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Abstract: Terrestrial laser scanning of forest structure is used increasingly in place of traditional
technologies; however, deriving physical parameters from point clouds remains challenging because
LiDAR returns do not have defined areas or volumes. While voxelization methods overcome this
challenge, estimation of canopy gaps and other structural attributes are often performed by reducing
the point cloud to two-dimensions, thus decreasing the fidelity of the data. Furthermore, relatively
few studies have evaluated voxel-size effects on estimation accuracy. Here, we show that voxelized
laser-scanning data can be used for canopy-gap estimation without performing dimensionality
reduction to the point cloud. Both airborne and terrestrial LiDAR were used to estimate canopy gaps
along six vertical transects and four height intervals. Voxel-based estimates were evaluated against
hemispherical photography and a sensitivity analysis was performed to identify an optimal voxel
size. While the results indicate that our approach can be used with both airborne and terrestrial
LiDAR, voxel size has a considerable influence on canopy-gap estimation. Results from our sensitivity
analysis indicate that TLS estimation performs best when using 10 cm voxels, yielding canopy gaps
ranging from 32–78%. The optimal voxel size for ALS estimation was obtained with 25 cm voxels,
yielding estimates ranging from 25–68%.

Keywords: airborne laser scanning; terrestrial laser scanning; gap fraction; vegetation structure;
vegetation occlusion; hemispherical photography; point cloud data; scaling; long-leaf pine

1. Introduction

Canopy structure is an important ecosystem trait that governs the spatial and tem-
poral distribution of light transmittance, impacting the composition, distribution, and
productivity of the mid- and understory plant community. Accurately measuring and
quantifying three-dimensional (3D) structural arrangement is indeed a long-standing and
ever advancing subject that is foundational to many scientific investigations—especially
relevant to dendrometry, allometry, and biomass estimation [1–4], light transmittance es-
timation [5–8], and wildland fire science [9–12]. In practice, canopy structure is typically
measured indirectly using both passive and active remote sensing because direct sampling
methods can be laborious, time consuming, and destructive. Passive remote-sensing data
are commonly acquired using hemispherical photography (DHP) or light interception
instrumentation [5,13,14]; however, these methods are sensitive to environmental lighting
conditions, exposure settings, image processing, and gamma correction [15]. Structural
estimates derived from hemispherical photography are often not comparable within and
among studies due to differing lighting conditions, non-standardized exposure settings,
and non-standardized binarization or “thresholding” methods applied during image pro-
cessing [16]. For example, Beckschäfer and colleagues [17] reported that gap fraction values
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obtained using automatic exposure settings could be 900% higher than overexposed im-
ages, as recommended by Wagner [18]. Furthermore, passive remote sensing is not capable
of measuring vertical structure (i.e., height), and therefore cannot provide information
regarding the three-dimensional arrangement of vegetation [17].

Particularly relevant to the subject of this analysis is the application of active remote
sensing technology for the estimation of canopy gaps (CG)—or openness—which has
been defined as the fraction of sky view not obstructed by vegetation in the canopy. Laser
scanning, or LiDAR (Light Detection And Ranging), overcomes many of the aforementioned
limitations by using an energy source in the form of pulsed laser beams to actively detect
and retrieve geo-located information with high precision and accuracy, independent of
natural light conditions [19,20]. Unlike optical sensing methods, LiDAR allows for 3D
imaging, using many laser pulses in close proximity to generate a 3D point cloud.

To date, most LiDAR-derived structural assessments for forestry applications have
been conducted with airborne laser scanning (ALS), which typically combines low-flying
aerial platforms with discrete return, high pulse rate (1000–10,000 Hz), and small-footprint
(5–30 cm diameter) LiDAR systems. ALS has been used to estimate canopy gaps by using
the penetration rate of LiDAR pulses [21], the intensity of LiDAR returns [22], and the
intensity of returns in conjunction with return counts [23]. While ALS is widely accepted for
forest-level assessments due its ability to rapidly retrieve sub-meter resolution information
across large spatial scales, measuring sub-canopy structure remains a challenge due to its
“bird’s eye” view of the landscape, occlusion from overstory vegetation, and relatively
low-density point clouds [24].

