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Abstract: It is significant to study the vegetation of protected areas in rugged mountains where
the vegetation grows naturally with minimal eco-society environmental stress from anthropogenic
activities. The shadow-eliminated vegetation index (SEVI) was used to monitor the vegetation of
protected areas, since it successfully removes topographic shadow effects. In order to auto achieve the
best adjustment factor for SEVI calculation from regional area images, we developed a new calculation
algorithm using block information entropy (BIE-algorithm). The BIE-algorithm auto-detected typical
blocks (subareas) from slope images and achieved the best adjustment factor from a block where the
SEVI obtained the highest information entropy in an entire scene. Our obtained regional SEVI result
from two scenes of Landsat 8 OLI images using the BIE-algorithm exhibited an overall flat feature
with the impression of the relief being drastically removed. It achieved balanced values among three
types of samples: Sunny area, self-shadow, and cast shadow, with SEVI means of 0.73, 0.77, and 0.75,
respectively, and the corresponding SEVI relative errors of self-shadow and cast shadow were only
4.99% and 1.84%, respectively. The linear regression of SEVI vs. the cosine of the solar incidence
angle was nearly horizontal, with an inclination of −0.0207 and a coefficient of determination of
0.0042. The regional SEVI revealed that the vegetation growth level sequence of three protected areas
was Wuyishan National Park (SEVI mean of 0.718) > Meihuashan National Nature Reserve (0.672) >
Minjiangyuan National Nature Reserve (0.624) > regional background (0.572). The vegetation growth
in the protected areas was influenced by the terrain slope and years of establishment of the protected
area and by the surrounding buffer zone. The homogeneous distribution of vegetation in a block is
influenced by many factors, such as the actual vegetation types, block size, and shape, which need
consideration when the proposed BIE-algorithm is used.

Keywords: information entropy; calculation algorithm; adjustment factor; topographic effect; slope

1. Introduction

The terrestrial vegetation plays an important role in biodiversity conservation, ecolog-
ical sustainability, and in achieving carbon neutrality [1–4]. Protected areas are useful for
natural vegetation growth and mitigating vegetation degradation and deforestation [5–12],
since they suffer minimal eco-society environmental stress from human beings [13,14].
Thus, it is significant to monitor the vegetation growth of protected areas. In addition
to field surveys, remotely sensed measures have become an effective technology in vege-
tation monitoring [15–23]. However, remote sensing of vegetation in mountain environ-
ments is notoriously difficult, due to the anisotropic nature of spectral variation caused
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by the topographic effect [24,25]. Therefore, the topographic effect should be corrected
when monitoring the vegetation of rugged mountains using remote sensing [26,27]. In
the past decades, many topographic correction methods have been developed, such as
cosine correction [28–30], C-correction [28], sun–canopy–sensor (SCS) correction [31,32],
SCS+C correction [33,34], Minnaert correction [35], the adaptive shade compensation (ASC)
model [36], the Gamma method [37], the Sandmeier model [38], the Santini model [39], the
BRDF-based atmospheric and topographic correction (BRATC) model [40], the approach
based on path length correction (PLC) [41], and the four-scale bidirectional reflection model
of the slope geometric optical model [42,43]. In addition to these digital elevation model
(DEM)-based empirical and physical topographic correction methods, spectral feature
approaches in the form of vegetation indices have also been studied, such as the modified
enhanced vegetation index [44] and the shadow-eliminated vegetation index (SEVI) [45].
The SEVI successfully removes the under-illuminated effect in the topographic shadows
of rugged mountains, specifically in cast shadows, where the under-illuminated effect is
difficult to eliminate using conventional topographic correction methods based on DEM.
Cast shadows are derived from the obstructing of solar direct irradiance from a higher
mountain, otherwise they are sunny areas. Indeed, we planned to use the SEVI to monitor
the vegetation of protected areas in rugged mountains. In practical applications with the
SEVI, the adjustment factor plays an important role in balancing the under-elimination
or over-elimination of terrain shadows. The proposed calculation algorithm, using the
coefficient of correlation (r-algorithm), requires careful selection of a typical subarea with
prominent terrain shadows and a green vegetation cover symmetry between shaded and
sunny hillsides [45], so it depends on the expertise and manual operation. Using the
r-algorithm requires a great deal of time for the selection of typical subareas from multi-
scene remote-sensing images for large areas of rugged mountains, e.g., the mountainous
areas in South China. Aiming to reduce the manual operation and time requirements, we
considered developing a new calculation algorithm to achieve the best adjustment factor
for every scene image to auto-detect the typical subarea. Information entropy is a quanti-
tative measurement of the uncertainty of an outcome in a probabilistic event [46]. It has
been widely used in ecological complexity and sustainability studies, as well as in remote-
sensing image classification [47–50]. Thus, the SEVI was considered for improvement using
topographic slope and information entropy of the vegetation index to auto-detect typical
rugged blocks (subareas) and achieve the best adjustment factor from a block where the
SEVI obtains the highest information entropy in an entire scene, which is better than the
manual selection of a rugged subarea for comparison of the coefficient of correlation using
the r-algorithm. Therefore, the objectives in this study were to (1) develop a new calculation
algorithm using information entropy and blocks to replace the r-algorithm to achieve the
best adjustment factor for a scene of SEVI calculation; and (2) monitor and analyze the
vegetation of protected areas in rugged mountains using the improved SEVI.

