicted values for both lodging traits, and by the interpretation of the activation
maps (Figure 6a–e).
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Figure 6. Evaluation of best CNN models on lodging detection prediction in testing dataset via ROC
curves (a) and observed and predicted severity values for 2D-CNN (b) and 3D-CNN (c), respectively.
Visual representation of activation maps of last max pooling layer of each CNN for lodging detection
(d), and lodging severity (e) assessment. Example RGB image of plots (top), corresponding gradient
activation maps of best 2D-CNN (middle), and best 3D-CNN (bottom) in testing dataset. The level of
activation of CNN layers in the images is represented by low (blue), intermediate (yellow), and high
(red) using an 8-bit (0–255) scale.

The ability of 3D-CNN analysis to classify lodged plots correctly (true positives)
without incorrectly considering plots to be lodged (false positives) is clear in the ROC
curves (Figure 6a). Similarly, 3D-CNN analysis predicted lodging severity with less error
and bias than 2D-CNN models (Figure 6a,b). Both types of models tend to overestimate the
predicted values in plots where mild lodging occurred (0–30% of lodging severity), but this
pattern was less of an issue for the 3D-CNN models.

Activation maps indicated that 2D-CNN and 3D-CNN models relied on similar regions
within images for lodging detection or prediction of lodging severity (Figure 6d,e). Areas
of high activation were visibly located in the portions of images where lodging was most
severe (Figure 6d). However, it is notable that 3D-CNN models, for both detection and
severity estimation, were able to activate a larger region around the area where plants were
damaged. Additionally, in the case of severe lodging (100%), the 3D-CNN model tended
to fine-tune the activation level in accordance with heterogeneity in lodging within the
plot (Figure 6e).
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4. Discussion

This study analyzed two spatial dimensions and a temporal dimension in data from
a time course of UAV remote sensing images, with a 3D-CNN architecture to facilitate
improvements in lodging detection and the prediction of lodging severity relative to
standard 2D-CNN architecture (Figures 4 and 5). Modest gains were made in the qualitative
task of lodging detection through the use of a 3D-CNN compared to a 2D-CNN, which
had an overall accuracy of 0.79–0.88 depending on the number of spectral and geometric
features of the input data. In contrast, when estimating quantitative variation in lodging
severity, there could be significant benefits to using a 3D-CNN over a 2D-CNN. These
gains in prediction ability were realized when a 3D-CNN was used on feature-rich data
containing both geometric and spectral information, i.e., when the CSM or red-edge and
NIR wavebands were dropped from the input data, the benefits of 3D-CNN over 2D-CNN
were limited. These findings highlight how leveraging the extra information captured in
remote sensing data that include more spectral information and multiple timepoints can
depend on use of more complex analytical approaches. The successful application of this
approach for lodging severity screening in biomass sorghum provides proof-of-concept for
a tool to rapidly assess a trait that is of significant interest to breeders because it impacts
harvestable yield, but it is very challenging to assess on a large scale by traditional methods
of visual inspection [15]. Therefore, significant gains in the efficiency of crop improvement
could be achieved. In addition, the effective analyses of imagery from UAVs would provide
farmers with a tool that is accurate, while also much faster than manual field inspections
of large acreages for assessing lodging damage and deciding on the relative value of
harvesting a crop or generating evidence to support an insurance claim [16]. Otherwise,
farmers are often advised to harvest early to avoid lodging, causing a reduction in potential
productivity by shortening the growing season. More broadly, the lessons learned here
may be relevant to other applications of time series remote sensing imagery, such as the
assessment and evaluation of damage from seismic activity [35].

In recent years, agricultural studies have increasingly made use of a variety of imaging
methods based on UAV-based remote sensing data. In the domains of plant breeding [36]
and Precision agriculture [37], this growing popularity reflects the need for the accurate
assessment of crop traits (1) across many genotypes and at spatial scales that are too large
for manual measurement to be efficient, yet (2) at spatial scales where the resolution and
number of image features (spectral and/or geometric) from piloted aircraft or satellites can
be inadequate. The independent analysis of data from individual dates of image collection
from UAVs has been the most common approach to date. For example, quantitative
thresholding approaches have been applied in this way to aerial images to assess lodging
severity in barley (R2 = 0.94) [38] and lodging rate in maize (R2 = 0.50) [39]. Success has
also been achieved in estimating lodging severity by training and applying CNN analysis
to a combined set of images from two developmental stages of wheat [22]. These studies
demonstrate the potential for the rapid assessment of lodging by UAV, but are limited by
the need for manual intervention to select optimal threshold values in workflow and by
not leveraging the temporal variation in the analysis of data. They may also provide an
early indication that estimating lodging severity is more challenging in tall, lower density,
and coarsely textured canopies such as maize relative to shorter, more uniformly dense
and fine-textured canopies such as rice, wheat and barley. If so, biomass sorghum is a good
subject for testing methods that can cope with a difficult use case.