In recent decades, ground-based or terrestrial laser scanning (TLS) has attained
widespread adoption for plot-level assessments due to its ability to detect and measure
structures that are not apparent in ALS, such as stems and branches. While TLS is gen-
erally restricted to plot-level assessments due to laser range limitations and occlusion, it
provides millimeter-level-accuracy point clouds—often several orders of magnitude larger
than ALS point-cloud data for the same area sampled. Occlusion can be minimized by
registering and merging scans from multiple locations to better characterize vegetation
structure; however, near-range objects are sampled at a higher frequency than far-range
objects due to the scanning geometry of TLS, creating a proximity sampling bias. This bias
can be mitigated by using a voxel-based approach, which not only provides an estimate of
the space occupied by vegetation, but normalizes the point-density distribution of LiDAR
returns within the point cloud while simultaneously reducing data redundancy and thus
file size [25].

Two methods are commonly utilized for TLS-derived canopy gap assessments, and
can be grouped as two-dimensional or three-dimensional approaches [26]. In the two-
dimensional approach, the point cloud is converted to a spherical projection and then
transformed into a plane using a geometrical projection to generate a 2D raster image that is
then segmented into sky and foliage elements [27–29]. The results generally compare well
with DHP-derived estimates of canopy gaps; however, the three-dimensional information
is lost during the transformations, the method is limited to plot-level assessments, and it
does not scale with additional LiDAR coverage. Three-dimensional canopy gap estimation
is typically performed by voxelizing the point cloud and calculating the number of empty
voxels and the total number of incident laser beams that reach each horizontal layer [29,30].

Voxel-size selection is the most important parameter during point-cloud voxelization
because the chosen resolution can have a dramatic effect on the detection and recognition
of specific geometric shapes and surfaces as well as computational processing [25]. If the
voxel size is too fine or small, for example, the number of voxels that comprise the resulting
dataset may not differ from that of the raw point cloud, resulting in data redundancy and
reduced computational efficiency for downstream processing. Computational efficiency
can be increased by minimizing redundancy via larger voxel-size selection; however, larger
voxel space increases information loss and may overestimate the space occupied by an
object [31]. For example, larger voxel sizes might result in the grouping of different objects
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or structural components (e.g., branches) within the same voxel space, potentially affecting
the ability of algorithms to detect features in the point cloud [32]. Indeed, the optimal
voxel size varies depending on research objectives, object structure, and LiDAR platform—
therefore, voxel-size selection remains an active area of research [26,33].

In this study, we analyze a voxel-based approach for characterizing the horizontal and
vertical variability of vegetation structure in a structurally complex old-growth longleaf-
pine ecosystem. Varying voxel sizes are used to build 3D models of vegetation, from which
canopy-gap estimates are derived at multiple heights (1.4, 4, 8, and 12 m aboveground) as a
metric of the within-canopy light environment. Because vegetation structure is difficult to
measure directly, indirect estimates derived from a vertical stack of hemispherical images
are used to compare and evaluate the LiDAR-derived canopy gap estimates. However, our
evaluation is not considered a true model validation because hemispherical photography
is not a proper ground truth. Despite these limitations, DHP-derived estimates serve as
a useful proxy for evaluation of LiDAR-derived canopy gap estimation. Specifically, the
objectives were to (1) evaluate and compare the capabilities of aerial and terrestrial laser
scanning to generate 3D models of vegetation structure from voxelized point-cloud data,
(2) evaluate the impact of voxel size assessed in terms of canopy structure variability at
the plot scale, particularly the within-canopy light environment calculated as canopy gaps,
and (3) use the voxel-based approach to quantify canopy gaps at the stand-scale.

