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Section S1. Field Boundary Delineation 
Field boundary delineation was completed using a very-high-resolution satellite im-

age (one scene of a Planetscope image (3 m resolution) obtained on 30 August 2019) in the 
Feature Extraction (FX) module in ENVI software. In this study we used texture infor-
mation to optimize the segmentation parameters. Such optimization is required because, 
by trial and error, we found that segmentation accuracy is mainly affected by the scale 
level parameter in the FX module. The challenge is that the best scale level values for in-
dividual fields are different, which means using a uniform scale level over the entire re-
gion is impractical. Besides, the best scale level values for individual fields show large 
spatial variability within a small region (e.g., fields within one farm may have different 
preferences of parameters), making it hard to divide the image into subregions through 
similar parameter values and apply segmentation separately.  

To solve this problem we adopted an idea from Xu et al. [40], who suggested using 
texture information to inform segmentation parameter selection. The processes to select 
the best scale level values for individual fields are summarized as follows: 

1. We developed four sets of parameters with scale level within a feasible range 
(scale level = 50, 60, 70 and 80, respectively). Another key parameter, merge 
level, was fixed to 90, and the rest of the parameters were fixed to the default 
values in the FX module. These four sets of parameters led to four different 
segmentation layers.  

2. We calculated the texture variables—gray-level co-occurrence matrices 
(GLCMs)—for individual fields for four different layers separately. The 
GLCM contains variables such as the mean, variance, homogeneity and en-
tropy. The calculations were completed based on the Planetscope image us-
ing the “glcm” package in R [54]. 

3. We selected a small set of testing samples (fields) to explore the relationship 
between GLCM variables and scale level. Specifically, we visually selected 
approximately 50 to 60 polygons with satisfactory segmented boundaries 
from each segmentation layer. The scale level values of these testing samples 
were plotted against their corresponding GLCM variables. Among all the 
GLCM variables, we found that GLCM variance has a strong positive corre-
lation with scale level (Figure S1), indicating its capability to inform the best 
scale level values for individual fields.  

4. We used the upper and lower bounds of the GLCM variance boxplot (Table 
S1) as thresholds to inform the best scale level for individual fields. This al-
lows each field to obtain its segmented boundary from one of the four seg-
mentation layers based on its field-averaged GLCM variance. The bounda-
ries of individual fields were finally merged into a field boundary layer.  
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5. Although texture information helped to improve segmentation accuracy, 
there was still a small number of fields (approx. 10%–15%) which had bound-
aries that could not be delineated accurately. 

 
Figure S1. The boxplots of GLCM variance values for testing samples selected from four segmenta-
tion layers (scale level = 50, 60, 70 and 80, respectively). 

Table S1. The rules to select the best scale level using GLCM variance. 

GLCM Variance Scale Level 
<37 50 

37–66 60 
66–85 70 
>85 80 

Manual corrections were applied after automatic segmentation. The final field 
boundary layer for the whole district is shown in Figure S2. 
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Figure S2. The final field boundary layer for the CIA. 

Section S2. Ground-Truth Samples Collection and NDVI Metrics Used in Method Two 
To visually interpret static training samples we first downloaded the monthly false-

color composites (band 5-4-3) at the peak cropping season of summer and winter (January 
and August). We randomly selected fields that are displayed in bright red as “irrigated 
cropping and pasture” samples and fields that are displayed in green as “bare soil” sam-
ples. Fields with a transit color between red and green were considered as rainfed crops, 
some types of perennial crops or fallow land with weeds, which were marked as “un-
known”. NDVI time series were used to further confirm the class of marked samples. In-
itial “irrigated cropping and pasture” samples that maintain a high NDVI without fluctu-
ation across the season were considered as perennial plantations; therefore, they were re-
marked as “perennial plantation”. 