2. Study Areas and Data
2.1. Study Areas

The study areas of three national protected areas in Fujian Province, China were se-
lected, the Meihuashan National Nature Reserve (MHS), the Minjiangyuan National Nature
Reserve (MJY), and Wuyishan National Park (WYS) (Figure 1). They are located in a typical
subtropical monsoon climate zone. The elevation and the slope of these protected areas are
listed in Table 1. MHS (25◦15′14′′–25◦35′44′′N, 116◦45′25′′–116◦57′33′′E) was established
in September 1988 and is located in the southwest of Fujian Province, covering an area of
221.68 km2. It has an annual precipitation of 1700 mm–2000 mm and an annual temperature
of 13 ◦C–18 ◦C. MJY (25◦35′47′′–26◦49′56′′N, 116◦46′41′′–116◦59′24′′E) was established in
February 2006 and is located in the west of Fujian Province, covering an area of 130.22 km2.
It has an annual precipitation mean of about 1775 mm and an annual temperature mean of
approximately 16.7 ◦C. WYS (27◦31′20′′–27◦55′49′′N, 117◦24′12′′–117◦59′19′′E) is located
in the north of Fujian Province and was established in September 2021. It was developed
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from the Wuyishan National Nature Reserve (WYSr), which was set up in April 1979 and
joined the International Man and Biosphere Reserve Network of UNESCO in 1987 [51–53].
WYS covers an area of 1027.8 km2, has an annual precipitation mean of more than 2000 mm,
and an annual temperature mean of approximately 12 ◦C; it is famous for its majestic
mountainous appearance and biodiversity.

Remote Sens. 2022, 14, x FOR PEER REVIEW 3 of 16 
 

 

temperature mean of approximately 16.7 °C. WYS (27°31′20″–27°55′49″N, 117°24′12″–

117°59′19″E) is located in the north of Fujian Province and was established in September 

2021. It was developed from the Wuyishan National Nature Reserve (WYSr), which was 

set up in April 1979 and joined the International Man and Biosphere Reserve Network of 

UNESCO in 1987 [51–53]. WYS covers an area of 1027.8 km2, has an annual precipitation 

mean of more than 2000 mm, and an annual temperature mean of approximately 12 °C; it 

is famous for its majestic mountainous appearance and biodiversity. 

 

Figure 1. Location of the three protected areas: The Meihuashan National Nature Reserve (MHS), 

Minjiangyuan National Nature Reserve (MJY), and Wuyishan National Park (WYS) (red shapes), 

sample areas (red points), and samples (yellow points) in two scenes of Landsat 8 Operational Land 

Imager (OLI) images (Path/Row of 120/41 and 120/42, red–green–blue (RGB) composite). 

Table 1. Solar angles of Landsat 8 OLI images and topographic factors of the protected areas of 

MHS, MJY and WYS. 