2. Materials and Methods
2.1. Site Description

The study site, known as the Wade Tract Preserve (https://talltimbers.org/research-
the-wade-tract-preserve/ (Accessed 5 January 2022), is an 85-ha old-growth longleaf pine
(Pinus palustris Mill.) stand protected by a conservation easement held by Tall Timbers Land
Conservancy on Arcadia Plantation in the Red Hills regions of Thomas County, GA, USA
(Figure 1) [34]. Historically, the canopy structure of longleaf pine ecosystems was influenced
by frequent disturbance, such as lightning-induced fires, burning by indigenous peoples,
and hurricanes [35–37]. The formation of relatively large canopy gaps following disturbance
events facilitates light transmittance to the forest floor, supporting resource availability and
seed recruitment [38,39]. The few-remaining intact ecosystems are often characterized as
savannas or woodlands and possess incredibly diverse understories dominated by grasses
and forbs, which is facilitated by their open, yet structurally complex canopies [40,41].
The plant community is very diverse—more than 500 native plant species have been
documented within the Wade Tract easement. Tree-ring dating from coring has revealed that
many of the trees are more than 200 years old, several of which range up to 500 years [42].
While the overstory is dominated by longleaf pine (average basal area 22 m2 ha−1), some
broadleaf trees are present, mostly oaks (Quercus spp.) and hickory (Carya spp.). The
ground cover vegetation is dominated by warm season cespitose grasses (especially Aristida
beyrichiana Trinius & Ruprecht, Schizachyrium scoparium (Michaux) Nash, and Sorghastrum
secundum (Elliott) Nash). During the past century, the Wade Tract has been managed for
northern bobwhite hunting and conservation using frequent (annual/biannual) prescribed
fires and there are no records of logging activity.

https://talltimbers.org/research-the-wade-tract-preserve/
https://talltimbers.org/research-the-wade-tract-preserve/
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Figure 1. Location of the study area within Thomas County, GA (inset), terrestrial laser scanning 
positions (triangles), and digital hemispherical photographs acquired at vertical transects (circles). 
Satellite imagery was obtained using Google Earth API and the R package ggmap [43], state and 
county boundaries were obtained from the US Census Bureau using the R package tigris [44]. 

Climate in the region is classified as humid subtropical [45] with mean monthly tem-
peratures ranging from 27.8 °C in July to 10.7 °C in January and mean annual rainfall of 
1380 mm [46]. The soils are dominated by well-drained Ultisols (Typic and Arenic Kan-
diudults) derived from Pliocene sediments of the Miccosukee Formation and topography 
is rolling, extending ca. 25–50 m above mean sea level [47]. Frequent (annual/biannual) 
burning has been conducted on the plantation, including the Wade Tract Preserve, for as 
long as plantation records exist [46,48]. 

2.2. Data Collection 
2.2.1. Field Data 

Field data were collected in July of 2017 along six vertical transects established within 
the Wade Tract for the purpose of model evaluation (Figure 1). At each transect, DHPs 
were collected using a Canon EOS Rebel T1i 15.1 MP camera with a 180° fisheye lens and 
the camera was attached to a tripod. In order to capture DHPs at different heights (Figure 
2) above plot center, the tripod mounted camera was attached to a telescopic boom lift 
[49] at each plot resulting in 24 DHPs in total. A plum bob (i.e., plumline) was used as a 
vertical reference line to ensure that each hemispherical photo was positioned above plot 
center. The lens was leveled and oriented towards zenith such that the top of the image 
corresponds to magnetic north and images were captured before sunset with overcast sky 
conditions to provide contrast between vegetation and sky. Plot centers were geolocated 
using a Trimble GEO 7X with a Trimble Zephyr Geodetic antenna set to average 750 points 
at 50 cm resolution or better and post processed using Trimble TerraSync software (Trim-
ble Inc., Sunnyvale, CA, USA). These points were used to clip ALS and TLS point cloud 
data to each transect. Because the Wade Tract is a preserve, DHP acquisition with the 
boom crane was limited to sites along the established road bisecting the old growth stand 
as to not disturb vegetation and soil. 

Figure 1. Location of the study area within Thomas County, GA (inset), terrestrial laser scanning
positions (triangles), and digital hemispherical photographs acquired at vertical transects (circles).
Satellite imagery was obtained using Google Earth API and the R package ggmap [43], state and
county boundaries were obtained from the US Census Bureau using the R package tigris [44].

Climate in the region is classified as humid subtropical [45] with mean monthly tem-
peratures ranging from 27.8 ◦C in July to 10.7 ◦C in January and mean annual rainfall of
1380 mm [46]. The soils are dominated by well-drained Ultisols (Typic and Arenic Kandi-
udults) derived from Pliocene sediments of the Miccosukee Formation and topography
is rolling, extending ca. 25–50 m above mean sea level [47]. Frequent (annual/biannual)
burning has been conducted on the plantation, including the Wade Tract Preserve, for as
long as plantation records exist [46,48].

2.2. Data Collection
2.2.1. Field Data

Field data were collected in July of 2017 along six vertical transects established within
the Wade Tract for the purpose of model evaluation (Figure 1). At each transect, DHPs
were collected using a Canon EOS Rebel T1i 15.1 MP camera with a 180◦ fisheye lens
and the camera was attached to a tripod. In order to capture DHPs at different heights
(Figure 2) above plot center, the tripod mounted camera was attached to a telescopic boom
lift [49] at each plot resulting in 24 DHPs in total. A plum bob (i.e., plumline) was used as a
vertical reference line to ensure that each hemispherical photo was positioned above plot
center. The lens was leveled and oriented towards zenith such that the top of the image
corresponds to magnetic north and images were captured before sunset with overcast sky
conditions to provide contrast between vegetation and sky. Plot centers were geolocated
using a Trimble GEO 7X with a Trimble Zephyr Geodetic antenna set to average 750 points
at 50 cm resolution or better and post processed using Trimble TerraSync software (Trimble
Inc., Sunnyvale, CA, USA). These points were used to clip ALS and TLS point cloud data
to each transect. Because the Wade Tract is a preserve, DHP acquisition with the boom
crane was limited to sites along the established road bisecting the old growth stand as to
not disturb vegetation and soil.
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Figure 2. Example of a vertical stack of hemispherical photographs acquired at Transect 2 using four
height thresholds, where (a) corresponds to 12 m aboveground, (b) corresponds to 8 m aboveground,
(c) corresponds to 4 m aboveground, and (d) corresponds to 1.4 m aboveground.

2.2.2. Airborne Laser Scanning

Discrete-return ALS data were acquired on the 29th of October 2018 using a Le-
ica ALS80 onboard a PA-31 Piper Navajo Chieftain. Flight altitude was 1,280 m above-
ground at a speed of ca. 278 km h−1, covering 258 km of total flight line. Laser pulse
frequency was 642,800 Hz with a scan rate of 66.1 Hz, obtaining an average point den-
sity of 17 ± 3 points m−2. ALS-data were then processed in R 4.0.3 [50] using the lidR
package [51] by first merging returns from individual flight lines and then tiling the data
into 1000 m × 1000 m tiles. Duplicate points were removed using the filter_duplicates
function, and noise was classified and removed using the IVF (isolated voxels filter) with
the classify_noise function. Ground returns were classified using Multilevel B-spline
Approximation (MBA) [52,53] with the classify_ground function [51].

2.2.3. Terrestrial Laser Scanning

Terrestrial laser scanning data were collected using a RIEGL VZ-2000 (RIEGL Measure-
ment Systems, Horn, Austria), which has a 100◦ × 360◦ field of view, laser pulse repetition
rate of up to 1.2 MHz, with a beam divergence (mrad) of 0.3, and maximum resolution of
0.0015◦. In total, 29 scans were taken in a 400 m × 800 m subsection of the Wade Tract in
July of 2017 (Figure 1). A systematic, geometrical pattern was used for data acquisition of
15 center scans spaced at 50 m while the remaining scans were spaced at 100 m. Scans were
registered automatically using RiSCAN Pro 2.8 software and were filtered for noise by first
removing returns with a deviation greater than or equal to 14, and/or reflectance values
less than or equal to −20. Returns within 2 m or beyond 200 m from the scanner head were
removed. Individual scans were merged and duplicate points within a sampling radius
of 6 mm were removed. The merged scan was tiled into 100 m × 100 m tiles, resulting in
a mean point density of 3827 points m−2. The individual tiles were further processed in
R (4.0.3) [50] using the lidR [51] package. Noise removal and ground classification were
performed in the same manner as described for the ALS data.