Dynamic samples were drawn from Google Earth imagery according to the unique 
features of nonirrigated grazing land and forests (Figure S3). This was achieved by draw-
ing polygons over homogenous grazing land and forest areas. 
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Figure S3. Landscape characteristics of nonirrigated grazing land (A) and wild forest (B) on Google 
Earth imagery. 

Table S2 shows the number of validation samples in each class. 

Table S2. The number of validation samples in each class. 

  
Irrigated 

Cropping/Pasture Bare Soil 
Nonirrigated 

Grazing 
Land 

Forest 
Perennial 

Plantations Unknown 

Summer 

2011–2012 97 202 - - 13 41 
2012–2013 118 194 - - 9 23 
2013–2014 80 210 - - 11 20 
2014–2015 98 202 - - 9 27 
2015–2016 70 228 - - 8 45 
2016–2017 114 209 - - 11 30 
2017–2018 108 164 - - 10 67 

Winter 

2011–2012 63 101 46 61 3 22 
2012–2013 111 30 46 61 1 41 
2013–2014 103 55 46 61 3 49 
2014–2015 92 29 46 61 3 39 
2015–2016 47 41 46 61 3 58 
2016–2017 110 32 46 61 3 53 
2017–2018 51 78 46 61 3 28 

The detailed descriptions of NDVI metrics used in method two ( random-forest-based 
method) are shown in Table S3. 

Table S3. NDVI metrics used in method two. 

Feature Name Description  
MAX The maximum NDVI value across a season1 

RANGE The maximum NDVI minus the minimum NDVI. Note: if 
the minimum NDVI is less than 0.2, use 0.2 

MIN The minimum NDVI value across a season 1 
Monthly_NDVI Raw values of monthly maximum NDVI 

Average_max 
The average of the first three max NDVI values within a 

season 1 
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Monthly_above_thres 
A series of logical numbers to describe if the monthly 
NDVI value is above the threshold (0.6). If the value is 

greater than the threshold, returns 1; otherwise, 0  

Quantile_0.8_time 

One value that indicates the month(s) when the NDVI is 
above the 0.8 quantile of the total monthly NDVI across a 

season. The month is described using an index (e.g., in 
winter classification, Mar = 1, Apr = 2… Nov = 9). If 

multiple months are selected, use the mean of the index  

Quantile_0.2_time 

One value that indicates the month(s) when the NDVI is 
below the 0.2 quantile of the total monthly NDVI across 

the season. The month is described using the index (e.g., in 
winter classification, Mar = 1, Apr = 2… Nov = 9). If 

multiple months are selected, use the mean of the index  

Peak_Over_0.8 
Number of months when the monthly NDVI is greater 

than 0.8 

Peak_Over_0.7 Number of months when the monthly NDVI is greater 
than 0.7 

Peak_Over_0.6 Number of months when the monthly NDVI is greater 
than 0.6 

Peak_Over_0.5 
Number of months when the monthly NDVI is greater 

than 0.5 

Largest_growth_rate 
The maximum NDVI growth rate, which is defined as the 

difference of two neighboring monthly NDVI values 
(NDVIi+1-NDVIi) 

Diff_2_3 The difference between the second largest monthly NDVI 
and the third largest monthly NDVI 

1 Maximum NDVI is extracted from December to February for summer and from June to October for winter. 

Section S3. Gaussian Mixture Model (GMM) Results 
Figure S4 and Figure S5 show the GMM clustering results for summer and winter, 

respectively. The cluster number (k) is between 2–9. The analyses were completed using 
the “mclust” package in R [46].  
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Figure S4. The Gaussian mixture model clustering with k components on the seasonal maximum 
NDVI in summer. k is determined by Bayesian inference criteria (BIC). 

 
Figure S5. The Gaussian mixture model clustering with k components on the seasonal maximum 
NDVI in winter. k is determined by Bayesian inference criteria (BIC). 
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Section S4. Classification Maps 

 

 
Figure S6. Classified irrigated field mapping from 2012–2013 to 2015–2016. 