The results of the 2D-CNN analysis of images from different individual dates during
the growing season provided valuable context for the interpretation of the 3D-CNN results.
Lodging severity could be predicted with reasonable accuracy when using images collected
one day after the lodging event (Figure 5a). Unsurprisingly, there was almost no useful
information to be gained from the 2D-CNN analysis of images collected prior to the lodging
event. Additionally, the predictive ability of 2D-CNN analysis declined significantly and
progressively when applied to images collected six, and then fifteen, days after the lodging
event. This pattern is consistent with the common observation that the continued growth
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of lodged plants is driven by phototropism to be vertical nature and, therefore, less easy to
distinguish from an undisturbed canopy in aerial imagery, even if much of the stem and
biomass remains disturbed.

The superior performance of a 3D-CNN over a 2D-CNN for estimating lodging
severity appears to depend on leveraging a “before and after” comparison of the event,
i.e., prediction accuracy measured in terms of R2, MAE or RMSE was best when data from
one or two dates before and after the lodging event were analyzed (Figure 5). This is logical
given that a change in the CSM (i.e., height profile) or spectral reflectance of the canopy
before and after the lodging event would provide valuable additional information beyond
the variation in geometric and spectral signals across plots on a single date once lodging
had occurred. This interpretation is supported by the 3D-CNN analysis of a time-course of
images from three dates after the lodging event, failing to outperform the best 2D-CNN
analysis (Figure 5).

Nevertheless, provided that the “before and after” comparison was made, the per-
formance of the 3D-CNN was relatively insensitive to the number of sampling dates
used prior to the lodging event (Figure 5). Even the analysis of data from nine dates
between 31 to 83 DAP found a lodging severity prediction that was almost as accurate
(MAE = 9.99%, RMSE = 12.68%, R2 = 0.72), and the same was true when only the two dates
before and after the lodging event were analyzed (MAE = 9.65%, RMSE = 12.40%,
R2 = 0.75). This suggests that significant error is not introduced into the 3D-CNN analysis
when data from early in the season that have a low information value with respect to
lodging are included. Additionally, as a practical consideration, it allows for the effective
analysis of lodging without manual intervention in order to select dates of data collection
nearest to the lodging event.

The notion that a 3D-CNN analysis would improve UAV-based phenotyping beyond
what 2D-CNN is capable of is based, in part, on recent satellite remote sensing research.
Satellites are an ideal source of automatically generated time courses of remote sensing
data [40]. Additionally, as an example, the inclusion of a third convolution layer in CNN
architecture to integrate spatial and time dimensions in satellite data enabled improved
crop classification at a regional scale [28]. The 3D-CNN analysis of spatio-temporal models
was applied to UAV remote sensing for only a limited number of traits and crops. The
applicability of the 3D-CNN analysis of spatio-temporal data to predict yield [18] is con-
sistent with yield being a product of compound growth and dynamic interactions with
the environment over the entire growing season. However, the black-box nature of CNN
analysis makes it hard to pinpoint which elements of the 3D-CNN and time course of
imagery drive enhancements in performance. By contrast, the abrupt nature of lodging
allows the current study to provide a case study of how 3D-CNN analysis can enhance
power through the inclusion of only two timepoints of data “before and after” an event of
interest in the life of the crop.

This study reveals the value of combining spectral and geometric information in
feature-rich image data, which are necessary to better leverage the benefits of 3D-CNN
over 2D-CNN for the estimation of lodging severity (Figure 5). Spectral information
previously proved to be a relevant descriptor of lodging in crops such maize [38], wheat [25],
and barley [9]. The visual and near-infrared regions of the spectrum have been the most
common proxies for lodging detection [24] and lodging severity [23]. Geometric features
derived from the photogrammetric reconstruction of the canopy have been less commonly
used in these tasks [2,4,41]. However, the “before and after” comparison of geometric
information in CSM was crucial for the enhanced predictive ability of 3D-CNN over 2D-
CNN. This parallels and extends the successful integration of geometric and spectral
information to improve predictions of traits such as biomass [12,42] and plant height [43].

It was also notable that the benefit of integrating geometric and spectral features was
greater for lodging severity than for lodging detection [36,39], regardless of the CNN ar-
chitecture considered. This is consistent with previous findings [44,45], where the spectral
information alone proved highly efficient in detecting lodging as a pixel-wise classifica-
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tion [22]. Additionally, this is likely, in part, explained by the fact that the geometric features
are highly sensitive and less prone to signal saturation than spectral features [46], which
becomes relevant when considering small differences in the degree of lodging severity
between plots under dense canopy conditions. Even though, the computational cost of
both traits cannot be directly compared given the fact that the sample sizes and their 2D
architectures differ slightly. The improvement in predictive performance by 3D-CNN im-
plied a higher computational cost. Due to the relative higher improvement of these models
on lodging severity rather than lodging detection, the relative computation cost was lower
for this trait. The higher performance in this study did not fall into the larger time sequence
lengths, but the exponential increase in the computation cost of the 3D architectures at long
time series cannot be overlooked, and this is still a computational challenge and active area
of research [47,48].

According to the activation maps, both CNN architectures utilized similar regions of
images to determine lodging detection and severity. However, the greater predictive power
of the 3D-CNN did coincide with larger and more refined activation regions in the images
compared to the 2D models maps. In this regard, it can be argued that the best 3D-model is
able to extract additional informative descriptors from the spatial–temporal features during
3D-convolution operations and, thereby, produce an improved prediction.

Even though we utilized manual ground truths to build the models, we recognize
that a visual observation and quantification, by walking through the alleys and plots after
lodging, was subject to errors that may affect the performance of the model. These could
be improved by utilizing ground-based imaging methods such as LIDAR for ground-
truthing, but this was beyond the scope of our study. Future research might further exploit
the additional ground truth data of a quantitative nature for the use of spatio-temporal
CNN architectures to better understand the capacity of certain genotypes to recover after
lodging damage. Additional analyses are also needed to determine the impact of the spatial
resolution of imagery and how to reduce the processing time of data preprocessing and
modelling implementation of 3D-CNN architectures.

5. Conclusions

This study aimed to explore the potential improvements in crop phenotyping with
UAV remote sensing imaging that could be made with 3D-CNN versus 2D-CNN. Lodging
detection and lodging severity in biomass sorghum were chosen as target traits for the
case study because their short-term, stochastic nature present a distinct set of challenges
and opportunities for interpretation versus traits such as yield, which are determined
over an entire growing season. In addition, lodging in highly productive bioenergy feed-
stock grasses and other cereal crops is agronomically important and inefficient to assess
by traditional methods. It has previously been shown that lodging detection prediction
with 2D-CNN is feasible and produces results accurate enough to monitor lodging. This
study shows that adding an explicit analysis of time as an additional dimension of vari-
ation in the spectral and geometric features imagery derived from UAV flights produces
(1) a modest improvement in the predictions of lodging detection, but (2) significant gains
in the more challenging task of estimating quantitative variation in lodging severity. Using
a small number of data collection dates before and after the lodging event provides enough
data to outperform a single time-point model prediction in both tasks. However, using
images from many dates across the growing season does not substantially impair predictive
ability. This work partly addresses the need for advanced modelling techniques that can
take advantage of recently improved spatial resolution, the ease of collecting data, cloud
storage and processing for UAV remote sensing.

Supplementary Materials: The following are available online at https://www.mdpi.com/article/10
.3390/rs14030733/s1, Figure S1: Diagram of custom CNN architectures utilized to assess lodging
severity, 2D-CNN (a) and 3D-CNN (b). Figure S2: Utilization of GPU memory during models
training, validation, and testing steps for lodging detection prediction via 2D-models (a) and 3D-
models (b), and lodging severity prediction via 2D-models (c) and 3D-models (d), respectively.
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Table S1: Description of the 60 CNN models implemented according to combinations of UAV-based
image features, CNN architectures, and target traits.
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