2.3. Point-Cloud Voxelization

LiDAR point-cloud data are often comprised of millions of returns, or echoes, that
precisely characterize locations in the X, Y, and Z dimensions, but these returns cannot
be used directly to quantify the space occupied by vegetation because points do not have
a defined length, width, area, or volume. Additionally, objects that are closer to the
LiDAR instrument will be characterized by a higher density of points relative to objects
that are further away, resulting in an imbalanced representation of the measured 3D
space. A voxel-based technique to overcome the aforementioned challenges is described by
Vosselman et al. [25], where the 3D point-cloud space can be divided into a finite number
of cubes, or voxels, effectively normalizing the point-density distribution of the LiDAR
data. A voxel is the 3D equivalent of a raster cell or pixel, where space is characterized
in horizontal and vertical (i.e., X, Y, and Z) dimensions. The positional information of
each lidar point determines which voxel that point is contained within, and the metrics
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describing the LiDAR data are computed from the voxels rather than the individual points.
In this analysis, ALS and TLS point-cloud data were voxelized using side lengths of 10, 25,
50, 100, and 200 cm using the voxelize_points function from the lidR package [51]. This
allowed the ALS and TLS data to be compared, where each point cloud was transformed
into a voxel model indicating the presence of at least one return. Empty voxels, or voxels
that did not contain at least 1 return, were omitted from the analysis.

2.4. Estimation of Canopy Gaps
2.4.1. Digital Hemispherical Photography

DHP-derived canopy-gap (CGDHP) estimates were generated from the WinSCANOPY
software [54] by selecting circular rings or zenith annuli at zenith angle range over the
entire azimuth angle range (i.e., 0–360◦). This approach is suitable for analysis of canopy
structure as pixels representing vegetation can be discriminated from pixels representing
sky regions, or gaps [27]. Guay et al. [54] define a gap in the canopy—or openness—as
the fraction of open sky that is unobstructed by vegetation in the canopy above the lens
(three-dimensional space). It accounts for the relative sphere area occupied by each zenith
ring. Nine equiangular zenith annuli were defined in the zenith angle range between 0◦

and 70◦, as a result each annulus was 7.8◦ in width. Canopy gaps were obtained for each
annulus by only considering the annulus rings with zenith angles between 0–70◦, which
helps to remove geometrical distortions that occur with hemispherical lenses at angles
greater than 70◦ [29]. Canopy gaps for a single circular ring (i.e., annulus) located at zenith
angle was calculated according to Equation (1).

CGDHP =
Fs

Fs + Fv
(1)

where CGDHP is canopy gap for the annulus centered at θ, Fs is the number of sky pixels in
the annulus centered at θ, and Fv is the number of vegetation pixels in the annulus centered
at θ.

2.4.2. Voxel-Based Estimates

ALS-derived canopy gaps (CGALS) and TLS-derived canopy gaps (CGTLS) were esti-
mated from the voxelized point-cloud data at each transect by extracting the coordinate
(X, Y, and Z) information into a data frame. The Easting (X) and Northing (Y) values were
merged into a single column using the “unite” function in the R package dplyr [55]. Voxels
with spatially coincident X and Y coordinate values were filtered from the data frame using
the dplyr “distinct” function (Figure 3c,g). In other words, voxels that occupied the same
Northing and Easting space were removed from the data frame, retaining only voxels
with distinct X and Y values. Height (Z) values were then filtered to match the respective
height thresholds (1.4, 4, 8, and 12 m) used for DHP-based canopy gap estimates (CGDHP).
For example, point cloud data with z-values ≥1.4 m were compared with hemispherical
photographs acquired at 1.4 m aboveground level, while point-cloud data with z-values
≥12 m were compared with hemispherical photographs acquired at 12 m above ground
level. Voxel-based canopy gap estimates were derived according to Equation (2).

CG = 1 −
(

Lv
2

πr2

)
(2)

where CG is canopy gap, Lv is voxel side length in point cloud units (e.g., 1 m), and πr2 is
the circular area of the transect with radius r (30 m).

Canopy gap estimates were then scaled-up to the stand-level by applying Equation (2)
to 90 randomly selected locations.
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Figure 3. Stages of voxel-based canopy gap estimation, where (a) shows the TLS point-cloud data
from Transect 1; (b) shows the 25 cm voxelized point cloud data; (c) shows the thinned point cloud,
retaining only voxels that occupy distinct X and Y space; and (d) shows a ‘birds-eye’ view of the
thinned point cloud. Panels (e–h) show the voxel-based canopy gap estimation stages using ALS.

2.5. Model Evaluation

LiDAR-derived canopy gap estimates were evaluated against CGDHP using the Root
Mean Squared Error (RMSE, Equation (3)); the square root of the variance of residuals
which provides an indication of how close the predicted values (or estimates) match the
observations. For the purpose of this analysis, we treated CGDHP as our observations, while
CGTLS and CGALS were considered model estimates.

RMSE =

√
1
n ∑n

i=1(ŷi − yi)
2 (3)

where yi are the DHP-derived canopy gap estimates, ŷi are the LiDAR-derived estimates, n
is the sample size with i = 1, 2, . . . , n.

3. Results
3.1. Point-Cloud Voxelization

Both ALS and TLS point-cloud data were voxelized using five different resolutions.
Figure 4 illustrates the probability distribution of LiDAR returns as a function of height for
each transect and each platform calculated from the voxelized point-cloud data. The results
indicate that the distributions of ALS returns are inversely related to canopy height and that
the majority of returns are located in the upper canopy profile. However, the distributions
of TLS returns are characterized by a higher degree of between-transect variability. In
general, the distributions peak at the midstory layers (10–20 m). However, at Transect
2, for example, the distribution peaks in the canopy layer (>20 m). Comparison of the
probability distributions from these two laser-scanning platforms further indicates that
the understory vegetation was under sampled by aerial LiDAR due to occlusion from
the overstory canopy while terrestrial LiDAR tended to undersample the canopy due to
occlusion from the midstory and lower-canopy layers. The best agreement between the
overall shape of the probability density estimates occurs at Transect 2 (Figure 2), with the
distribution of returns being greatest between ca. 20 and 30 m, which is a strong indication
that most of the vegetation at this transect is distributed in the canopy and that the midstory
and understory levels are relatively open.
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Within-platform variability of the ALS and TLS probability distributions was mostly
affected by voxel resolution. With ALS, for example, the overstory contained the largest
proportion of voxels irrespective of voxel size. However, the use of increasingly larger
voxel sizes affected the vertical profiles by pulling the distribution towards the understory
(Figure 5). In other words, as voxel size increased, the proportion of voxels in the overstory
decreased while the proportion of voxels in the understory increased. The relationship
between voxel size and TLS-derived probability distributions was more nuanced and
generally affected the proportion of voxels belonging to midstory rather than the understory.
The proportion of voxels in the overstory, for example, increased as voxel size increased
from 10–100 cm before decreasing slightly with the use of 200 cm voxels. However, the
proportion of voxels associated with the midstory stratum decreased as voxel size increased.
These results indicate that the vertical distribution of modeled vegetation is directly affected
by the spatial resolution of voxels, which may affect the interpretation and comparison of
results among studies.

Resolution also had a dramatic effect on the number of voxels comprising the LiDAR
data. Prior to voxelization, the ALS point cloud data ranged from 65.5–102.1 K returns,
with an overall mean of 82.2 K when averaged across all six transects. Conversely, the TLS
point-cloud data was three orders of magnitude larger on average, ranging from 9.9–30.6 M
returns with an overall mean of 18.2 M returns. With 25 cm voxels, for example, the TLS
point cloud ranged from 146.1–204.8 K voxels. Conversely, ALS ranged from 48.2–73.1 K
voxels when using a 25 cm resolution. Voxelization not only reduced the magnitude of
the LiDAR data, but also dramatically reduced file size. With the TLS data, for example,
the use of 10 cm voxels reduced the combined file size of all six transects from 1.34 GB to
22.4 MB.
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3.2. Plot-Level Canopy Gaps
3.2.1. DHP-Derived Estimates

Our evaluation of CGDHP indicates that the longleaf-dominated canopies surveyed
in this analysis are mostly open but structurally complex, and that this complexity varied
considerably within the canopy and across the landscape. As illustrated in Figure 6,
canopy gaps and the variability associated with these estimates generally increased with
height, ranging from 43–79% across all six transects. The largest range was observed at
Transect 4, where CGDHP increased from 65% at the lowest measurement position (i.e.,
1.4 m aboveground) to 78% at the highest measurement position (12 m aboveground).
Conversely, the smallest range was observed at Transect 2, where CGDHP ranged from
59–64%, decreasing as canopy height increased. However, a visual analysis of the binarized
images suggests that WinSCANOPY incorrectly identified some of the sky elements at
Transect 2 as vegetation at the lower measurement positions, possibly due to changing
light conditions and contamination of the image by a small cloud. When averaged across
all four measurement positions, mean canopy gap was largest at Transect 3 (74 ± 5%,
mean ± one standard deviation) and smallest at Transect 1 (45 ± 2%). The overall average
for all transects and all measurement positions was 63 ± 11%.
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Figure 6. Canopy-gap estimates measured using digital hemispherical photography (DHP) in
old growth longleaf pine (Pinus palustris). Canopy gaps and the variation associated with these
estimates increase as canopy height increases. Estimates were derived from six transects using four
measurement positions, or canopy heights, as indicated on the y-axis.

3.2.2. LiDAR-Derived Estimates

LiDAR-derived estimates generally follow the same trend as CGDHP—canopy gaps
increase with canopy height and vary considerably within and between transects. The
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results from our sensitivity analysis revealed that voxel size had a considerable influence
on canopy gap estimation. As illustrated in Figure 7, canopy gap estimates are inversely
related to voxel size—smaller voxel sizes yielded larger canopy gaps while larger voxel
sizes yielded smaller canopy gaps. Furthermore, LiDAR derived canopy-gap estimates
are characterized by relatively large variance both within and between transects and
measurement positions.
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Figure 7. Canopy gap estimates derived from digital hemispherical photography (DHP), airborne
laser scanning (ALS), and terrestrial laser scanning (TLS) along the six vertical transects.

The best agreement between CGTLS and CGDHP was achieved with the use of 10
and 25 cm voxels, which yielded RMSEs of 10% and 12%, respectively. However, the
RMSEs were characterized by a large amount of within- and between-transect variation
as illustrated in Figure 8. CGTLS generally agreed well with CGDHP when using a voxel
resolution of 10 cm, and the estimates ranged from 56–74% with an overall mean of 64 ± 5%
when averaged across all transects and all canopy height positions. Larger voxel sizes
yielded larger RMSEs, which increased from 18–42% as voxel size increased from 50–200 cm.
When compared with CGDHP, for example, the use of 10 cm voxels overestimated canopy
gaps by 1% on average, while 25 cm and 200 cm voxels underestimated canopy gaps by 7%
and 40%, respectively.

While ALS-derived canopy-gap estimation did not perform as well as terrestrial
LiDAR when evaluated against CGDHP, the overall trends were similar between the two
platforms. Smaller voxel sizes again yielded better agreement with CGDHP; however, the
lowest overall RMSE was obtained with 25 cm voxels (15%), followed by 10 cm voxels
(18%). For all transects and all canopy heights, 25 cm voxels yielded CGALS estimates that
ranged from 39–63%, with an overall mean of 52 ± 7%.
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values obtained from hemispherical photography.

3.3. Stand-Level Canopy Gaps

Upscaling the voxel-based approach across the entire extent of the Wade Tract (0.6 km−2)
respectively yields canopy gaps that compare favorably with the plot-level estimates. ALS-
derived canopy gaps ranged from 68–89% with an overall average of 80 ± 6% with 10 cm
voxels, while 25 cm voxels yielded canopy gaps ranging from 25–67% with an overall
average of 49 ± 10%. Terrestrial laser scanning was performed in a subsection of the Wade
Tract, and therefore has a smaller spatial extent (0.3 km−2) relative to the ALS coverage.
However, TLS-derived canopy gap estimates are comparable to those derived from ALS
when scaled up, and ranged from 32–78% with an overall mean of 52 ± 8% with the use
of 0.1 m voxels. