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Abstract: Landslide displacement prediction is crucial for the early warning of slope failure but
remains a challenging task due to its spatiotemporal complexity. Although temporal dependency has
been well studied and discussed, spatial dependence is relatively less explored due to its significant
variations of the spatial structure of landslides. In this study, a novel graph convolutional incorporat-
ing GRU network (GC-GRU-N) is proposed and applied to landslide displacement forecasts. The
model conducts attribute-augmented graph convolution (GC) operations on GNSS displacement data
with weighted adjacency matrices and an attribute-augmented unit to combine features, including
the displacements, the distance, and other external influence factors to capture spatial dependence.
The output of multi-weight graph convolution is then applied to the gated recurrent unit (GRU)
network to learn temporal dependencies. The related optimal hyper-parameters are determined
by comparison experiments. When applied to two typical landslide sites in the Three Gorge Reser-
voir (TGR), China, GC-GRU-N outperformed the comparative models in both cases. The ablation
experiment results also show that the attribute augmentation, which considers external factors of
landslide displacement, can further improve the model’s prediction performance. We conclude that
the GC-GRU-N model can provide robust landslide displacement forecasting with high efficiency.

Keywords: spatiotemporal analysis; landslide displacement prediction; attribute-augmented;
deep learning

1. Introduction

Landslides are a harmful environmental and geological phenomenon, occurring fre-
quently worldwide [1,2]. They are gradually formed by the long-term interactions of
both natural and human factors under specific geologic and geographic conditions. The
occurrence of landslides is irreversible, and a severe landslide may induce a series of
geological environmental disasters and form a disaster chain, posing severe threats to
human life and built infrastructures [3]. Thus, analyzing and predicting geological haz-
ards using monitoring data collected from various sources is essential to mitigate these
severe devastations.

Time series landslide displacement, directly reflecting the deformation and stability
of a slope, is the most critical dataset to understand landslide characteristics and infer
its future development [4]. For instance, the Global Navigation Satellite System (GNSS),
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measuring surface motion at a very high frequency and accuracy, is a powerful tool to help
diagnose the progression of landslide movement. For this reason, these datasets enable
deep-learning models to be trained for predicting the future state of surface deformation.

Deep-learning approaches, as suggested, are superior to traditional statistical methods
in many applications, especially in time-series prediction [5,6]. Representative statisti-
cal models, such as multivariate regression models (MLR) [7], auto-regressive integrated
moving average (ARIMA) [8], and others, are widely used for a single time series forecast-
ing [8–12], while they neglect the potential relationship among multiple time series in the
monitoring network under similar geological conditions. By comparison, deep-learning
methods integrate various processing layers and produce abstract learning features and
nonlinear dependencies from multidimensional datasets [6,11,13], making them sound
alternatives in landslide displacement forecasting.

Given the outstanding performance in time-series forecasts, recurrent neural networks
(RNN) and their variants [14], such as long short-term memory (LSTM) and gated recurrent
unit (GRU), have achieved impressive results in the prediction of land displacements based
on GNSS time-series data [9,10]. These models can solve the problems of nonlinear dynamic
characteristics in complex time series, thus being particularly suitable to predict time-series
landslide displacement. The workflows of these methods are approximately the same:
select representative GNSS monitoring stations and plot the curve of displacement–time
to analyze the deformation; next, the monitoring data of specific stations will be adopted
for modelling one station by one station; as each displacement–time curve only shows the
evolution characteristics of a single monitoring point, the model predictions only reflect
the displacement behaviour of a single location.

However, landslide-displacement prediction is a spatiotemporal task because the
evolution of the landslide process often exhibits spatial and temporal characteristics. The
existing time-series forecast model only explores temporal features, ignoring the under-
lying spatial correlations. Thus, it is difficult to comprehensively assess the displacement
changes of the entire monitoring system and reveal the future state of the landslide as a
whole. Several studies have utilized convolutional neural networks (CNNs) to explore the
spatial dependencies and build prediction models in traffic forecasting problems [6,15–17].
However, CNN-based models only consider the absolute distance relationship among
stations in Euclidean space. Compared with CNN, graph convolutional networks (GCNs)
can handle neighbourhood information in non-Euclidean spaces, providing a more feasible
way to model spatial dependencies within a monitoring network [13,17,18].

Based on the problems mentioned above and inspired by current encouraging results
in traffic forecasting problems, there is a need to combine GCN and RNN models to build a
collaborative prediction model to capture spatial and temporal features for spatial–temporal
forecast problems. However, displacement prediction of a landslide relies not only on
historical GNSS measurements and the spatial correlations of the monitoring network but
also on internal geological conditions and various external factors, such as hydrologic
conditions [19–22], anthropogenic factors, etc. For example, in China’s Three Gorges
Reservoir area, many landslides are triggered and accelerated by seasonal precipitation
and the fluctuation of reservoir water level [17,19]; thus, the impact factors in predicting
landslide deformation are indispensable during modelling.

To the best of the authors’ knowledge, there is currently no related work focusing on
addressing the prediction of rainfall reservoir-induced landslide displacement from a holis-
tic perspective combining the external incentive factors. Inspired by current encouraging
results in traffic forecasting problems [13,18], we propose a novel deep-learning method
named graph convolutional incorporating gated recurrent unit network (GC-GRU-N). In
the GC-GRU-N, the monitored GNSS time-series displacements, the distance, and other
external triggering factors are integrated to construct the GCN module handling the spatial
dependency; the GRU module model’s temporal dependence captures long-term depen-
dencies by considering landslide displacement time series. This architecture is expected to
inherit the merits from both GCN in extracting spatial dependencies and GRU in capturing
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temporal correlation features. The main contributions are twofold. First, we have extended
GCN for spatial data imputation in the GNSS network deployed on the landslides. Second,
we introduce a graph deep-learning framework to predict landslide displacement in time
and space.

2. Methods

Landslide displacement forecasting is a spatiotemporal prediction task because the
evolution of landslide movement often exhibits spatial and temporal characteristics. This
paper proposes a deep-learning framework to predict the landslide displacement based
on the spatiotemporal analysis of the time series monitoring data. This framework is
expected to inherit the merits from both GCN in extracting spatial dependencies and GRU
in capturing temporal correlation features.

The workflow is shown in Figure 1. According to the GNSS monitoring network struc-
ture and the obtained time-series datasets, pro-processing is conducted to obtain spatial and
temporal attributes as the model inputs. Then, the GCN module is employed to handle spatial
dependencies, while the GRU module is used to capture temporal dependencies. This paper
uses tensorFlow2.1, Python3.6, and Matlab2020 to conduct the experiments and analysis.
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2.1. Study Area and Dataset

Since the Three Gorges Reservoir (TGR) was used in 2003, the fluctuated water level
has changed the rock and soil physical and mechanical properties around the reservoir [19].
Over 4200 landslides are distributed in this region, and the majority of these landslides
show characteristics of multiple triggers and reactivations [4]. The Baishuihe landslide and
the Shuping landslide (Figure 2) are two typical recurrence reservoir landslides that have
attracted the concern of researchers for a long time. As shown in Figure 2, both landslides
are located on the south bank of the Yangtze River and spread into the Yangtze River.
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The Shuping landslide has an elevation of between 65 m and 400 m and is about 650 m
wide. It is a south–north-oriented slope with a gradient varying from 22◦ in the upper part
to 35◦ in the lower part. The overall sliding mass is about 27 million m3 with a thickness of
approximately 40–70 m [19]. According to the field investigation, this landslide is divided
by a valley into two blocks (Figure 2).

While the maximal dimensions of the Baishui landslide in the north–south and east–
west are 780 m and 700 m, respectively, it has a volume of about 12.6 million m3 with an
average thickness of approximately 30 m [20]. The field investigation and monitoring data



Remote Sens. 2022, 14, 1016 5 of 21

have confirmed that the landslide has a relatively flat central part with more significant
gradients in the upper and lower parts of the landslide. It can also be categorized as two
blocks (Figure 2).

The two landslides were re-activated by the first impoundment of the TGR, and since
then, visible cracks have gradually formed [19,20]. Two GNSS networks were deployed to
study the displacement characteristics during landslide evolution (Figure 2). The displace-
ment dataset was collected monthly by the Trimble GPS receiver with a plane accuracy of
5 ± 1 ppm. The measurements of the reservoir water level were collected daily by the water
level indicator provided by the China Three Gorges Project Development Corporation.
The precipitation observations were collected daily by the rain gauge provided by Zigui
County Meteorological Bureau. These collected datasets (from July 2003 to March 2013 for
the Baishuihe landslide; from September 2007 to May 2015 for the Shuping landslide) are
presented in Figures 3 and 4. It can be inferred from Figures 3 and 4 that:

(1) The TGR became fully operational in November 2008 when its highest water level
reached 175 m. Since then, the reservoir water level has fluctuated between 145 m and
175 m in a year, exhibiting seasonal changes due to artificial flood control.

(2) The rainy season of the study area lasts from June to October each year. The rainfall
data also display seasonal variations due to monsoon influences. In contrast, the
reservoir began impounding at the end of the wet season in October and quickly
reached the maximum water level and maintained this from November to February,
with a cycle opposite to the precipitation conditions.

(3) The historical GNSS measurements of both landslides also show evident seasonal
patterns. The displacements increase from April to September per year and remain
relatively stable from October to April in the next subsequent year. The displacements
rise with the drawdown of the reservoir water level and during the period of increased
rainfall in the wet season.
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Thus, the seasonal characteristics of the evolution of the landslides are a joint effort of
the precipitation and the fluctuation of reservoir water levels, with a period of about a year.