Path/Row Sun Azimuth (°) Sun Elevation (°) Reserve Located Elevation (m) Slope (°) 

120/42 152.56 46.84 
MHS 224~1842 0~71.3 

MJY 250~1858 0~73.0 

120/41 153.57 45.66 WYS 138~2160 0~73.5 

2.2. Data 

Two scenes from Landsat 8 Operational Land Imager (OLI) multi-spectral images 

(Path/Row of 120/41 and 120/42) with a 30-m spatial resolution, acquired on 28 October 

2018, were downloaded from the Geospatial Data Cloud site, Computer Network Infor-

mation Center, the Chinese Academy of Sciences (http://www.gscloud.cn, accessed on 13 

May 2021). The sun azimuth and elevation of these images are listed in Table 1. The 30-m 

Advanced Spaceborne Thermal Emission and Reflection Radiometer Global Digital Ele-

vation Model Version 2 (ASTER GDEM V2) was also obtained from the same website. The 

image digital number (DN) was transformed into radiance using the band gain and bias 

provided by the image metadata, and the physical parameters of the surface reflectance 

Figure 1. Location of the three protected areas: The Meihuashan National Nature Reserve (MHS),
Minjiangyuan National Nature Reserve (MJY), and Wuyishan National Park (WYS) (red shapes),
sample areas (red points), and samples (yellow points) in two scenes of Landsat 8 Operational Land
Imager (OLI) images (Path/Row of 120/41 and 120/42, red–green–blue (RGB) composite).

Table 1. Solar angles of Landsat 8 OLI images and topographic factors of the protected areas of MHS,
MJY and WYS.

Path/Row Sun Azimuth (◦) Sun Elevation (◦) Reserve Located Elevation (m) Slope (◦)

120/42 152.56 46.84
MHS 224~1842 0~71.3

MJY 250~1858 0~73.0

120/41 153.57 45.66 WYS 138~2160 0~73.5

2.2. Data

Two scenes from Landsat 8 Operational Land Imager (OLI) multi-spectral images
(Path/Row of 120/41 and 120/42) with a 30-m spatial resolution, acquired on 28 October
2018, were downloaded from the Geospatial Data Cloud site, Computer Network Infor-
mation Center, the Chinese Academy of Sciences (http://www.gscloud.cn, accessed on
13 May 2021). The sun azimuth and elevation of these images are listed in Table 1. The
30-m Advanced Spaceborne Thermal Emission and Reflection Radiometer Global Digital
Elevation Model Version 2 (ASTER GDEM V2) was also obtained from the same website.
The image digital number (DN) was transformed into radiance using the band gain and
bias provided by the image metadata, and the physical parameters of the surface reflectance

http://www.gscloud.cn
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(ρ) were obtained using the atmospheric correction of the fast line-of-sight atmospheric
analysis of spectral hypercubes (FLAASH).

3. Methods

We developed a new calculation algorithm using block information entropy (BIE-
algorithm) to calculate an improved SEVI that includes slope resampling, block detection,
SEVI calculation, information entropy comparison, and adjustment factor selection. After
the performance evaluation of the SEVI, computed using the BIE-algorithm, the vegetation
of protected areas was monitored and analyzed using the improved SEVI (Figure 2).
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Figure 2. Flow chart of a new algorithm to calculate the improved SEVI using block information
entropy (BIE-algorithm) and vegetation monitoring and analysis of protected areas.

3.1. BIE-Algorithm Development

We supposed that if green vegetation in rugged terrain is homogeneous, then the
information entropy of SEVI in rugged terrain would be increased when the topographic
effect is eliminated. Once the topographic effect is completely removed, the information
entropy of SEVI reaches its maximum, which is a low percentage event. Then, we designed
the processing procedure of the BIE-algorithm as follows. First, the slope calculated from
the DEM of the 30-m spatial resolution is resampled to a 6-km resolution. The pixels of
the 1% highest slope of the 6-km resolution are extracted as blocks. Second, the SEVI is
calculated using the surface reflectance of the red band and near-infrared (NIR) band with
an adjustment factor (Formula (1)), and the information entropy of SEVI in every block is
calculated (Formulas (2) and (3)). The optimized adjustment factor for a block is achieved
when the information entropy of SEVI achieves its maximum value (Formula (4)). Finally,
the best adjustment factor for a scene is obtained from the block that achieves the highest
information entropy of SEVI among the blocks (Formula (5)).

SEVI =
ρnir
ρr

+ f (∆)· 1
ρr

, (1)

H = −∑n
i=1 pi·ln(pi)

ln(n)
, (2)

pi =
xi

∑n
i=1 xi

,
n

∑
i=1

pi = 1, 0 < pi < 1, (3)

fb = argmax(H), f (∆) ∈ (0.001, 1.000), (4)

fs = argmax(Hb), f (∆) ∈
(

fbj, j = 1, . . . , m
)

, (5)

where ρnir is surface reflectance of the near infrared band, ρr is surface reflectance of the
red band, f (∆) is the adjustment factor, H is the information entropy of SEVI in a block, pi
is the percentage of a pixel SEVI value in a selected block, xi is a pixel value of SEVI, n is
the number of pixels in a selected block, fb is an optimized adjustment factor for a block, fs
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is the best adjustment factor for a whole scene, Hb is the maximum information entropy of
SEVI in a block, and m is the number of selected blocks in an entire scene image.

3.2. Performance Evaluation

The idea of using the BIE-algorithm was to improve the SEVI calculation, therefore we
used the SEVI performance in the removal of the topographic effect to evaluate the BIE-
algorithm’s effectiveness. First, two SEVI scenes were achieved using the best adjustment
factors calculated by the BIE-algorithm. Since illumination conditions change along with
the seasonal sun zenith angle [54], the SEVI images were normalized using Formula (6) to
develop the improved SEVI of the study, and the intersected area between the two SEVI
scenes was used to verify SEVI mosaic accuracy. As a comparison, the conventionally used
normalized difference vegetation index (NDVI) was computed (Formula (7)). In addition,
the cosine of the solar incidence angle (cos i) was also computed and used for accuracy
validation of the topographic correction. Thus, the evaluation data included surface
reflectance, SEVI, NDVI, and cos i. Second, 223 sets of evaluation samples (yellow points in
Figure 1) were randomly selected from two scenes of images to assess the performance of
the SEVI (BIE-algorithm) in the removal of the topographic effect. Considering Tobler’s
first law of geography (TFL) [55], every set of evaluation samples, including three types of
self-shadow, cast shadow, and sunny area, were selected from the closely located pixels of
homogenous vegetation cover. The samples were confirmed with the aid of higher-spatial-
resolution images from Baidu Maps and GF-2. Finally, the specific methods of vision
analysis, box plot, the mean, the relative error of shaded area vs. sunny area (Formula (8)),
and scatter plots of vegetation indices vs. cos i were used in the evaluation.

SEVI′ =
SEVI − SEVImin

SEVImax − SEVImin
, (6)

where SEVI′ is the normalized SEVI, SEVImin is the minimum SEVI of an entire scene,
and SEVImax is the maximum SEVI of an entire scene.

NDVI =
ρnir − ρr

ρnir + ρr
, (7)

Er =
xsha − xsun

xsun
× 100%, (8)

where Er is the relative error, xsha is the vegetation indices’ mean of shadow samples, such
as the cast shadow and self-shadow, and xsun is the vegetation indices’ mean of sunny
area samples.

3.3. Vegetation Monitoring and Analysis

We used the normalized improved SEVI to monitor and analyze the vegetation distri-
bution of the three protected areas. Mosaicked SEVI was used as the regional background
(BGD) to compare with the SEVI of protected areas. In order to better illustrate the spatial
distribution of vegetation in the vision, the achieved SEVI was graded into eight levels
using an interval of 0.125, and the normalized SEVI and graded SEVI of the protected
areas were clipped and zoomed in. Then, the transverse comparison method was used to
discover the vegetation distribution characteristics of these protected areas. The specific
comparison methods included a histogram, mean, and box plot. Considering the size
differences between the three protected areas, a histogram of pixel percentage replaced
that of the pixel number. In addition, we used the SEVI of buffer zones (SEVIb), years of
establishment, and the topographic factors of protected areas as the basic influence factors
to further analyze the vegetation of these protected areas. The surrounding buffer zone
was set as twice the size of the corresponding protected area.
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4. Results
4.1. Block and Adjustment Factor

The resampled slope image with a 6-km spatial resolution showed that the majority of
blocks were located in WYS and four blocks were close to MHS; however, MJY remained
away from the blocks (yellow pixels of blocks and red shapes of protected areas in Figure 3a).
After calculation of the information entropy of the SEVI in the blocks, the optimized
adjustment factor for every block was obtained from the peak of the maximum entropy
(shown in Figure 3b). Then, the best adjustment factor for each scene of the Landsat 8 OLI
image was achieved from the block that obtained the highest information entropy of the
SEVI (Figure 3c). Finally, we determined that the best adjustment factors were 0.048 for the
Landsat 8 OLI image of 120/41 and 0.056 for the Landsat 8 OLI image of 120/42 using our
developed BIE-algorithm, and we used them to calculate the SEVI results.
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Figure 3. Blocks and adjustment factors: (a) Blocks (yellow pixels) in slope image with 6-km spatial
resolution; (b) optimized adjustment factor for a block, marked in red circle; (c) best adjustment
factors for two scenes of Landsat 8 OLI images, marked in red circles.

4.2. Performance of BIE-Algorithm

The two mosaicked scenes of the SEVI were obtained (Figure 4a), and 500 correspond-
ing points were randomly selected from the intersected area (yellow points in Figure 4a).
Linear regression of these points showed a high matching accuracy with an inclination of
0.9897 and a coefficient of determination (r2) of 0.9995 (Figure 4c). The six sample areas were
randomly selected from the calculated improved SEVI results and clipped for zoom-in (red
points in Figure 1 and images in Figure 5). The sample images of the red–green–blue (RGB)
composite showed that the topographic effect was prominent with relief and topographic
shadows before topographic correction. However, the SEVI sample images exhibited an
overall flat feature, with relief impressions that were drastically removed. As for NDVI,
the sample images still had a relief effect with fragmentized shadows. A box plot of the
samples showed that the SEVI achieved balanced values among the three types of samples,
sunny area, self-shadow, and cast shadow, and their SEVI means were 0.73, 0.77, and 0.75,
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respectively (Figure 6a). However, the NDVI of the shadows was less than that of the
sunny area, and the NDVI mean of the sunny areas was 0.75, while those of the self-shadow
and cast shadow were 0.36 and 0.40, respectively. The relative SEVI errors of self-shadow
and cast shadow (vs. sunny area) were only 4.99% and 1.84%, respectively (Figure 6b).
However, the NDVI relative errors of self-shadow and cast shadow were −51.44% and
−46.26%, respectively. Scatter plots of the vegetation indices vs. cos i showed that the
linear regression of SEVI vs. cos i was nearly horizontal, with an inclination of −0.0207 and
an r2 of 0.0042 (Figure 7a). The points were distributed in a concentrated way, evenly on
both sides of the regression line. However, the linear regression of NDVI vs. cos i had an
inclination of 0.3484 and an r2 of 0.3104, and the points were dispersed (Figure 7b). The
performance of the SEVI in the removal of the topographic effect in rugged mountain areas
verified that the BIE-algorithm was effective in the calculation of an accurate SEVI.

4.3. Vegetation Distribution

The regional vegetation in the form of the SEVI and graded SEVI is shown in Figure 4,
in which the graded SEVI showed a better visualization of the vegetation distribution
(Figure 4b). It was shown that the three protected areas had high SEVI, from about 0.625
to 1.000. The clipped visible image, SEVI, and graded SEVI of the three protected areas
displayed vegetation distributions and characteristics in detail (Figure 8). The visible
image of protected areas had a strong relief effect with prominent fragmentized shadows,
specifically in the WYS image. However, the SEVI exhibited an overall flat feature with the
impression of relief removed. The graded SEVI showed the green level sequence of three
protected areas as WYS > MHS > MJY, with the dominant color changing from dark green
to bright green and blue. Specifically, the east corner of WYS was located mainly due to its
medium SEVI in blue, and MJY was surrounded by low SEVI in yellow and brown.

The histograms of the SEVI percentage showed that MJY and MHS had nearly normal
distributions with one peak (blue and green lines in Figure 9a); however, WYS and BGD had
two peaks (red and black lines in Figure 9a), i.e., a bimodal distribution. The SEVI means of
the three protected areas and BGD showed a sequence of WYS (0.718) > MHS (0.672) > MJY
(0.624) > BGD (0.572) (Table 2), which were in accordance with the green level sequence in
Figure 8. Specifically, the SEVI histogram of the WYSr, as the precursor of the WYS, was
also normally distributed with one peak (red dotted line in Figure 9a) and the SEVI mean
reached 0.736. In addition, the box plot showed the same sequence of the SEVI medium,
and the interval ranged from quarter 1 to quarter 3 (Figure 9b). These SEVI distribution
characteristics indicated that the protected areas achieved a higher abundance and activity
of green vegetation than the regional background, and three protected areas showed a
sequence of WYS > MHS > MJY. In contrast, the histograms of the NDVI percentages of the
three protected areas and BGD showed only one peak, and the means of NDVI showed an
abnormal sequence of MHS (0.695) > WYS (0.686) > MJY (0.671) > BGD (0.658) (Figure 9c).
Meanwhile, the histogram and box plot of NDVI were compressed, which decreased the
discriminations among the three protected areas (Figure 9c,d).
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Figure 8. The visible image, and the SEVI and graded SEVI of protected areas: (a) MHS; (b) MJY;
(c) WYS (red shape for national park, pink shape for national nature reserve).

The SEVI means of buffer zones (yellow shapes in Figure 4a,b) and years of establish-
ment of protected areas showed the same sequence of the three protected areas, WYS >
MHS > MJY (Table 2). Among the three protected areas, WYS achieved the highest SEVI
means in the protected area and buffer zone, with 0.718 and 0.648, respectively, the steepest
topographic slope with a mean of 26.8◦, and the longest years of establishment at 39 years
(from 1979 to 2018). As for MJY and MHS, their slope mean was approximate; however, the
SEVI mean of the buffer zone and the years of establishment were different. Apparently,
the vegetation growth in the protected areas was influenced by the establishment years of
the protected area, the terrain slope, and the buffer zone.

Table 2. SEVI mean of protected area and buffer zone (SEVIb), slope mean, and years of establishment
of protected area.

Protected Areas SEVI SEVIb Slope Mean (◦) Years

MHS 0.672 0.642 22.25 20
MJY 0.624 0.577 22.35 12
WYS 0.718 0.648 26.80 39
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5. Discussion
5.1. BIE-Algorithm

Considering the spectral features and topographic characteristics of rugged mountain
areas, we developed the BIE-algorithm to improve the calculation of the best adjustment
factor for SEVI. The BIE-algorithm was an improvement in locating a rugged subarea from
manual selection to auto-detection by block searching. It did not need visual checking of the
spectral features of rugged terrain by manual inspection, e.g., checking prominent terrain
shadows. In addition, the block is fixed since the slope of the mountain is permanent unless
intense mountain movement, such as an earthquake, occurs. A block size of 6 × 6 km2 is
an empirical parameter, which is based on the conventional difference in the height and
slope length from the top of the mountain to the base. This size of the block covers some
sunny areas and shaded areas and helps to analyze the spectral feature of rugged terrain
to obtain an optimized adjustment factor. The square shape of the block is a benefit to
slope resampling at a high spatial resolution to a low resolution and for the clipping of
remote sensing images with minimum noise or abnormal pixels, which is better for the
subsequent calculation of vegetation indices and information entropy. The new calculation
algorithm was also an improvement in the use of information entropy to evaluate SEVI of
blocks and to obtain the best adjustment factor for an entire scene image. The information
entropy provides a suitable and universal indicator to obtain the optimal adjustment factor
for a block by judging the information entropy of SEVI, and to further select the best
adjustment factor for a whole scene from the block that achieved the largest information
entropy. However, the homogeneous distribution of vegetation in a block is a precondition
for the BIE-algorithm, which is influenced by many factors, such as the actual vegetation
types, block size, and shape. In the next step, the proposed BIE-algorithm is used to obtain
the regional SEVI from multi-scenes images, e.g., the SEVI of South China.
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5.2. SEVI Feature

The feature of SEVI in the removal of the topographic effect in rugged mountains
is useful in monitoring vegetation distributions of protected areas in rugged terrains.
In this study, the vegetation-level sequence of three national protected areas, Wuyishan
National Park > Meihuashan National Nature Reserve > Minjiangyuan National Nature
Reserve, was obtained using SEVI, rather than the abnormal sequence of Meihuashan
National Nature Reserve > Wuyishan National Park > Minjiangyuan National Nature
Reserve using the frequently applied NDVI. Since Wuyishan National Park has a steeper
rugged terrain than the Meihuashan National Nature Reserve and the Minjiangyuan
National Nature Reserve, e.g., the slope mean of Wuyishan National Park reaches nearly
27◦, the under-illuminated effect of Wuyishan National Park is greater than that of the
two other protected areas. The vegetation level monitored by NDVI was decreased due
to the under-illuminated effect of the topographic shadow areas. The SEVI is able to
remove the under-illuminated effect of topographic shadows, therefore it is more suitable
for monitoring the vegetation distribution of protected areas in rugged mountains and
obtaining the correct vegetation level sequence of protected areas. In addition, it is a
significant precondition to acquiring remote-sensing images on the same day for contrast
vegetation of the protected areas using transverse comparison methods, since phenology
strongly influences the water, carbon, and energy fluxes of vegetation [56–58]. In this study,
we downloaded 13 scenes of Landsat 8 OLI images that covered all protected areas in
the Fujian Province of China; however, only two scenes acquired on the same day were
finally used due to the phenology effect. Though the number of protected areas was
decreased to three in these two scenes, the vegetation phenology and solar angles were
kept consistent among the three protected areas. Therefore, we could use the transverse
comparison method to discover the vegetation distribution characteristics of these three
protected areas using the SEVI, when the conditions of the sensor, solar, atmospheric, and
topographic effects were kept the same for the three protected areas. In the next step, we
will study and compare more protected areas using data with the same conditions of the
sensor, solar, phenology, atmosphere, and topography. Meanwhile, the normalization of
SEVI from different solar conditions and/or sensors will be studied when multi-source
remote-sensing images are used to monitor regional vegetation distribution and changes.

5.3. Vegetation of Protected Areas

It is significant to study the vegetation in protected areas where vegetation grows
naturally with minimal eco-society environmental stress from human beings. In this
study, vegetation in the form of SEVI showed that protected areas achieved a higher
abundance and activity of green vegetation than the corresponding regional area. The
regional SEVI of these two mosaicked scenes showed a bimodal histogram, since this
region covers many areas with a low SEVI value in the second peak, e.g., water, rock,
farmland, buildings, and roads, in addition to the predominant forest as a high SEVI value
in the main peak. Farmland, buildings, and roads are the result of environmental stress
from anthropogenic activities. Although the vegetation of Wuyishan National Park also
showed a bimodal histogram SEVI, it achieved the highest SEVI mean among the three
protected areas. The Wuyishan National Park expanded from the Wuyishan National
Nature Reserve and included a traditional utilization area and ecological restoration area,
which humans developed for tours and cash crops, such as the Wuyishan Scenery District,
rock tea, buildings, and roads. However, the vegetation of the three national nature reserves
of Wuyishan, Meihuashan, and Minjiangyuan showed a nearly normal distribution of the
SEVI histogram, which indicated that a low SEVI of water, rock, farmland, buildings, and
roads was scarce in these areas, i.e., they suffered minimal external human disturbances.
Wuyishan National Park achieved the highest SEVI mean; however, the Minjiangyuan
National Nature Reserve obtained the lowest SEVI mean among the three protected areas.
These vegetation distribution characteristics were influenced by many interior and exterior
factors, e.g., the rugged terrain and years of establishment of the protected areas, and the
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human activities in the surrounding buffer zones. Therefore, it is vital to establish protected
areas in remote rugged mountains as early as possible, where vegetation grows naturally
with minimal influence from anthropogenic activities. Considering the limited data used in
the vegetation analysis in this study, in the next step, we will further study the vegetation
in protected areas using time-series images and more parameters, e.g., classified vegetation
categories [12], biophysical parameters, landscape indices, and carbon sink. Meanwhile,
the data from exterior influence factors of meteorology [59,60], economy, and society will
be discussed. In addition, new actions taken by the Wuyishan National Park, in terms of
vegetation protection and regional eco-society sustainable development, will be compared
to its precursor, the Wuyishan National Nature Reserve.

6. Conclusions

We developed a new calculation algorithm using block information entropy to auto-
detect typical subareas of rugged terrain and achieve the best adjustment factor for the
calculation of the shadow-eliminated vegetation index. A regional mosaicked SEVI com-
puted from two scenes of Landsat 8 OLI images using the BIE-algorithm was verified
as having a high performance in the removal of the topographic effect. Vegetation mon-
itoring and analysis of the three protected areas using the improved SEVI showed that
the vegetation-growth-level sequence was Wuyishan National Park > Meihuashan Na-
tional Nature Reserve > Minjiangyuan National Nature Reserve > regional background.
Vegetation growth and protection were influenced by rugged terrain and the years of
establishment of the protected area and the surrounding buffer zone. It is important to
establish protected areas in remote rugged mountains as early as possible for local vegeta-
tion growth and preservation. The improved SEVI with the BIE-algorithm is able to use
vegetation assessment, classification, mapping, and biophysical parameters in retrieving
large areas of rugged mountains. As the next step, we will consider developing a small
program to facilitate our improved SEVI with the developed BIE-algorithm for future study
and applications.
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