2.2. Data Processing
2.2.1. Representation of the Spatial Correlation

Our framework defines the GNSS monitoring network structure as a weighted graph
G = (V, E, W). The monitoring sites are regarded as nodes, symbolized by V, and E is a finite
set of edges representing the connection between the nodes. The numbers of the edges are
N(N − 1)/2, where N is the number of monitoring stations of the network, W ∈ RN×N is a
weighted adjacency matrix representing the correlation between the nodes (Figure 5).
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Generally, the deformation characteristics of a landslide at different parts vary with
the monitoring site’s location. The spatial correlation of monitoring sites in the GNSS
network graph shows a strong place dependence. Thus, the weighted adjacency matrix is
calculated using the Gaussian similarity functions based on spatial proximity. As given
in Equation (1), weights wij of edges eij representing the spatial correlation between nodes
(vi, vj) can be calculated.

w(i, j) = exp(−‖vi − vj‖2/2σ2) (1)

where ‖vi − vj‖2 denotes the spatial dependence between nodes (vi, vj), and σ is the
standard deviation controlling the width of the neighbourhoods.

The weighted adjacency matrix can be expressed as Equation (2), where a more
significant weight indicates a higher correlation between the two neighbourhood nodes.

Aw =


0 w(1, 2) · · · w(1, N)

w(2, 1) 0 · · · w(2, N)
...

...
. . .

...
w(N, 1) w(N, 2) · · · 0

 (2)

2.2.2. Representation of the Temporal Correlation

The spatial and temporal attributes are two critical elements of landslide displacement
prediction. This section will explore the node features that can represent the temporal
correlation. Once the displacement data are collected through the GNSS monitoring system,
preprocessing is needed before analysis. Outlier removal and missing value imputation are
first carried out, followed by denoising and normalization. This study applies a wavelet-
based denoising method to remove the random noise and improve the data quality. Then,
the monitoring date is normalized into the range from 0 to 1 by max-min normalization to
eliminate dimensional effects.

A feature matrix X ∈ RN×P is defined, which contains the time-series information
of the monitoring stations (nodes). Where N is the number of monitoring stations in the
network, P denotes the number of node time-series features, such as the length of the
historical time series. X ∈ RN×t represents the displacement at each monitoring station
at time t. Thus, the input [Xt-n, . . . , Xt−1, Xt] is a sequence of n historical displacement
dataset, and [Xt+1, . . . , Xt+T] is the predicted displacement in the following T time series.

2.2.3. Attribute Augmentation by Incorporating External Factors

Generally, the dynamic movement of a landslide is subject to internal geological
conditions and external triggering factors [4,21]. As for landslides on the reservoir bank of
TGR, the fluctuation of the reservoir water level and varying precipitation are two main
external factors influencing landslide behaviours [22,23]. However, the studies using GCN
to learn spatial dependencies often adhere to a single measure (e.g., distance) to represent
the weights in the adjacency matrix [24,25] without considering the effects of the external
trigging factors, which inevitably hampers the model performance given the complexity of
landslide deformation patterns.

In this study, we apply attribute-augmented graph convolution operations on GNSS
observations. The attribute-augmented unit integrates features of the displacements time
series, the synchronous precipitation and the water level fluctuation to represent the contri-
bution of the external dynamic triggering factors. The augmented matrix with weighted
adjacency matrices is incorporated into the forecast model to enhance the extraction of
realistic spatiotemporal dependency.

An attribute matrix D ∈ RN×(k∗t) stands for k external factors at time t. It considers
that the effects of the triggering factors on the landslide displacements show significant
time lags. We use an extended time window m + 1 to express the attribute informa-
tion instead of the original one at time t; that is, the attribute matrix Dk is denoted by
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Dk
t−m,t = [Dk

t−m, Dk
t−m−1, . . . , Dk

t ]. Then, the attribute-augmented matrix S can be inferred
by combining the feature matrix X and the attribute matrix D:

St = [Xt, D1
t−m,t, D2

t−m,t, . . . , Dk
t−m,t] (3)

Thus, the displacement prediction task can be regarded as learning the function f to
predict the displacements, as shown in Equation (4):

f (G, X|D) = [Xt+1, . . . , Xt+T ] (4)

2.3. Data Modelling
2.3.1. Spatial Dependence Modeling by GCN

Acquiring complex spatial dependence is one of the critical problems in spatiotemporal
predicting. Traditional CNN-based models can capture local spatial features but are only
usable in Euclidean space, such as a regular grid [15]. The GNSS monitoring network
deployed on a landslide is a graph structure rather than a two-dimensional grid, which
means the traditional CNN cannot capture the spatial dependence correctly.

Recently, the GCN model has received widespread attention, extending convolutional
operations to non-Euclidean domains. It has been gradually applied in image classification
and traffic road networks and has demonstrated that the spatial structure captured by
GCNs improves the forecasting accuracy [26].

Given an adjacency matrix A and a feature matrix X, the GCN model builds a filter
to handle specific spectral information in the Fourier domain. The filter, working on the
nodes (e.g., monitoring sites) of a graph (e.g., GNSS network structure), focuses on the
nodes’ spatial features and measures their closeness by its first-order neighbourhood.

The GCN model learns the topological relationship between the nodes and their
surrounding nodes for each node. Then, the encoder generates the latent representations
for all geographical units of the monitoring network and the attributes of the nodes with
graph convolution to obtain spatial dependence. As a result, similar units obtain similar
representations, which are then used by the decoder for predicting.

As shown in Figure 6a, the GCN model can be constructed by stacking multiple
convolutional layers to learn higher-order similarities between the nodes in the graph. The
propagation of the GCN can be formulated as:

yl+1 = σ(D̃−
1
2 ÃD̃−

1
2 ylWl) (5)

where σ(.) represents the nonlinear sigmoid function, such as the ReLU. Ã = A + I is a
self-connection structure matrix with an identity matrix I. D̃ is the diagonal node degree
matrix of Ã, represents as D̃ = ∑j Ãij. Wl is a weight matrix for the l-th neural network
layer. yl is a node-level output of l layer with y0 = X.
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2.3.2. Temporal Dependence Model by GRU

Acquiring temporal dependence is another crucial problem in landslide displacement
spatiotemporal predicting. The recurrent neural network (RNN) has achieved impressive
results given the outstanding time series forecasts [14]. However, traditional RNN has
limitations for long-term forecasts due to deficiencies, such as gradient disappearance and
explosion [27].

The LSTM model [28] and the GRU model [29] are proposed to address these prob-
lems. The basic principles of LSTM and GRU are almost identical. They all incorporate
gated mechanisms and can handle longer sequences of tasks. Compared to LSTM, GRU
combines the forget gate and the input gate into an update gate, decreasing the data flow;
thus, it has a more straightforward structure, fewer parameters, and faster convergence
speed [30]. Therefore, we have chosen the GRU model to learn temporal dependence from
the displacement time series data.

The data flow of the GRU is illustrated in Figure 6b. xt denotes the model inputs
at time t, ht−1 is the hidden state at time t − 1, all the subscript letter indicates time, rt
stands for the reset gate, ut represents the update gate, ct is the memory content stored,
and ht denotes the output state. The update gate ut is used to control the degree of the
status information transmission from time t − 1 to time t; the larger the value of ut, the
more critical the previous state. The reset gate tensor rt controls the influence of time t − 1
on-time t; the smaller the value of rt, the weaker the effect.

The GRU obtains the monitoring information at time t, by taking the hidden status
at time t − 1 and the current monitoring information while capturing the monitoring
information at the present moment; the model still retains the changing trend of historical
monitoring information and can capture temporal dependence.

2.3.3. Spatiotemporal Model Using GC-GRU-N

To capture both spatial and temporal features from landslide monitoring data, we
propose a new deep learning model (GC-GRU-N) based on graph convolutional network
(GRU) and gated recurrent unit (GRU). In the model, an attribute-augmented graph con-
volution operation with weighted adjacency matrices and an attribute-augmented unit is
employed to represent the spatiotemporal correlations of the monitoring network, and the
obtained results will be used as the model inputs.

The architecture of the model is shown in Figure 7. The upper part shows the process
of spatiotemporal displacement prediction. The GCN module is used to model spatial
dependencies, while the GRU module is used to model temporal dependencies. A fusion
layer is implemented to incorporate extracted features from both space- and time-domain.
The model predicted displacement could be represented as f (A, S) with A the weighted
adjacency matrix and S the attribute-augmented matrix.

The lower part (marked by a dashed box) gives a specific structure of a T-GCN cell.
In each model cell, ht−1 denotes the output at time t − 1, gc(.) is the graph convolution
process, ut, rt are the update gate and reset gate at time t, and ht denotes the output at
time t. The calculation process of spatiotemporal displacement prediction is shown below:

ut = σ(Wu · [gc(St, A), ht−1] + bu) (6)

rt = σ(Wr · [gc(St, A), ht−1] + br) (7)

ct = tanh(Wc · [gc(St, A), (rt ∗ ht−1)] + bc) (8)

ht = ut ∗ ht−1 + (1− ut) ∗ ct (9)

where σ(.) and tanh(.) represents the sigmoid function, W and b stand for the weights and
biases in the training process, respectively. * denotes the matrix multiplication.
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2.3.4. Evaluation Metrics of the Prediction

To evaluate the model performance, we introduce three evaluation indicators, namely
the mean absolute error (MAE), the mean absolute scaled error (MASE), and the root mean
square error (RMSE) [31]. These metrics are widely used in the regression tasks, defined
as follows:

MAE =
1
n

n

∑
t=1

∣∣Yt − Ŷt
∣∣ (10)

MASE = mean

(∣∣∣∣∣ ej
1

n−1 ∑n
t=2|Yt −Yt−1|

∣∣∣∣∣
)

(11)

RMSE =

√
1
n∑n

t=1

(
Yt − Ŷt

)2 (12)

where n is the length of time series, Yt represents the actual measurement, Ŷt denotes the
predicted value, and ej = ∑n

t=1
∣∣Yt − Ŷt

∣∣ indicates the forecast error for a given period j (the
number of forecasts). MAE can reflect the absolute error of the prediction result. MASE
is a favourable property to calculate the time-series forecast errors, which can be used to
compare forecasts across data sets with different scales. RMSE can more accurately reflect
the similarity between the predicted and the observed sequence.

3. Experiments and Results
3.1. Analysis of the Spatiotemporal Correlation

Generally, the deformation of a landslide varies spatially at different parts of the
landslide body (e.g., [19,20]). The spatial–temporal correlation of each monitoring site
in the GNSS network shows a strong location dependence. This section analyzes the
measurements on each monitoring site to determine their spatiotemporal relations. To
do so, we introduce grey relational analysis (GRA) to help estimate the correlation of
monitoring points [19]; it is believed that the value of grey relational degree (GRD) greater
than 0.6 denotes a close correlation.
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For the Shuping landslide, all monitoring stations (Figure 2) are deployed on the active
block. As shown in Table 1, for any neighbouring connection, their GRD values are greater
than 0.6, implying a strong spatial–temporal correlation among them. We select two pairs
of adjacent monitoring points (ZG85 with SP-2 and ZG85 with ZG87) and plot the observed
deformation time series. The results are illustrated in Figure 8a,b, showing the strong
consistency of each pair. The calculated GRD value is 0.8 and 0.87, respectively, suggesting
a strong spatiotemporal correlation between them. From these GNSS observations on the
east block (Figures 2 and 4), the landslide deforms locally obviously, indicting an unstable
state. Still, it does not mean that the whole landslide is moving, or that the landslide
is likely to occur, unless it is already entering an accelerated deformation stage with an
increasingly accelerated velocity.

Table 1. Grey relation analysis results of the Shuping landslide.

Point ZG85 ZG86 ZG87 ZG88 SP-2 SP-6

ZG85 1 0.78 0.87 0.82 0.80 0.84
ZG86 0.78 1 0.88 0.75 0.86 0.85
ZG87 0.87 0.88 1 0.88 0.87 0.88
ZG88 0.82 0.75 0.88 1 0.83 0.82
SP-2 0.80 0.86 0.87 0.83 1 0.75
SP-6 0.84 0.85 0.88 0.82 0.75 1
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Figure 8. (a–d) Deformation over time of adjacent monitoring points of different pairs.

For the Baishuihe landslide, two stations, namely ZG93 and ZG118, are installed in
the more active block, with the rest monitoring stations at the other block (Figure 2). It
can be seen from Figures 2 and 8c that monitoring sites located at the more active block
exhibit almost identical displacement trends (GRD = 0.74). At the other monitoring sites
in another block, the measured displacements are relatively small, fluctuating to within
20 mm per month. The GRD between these sites is larger than 0.6, reflecting remarkable
similarity in displacement trends. Generally, the correlation decreases with increasing
distance. However, for stations located at different blocks (e.g., ZG92 and ZG93), the
monitoring displacements still show similarity in local features (Figure 8d), with the value
of GRD equalling 0.54 (Table 2).



Remote Sens. 2022, 14, 1016 12 of 21

Table 2. Grey relation analysis results of the Baishuihe landslide.

Point ZG91 ZG92 ZG93 ZG94 ZG118 ZG119 ZG120

ZG91 1.00 0.69 0.51 0.76 0.52 0.79 0.77
ZG92 0.69 1.00 0.54 0.70 0.57 0.65 0.65
ZG93 0.51 0.54 1.00 0.59 0.74 0.54 0.59
ZG94 0.76 0.70 0.59 1.00 0.59 0.72 0.71

ZG118 0.52 0.57 0.74 0.59 1.00 0.55 0.54
ZG119 0.79 0.65 0.54 0.72 0.55 1.00 0.68
ZG120 0.77 0.65 0.59 0.71 0.54 0.68 1.00

In summary, the spatiotemporal correlation of monitoring sites in the GNSS network
shows medium to strong relations. Grey relational analysis (GRA) results also show a
strong location dependence consistent with the results calculated by Gaussian similarity
functions. It confirms that the landslide displacement prediction should consider the
spatiotemporal relationship between monitoring points.

3.2. Model and Parameter Setting
3.2.1. Model Inputs

In the experiments, GNSS measured displacements acquired monthly (from July 2003
to March 2013 for Baishuihe landslide, from September 2007 to May 2015 for Shuping
landslide), the associated daily reservoir water level and precipitation are used, all of which
are normalized to the interval from 0 to 1 using the max–min normalization. These datasets
are further divided into a training dataset and a test dataset. The training dataset (from
July 2003 to August 2011 for Baishuihe landslide, from September 2007 to March 2014 for
Shuping landslide) of the input layer are taken as inputs in the training process, and the
remaining dataset is used to evaluate the performance of our proposed method.

For the input layer, the training dataset of single GNSS displacement time series can be
denoted as Dm = {d1, d2, . . . , dm}, m represents the length of the time series. GNSS observa-
tions from July 2003 to August 2011 for the Baishuihe landslide and from September 2007
to March 2014 for the Shuping landslide are taken separately as training datasets in the
training process. The remaining GNSS observations are used to evaluate the performance
of our proposed method.

The way of sample division from each training dataset is shown in Figure 9. A sliding
window with window length equals l and step size equal n is used. Thus, the length of
each obtained sample is l (2 ≤ l < m), represented by Dtrain = {dm−l, dm−l+1, . . . , dm−1}
with the last y (1 ≤ y < l) serving as label sample and the other values (l − y) used as the
sample input.
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In this paper, the sliding window size is set to 6 by taking account of the typicality
and quantity of the training samples, which stands for the half-cycle of the external factors
to facilitate the recurrent layer to capture the temporal dynamics. The first five are input
samples, the last 1 marked as the label. As suggested by [32], the model error increase as
the value of y increases; thus, we set it to 1. Therefore, the dimension of the training sample
is 93 and 74, separately. The test datasets are treated in the same way.

For the Baishuihe landslide, a 7 × 7 weighted adjacency matrix Aw is first construed
using the Gaussian similarity function based on the spatial proximity of the deployed
GNSS monitoring stations (Section 2.2.1). Then a feature matrix X with a size of 7 × 117 is
constructed to represent the temporal displacement of each station. The number of rows
equals the number of stations; the number of columns equals the measured displacement
time series. Thus, in the same way, the dimension of Aw and X for the Shuping landslide is
6 × 6 and 6 × 93, respectively.

As illustrated in Section 2.1, for both landslides, the fluctuation of the reservoir wa-
ter level and varying precipitation are two main external factors influencing landslides
behaviours. We introduce an attribute-augmented unit that integrates features of the dis-
placements, the seasonal rainfall, and the water level fluctuation to represent the effect
of external influencing factors on landslide deformation. The augmented matrix with
weighted adjacency matrices is incorporated into the forecast model to enhance the extrac-
tion of realistic spatial–temporal dependency, and the derived results will be used as the
model inputs.

3.2.2. Model Parameters and Settings

Our proposed model has four hyper-parameters: the learning rate, the number of
training iteration epochs, the number of hidden units, and the batch size. In the experiment,
we empirically set the learning rate to 0.001 and the batch size to 32 [33]. However, the
numbers of training iteration epochs and hidden units are two crucial parameters that
may affect the prediction precision and, therefore, should be determined by designed
comparison experiments. The ReLU is employed as the activation for each convolutional
layer and the Adam optimizer for minimizing the loss function (Equation (13)).

loss =
n

∑
t=1

(Yt − Ŷt)
2/n (13)

where n is the time series length, Yt represents the actual measurement, Ŷt denotes the
predicted value.

Comparison experiments for selecting the optimal hyper-parameters are performed
by setting the number of hidden units to 64 first to analyze the changes of the prediction
precision with a varying number of training epochs designed to be {100, 250, 500, 1000,
1500, 2000}. Figure 10 shows the variation of metrics with different training epochs. The
horizontal axis represents the number of training epochs, and the vertical axis represents
the variation of the metrics; it can be seen that when the training epochs equals 1000,
the metrics obtain a minimum value. Thus, the model reaches its optimal performance.
Accordingly, in the following comparison experiments, we set the training epochs value to
1000 to analyze the changes of the prediction precision with varying numbers of hidden
units; these numbers are designed to be {8, 16, 32, 64, 100, 128}. Figure 11 gives the variation
of metrics with different hidden units. The horizontal axis represents the number of hidden
units, and the vertical axis represents the variation of the metrics. It can be seen that when
the hidden units equal 64, the metrics obtain a minimum value. Thus, the model reaches its
optimal performance. Consequently, in the following experiment, the number of training
epochs and hidden units is set to be 1000 and 64, respectively.
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3.3. Predicted Results and Analysis
3.3.1. Predicted Results Using the GC-GRU-N

To prove the effectiveness of the proposed model, we use four classical prediction
models, which are MLR, ARIMA, SVR, and LSTM, to compare with the GC-GRU-N model
for the two study sites. This section also conducts comparative analysis using the temporal
graph convolutional network (T-GCN) without attribute augmentation to verify the model
enhancement using the attribute-augmented graph convolution (GC) operations. We
evaluate the effect of the GC-GRU-N model from two aspects: prediction performance and
modelling time.

As the above-mentioned classical prediction models can only realize single time-
series prediction, the model predictions only reflect the displacement behaviour of a single
monitoring station. Thus, for a GNSS network with m stations, classic models need to
calculate m times separately to obtain the displacement forecasts of all stations. The GC-
GRU-N utilizes a feature matrix Xm×n (Section 3.2.1) to represent the displacement over
time of each station, predicting the displacement of the entire monitoring system.

The predicted results of the Baishuihe landslide and the Shuping landslide by the
proposed model are shown in Figures 12 and 13, respectively. The predictions of each
monitoring station are consistent well with the actual observations as a whole. According
to Figures 6 and 7, measurements of several monitoring stations show mutational transition
appeared in September each year; a more significant prediction error arises at this abrupt
state with a maximum of 16.66 mm and 30.35 mm, respectively. The maximum error does
not exceed 10 mm for the rest of the year. It could be due to fewer samples being available
for the mutation state than for the other states because a monthly prediction time scale is
used due to data acquisition limitations. Generally speaking, as the number of samples for
mutation state increases, e.g., with daily-scale displacement, the model’s errors gradually
decrease. In addition, since the GCN captures spatial features by constantly moving a
smooth filter in the Fourier domain, it might also lead to the peaks being smoother.
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3.3.2. Comparative Experiments

The performance of the forecast models is shown in Table 3. Our proposed model
has outperformed the other five models in terms of three evaluation indicators in two
study areas (Table 3). The errors of models such as MLR, ARIMA, and SVR are relatively
large, resulting in poor prediction performance. However, the LSTM as a neural network
model is better than traditional machine learning models (SVR) and time series models
(MLR and ARIMA). Compared with the LSTM model, the GC-GRU-N and the T-GCN
model can better describe the displacement trend because the model structure captures
the spatial feature of the monitoring network. Consequently, the prediction accuracy of
the GC-GRU-N is effectively enhanced. For the Baishuihe landslide, the three metrics of
GC-GRU-N are 3.682 mm of MAE, 0.477 of MASE, and 4.429 mm of RMSE, respectively.

Table 3. The performance of different forecast models.

Model

Evaluation Index
Average

Time
Baishuihe Shuping

MAE/mm MASE RMSE/mm MAE/mm MASE RMSE/mm

The proposed 3.682 0.477 4.429 6.123 0.353 8.321 44.88 s
T-GCN 4.707 0.61 6.183 7.071 0.401 9.796 19.93 s
MLR 7.514 0.974 12.319 13.548 0.782 17.566 986.435 s

ARIMA 6.718 0.87 10.041 10.953 0.632 13.917 0.534 h
SVR 6.765 0.877 10.512 13.936 0.804 16.734 349.971 s

LSTM 5.981 0.727 8.401 8.825 0.509 12.788 229.936 s

In the following discussion, we use the RMSE as the primary metric to represent the
model’s performance. The RMSE of the GC-GRU-N model and T-GCN model are reduced
by approximately 64% and 50% compared with the MLR model. In comparison, the RMSE
of the T-GC-GRU-N model and T-GCN model are around 56% and 38% lower than that of
the ARIMA model. Compared with the SVR model, the RMSEs of the GC-GRU-N model
and T-GCN model are reduced by 58% and 41%, respectively. In contrast, the RMSEs of the
T-GC-GRU-N model and T-GCN model are decreased by 47% and 41% compared with the
LSTM. Compared with the GC-GRU-N model, the T-GCN model is less effective because
the T-GCN considers the spatial features and ignores the impact of the external factors on
landslide displacement.

In terms of computation time, T-GCN is the most efficient model amongst all tested
models, only requiring 19.93 s (Table 3). The proposed GC-GRU-N achieves competitive
training efficiency ranking top two, taking 44.88 s, followed by the LSTM model costing
229.936 s. The GC-GRU-N is slower than T-GCN because the method needs to develop a
unit to represent the effects of the triggering factors during convolution operation. The
SVR takes 349.971 s, slightly higher than LSTM. In contrast, the modelling time of the MLR
model and the ARIMA model is much longer than other methods presented in this paper,
requiring 986.435 s and 0.534 h, respectively. In summary, the GC-GRU-N is significantly
efficient considering its high accuracy among other advanced models.

Results of the ZG93 station installed on the Baishuihe landslide and the ZG85 station
deployed on the Shuping landslide are depicted in Figure 14. The predictions of the
proposed model are consistently well with the actual deformation trend and superior
to other methods as a whole. Despite sometimes overreacting to rapid decreases and
producing underestimated results at abrupt increases, our model outperforms all other time
series forecast models at both landslides. This result indicates that the graph convolution
with spatial correlation consideration scheme can efficiently capture the dynamics in the
landslide monitoring.
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Figure 14. Comparison results of the proposed model and five other models. Results of ZG93
installed on the Baishuihe landslide are shown in figure (a,b), and that of ZG85 deployed on the
Shuping landslide are shown in figure (c,d).

Specifically, MLR and ARIMA as statistics methods can also depict the variation trend
of landslide displacement, but with more significant overestimated or underestimated
errors. The LSTM model is more efficient and shows more promising results than the SVR
model in the machine-learning-based models, especially in predicting displacement around
transition states. However, sudden rapid changes in the evolution may increase the model’s
errors. This could be due to fewer samples being available for the mutation state.

The T-GCN and the GC-GRU-N models capturing spatial and temporal features have
achieved more promising time-series forecasts. The T-GCN model gives a lower prediction
accuracy. This is because the T-GCN model only considers the spatial features, and ignores
the external factors impacting landslide displacement. In summary, the GC-GRU-N as
a spatial and temporal mode is significantly efficient with high accuracy amongst other
models in landslide displacement forecasting.

3.3.3. Ablation Experiment and Analysis

Ablation is utilized to demonstrate the importance of attribute enhancement to improve
model performance. It refers to an attribute-augmented unit in the forecast model. We design
the ablation experiment as the following: only consider the rainfall factor or the reservoir water
effect, and both factors together (Figure 15). Table 4 shows the results for the Baishuihe landslide,
with the T-GCN representing a model without an attribute-augmented unit. According to
Table 4, the performance gains of using an attribute-augmented unit is apparent.
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Table 4. Ablation Experiments with different settings.

Evaluation
Index T-GCN

The Proposed Model (the Baishuihe Landslide)

Rainfall R.w.l Both Factors

MAE/mm 4.707 3.724 3.704 3.682
MASE 0.610 0.491 0.489 0.477

RMSE/mm 6.183 4.442 4.434 4.429
Note: R.w.l is the reservoir water level.

We also use the RMSE as the primary metric to represent the model’s performance. As
the experiment considers the rainfall factor alone, the reservoir water level factor alone,
and both factors together, the RMSE values of the proposed model are 4.442 mm, 4.434 mm,
and 4.429 mm, respectively, all of which are lower than that of the T-GCN (6.183 mm).
Specifically, the ablation experiment demonstrates the effectiveness of assembling the
external inducing factors in graph convolutional network, and the best performance in
all indicators is achieved when both factors are considered simultaneously. As shown in
Figure 15, the predictions of considering both trigging factors are consistent well with the
actual deformation trend, which is superior to the other two scenarios and is still valid
around transition states, including rapid decrease and abrupt increase conditions.

4. Discussion
4.1. Advantage of the Proposed Method

Unlike the time-series forecast models that only explore temporal features and focus
on a single point, this paper presents a new deep learning architecture that considers the
spatial and temporal correlation for landslide displacement prediction. More specifically,
the spatial correlation of the entire monitoring system and the temporal dependency of
the monitoring time series are explored to establish the forecast model predicting the
displacement of the monitoring network instead of a specific station. Considering the
displacement prediction of a landslide relies not only on historical GNSS measurements
and the spatial correlations of the monitoring network but also on various external in-
centive factors. An attribute-augmented unit is designed to integrate weighted adjacency
matrix, displacements, and triggering factors to enhance the capture of spatial–temporal
dependency serving as the model inputs.

To the best of the authors’ knowledge, there is currently no related work focusing
on addressing the prediction of rainfall reservoir-induced landslide displacement from a
holistic perspective combining the external incentive factors. This paper presents a new
deep learning GC-GCN-N model based on the GCN and GRU models, which effectively
utilizes the spatial and temporal features contained in the model input data. The results
show that the proposed model outperforms comparative models in both landslides over
our study site in China’s Three Gorge Reservoir (TGR).

4.2. Shortcoming and Outlook of the Proposed Method

As shown in Figures 6 and 7, several GNSS-monitored displacements show mutational
transitions in September. Accordingly, significant prediction error often appears at this
abrupt state (Figures 12–14), which is true to other forecast models. Considering the
monthly data-acquisition limitation, this could be due to fewer samples available for the
mutation state than for the other states. Thus, the model’s errors probably gradually
decrease as the number of samples for the mutation state increases. In addition, the GCN
captures spatial features by constantly moving a smooth filter in the Fourier domain, which
might also lead to the peaks being smoother.

Limited datasets in geohazard domains might be a prevalent phenomenon. Results of
the Shuping landslide and the Baishuihe landslide also show that the number of motoring
stations in a GNSS network also affects the prediction result. As monitoring equipment and
data transmission technology advance, daily, hourly, and even minute-scale displacements
could be collected and predicted in real time. Additionally, several other solutions have
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emerged in different domains for handling dataset limitations, including data augmenta-
tion [34], synthetic data [35], and transfer learning [36].

Data augmentation refers to increasing the number of data points without changing the
label. For example, variable factors include random noise, and adequate time characteristics
can be employed to enlarge the time-series data [34]. Although not real data, synthetic
data contain the same patterns and statistical properties as actual data, generated by a
deep-learning model called generative adversarial networks (GAN) [35]. Transfer learning
uses knowledge from other relevant datasets or an existing model to construct new models
that lack enough training data to provide an alternative solution [23,36].

In this study, periodic rainfall and reservoir water level fluctuations are the main
factors triggering landslide kinematic evolution in the TGR area. Therefore, we consider
only these two trigging factors. Subsequent studies might include more complicated
datasets to establish a more comprehensive model. For example, factors affecting landslide
motion can consist of other essential characteristics of landslides, such as strata lithology,
slope aspect and angle, etc.

5. Conclusions

This research develops a new deep-learning approach for landslide displacement
forecasting called GC-GCN-N, which combines the GCN and the GRU. The architecture
inherits the merits from both GCN in extracting spatial dependencies and GRU in capturing
temporal correlation features to tackle the spatiotemporal landslide displacement forecast.
In the proposed model, (1) a weighted adjacency matrix is built to interpret the spatial
correlations between all monitoring stations, (2) a feature matrix is assembled to handle
the time-series measurements of all monitoring stations, (3) an attribute-augmented unit is
designed to represent the effects of the triggering factors and integrate the matrix mentioned
above into a single graph convolutional network, and (4) a novel neural network-based
approach is developed to enable to process the above graph-structured data. Experiments
have been carried out on two landslides in Three George Reservoir, China. Compared with
the MLR model, the ARIMA model, the SVR model, the LSTM model, and the T-GCN
model, the GC-GCN-N model outperforms other forecasting models at both landslide sites.
In summary, the GC-GCN-N model successfully captures the spatial and temporal features
from the landslide monitoring dataset, showing great potential for other spatiotemporal
forecast tasks.
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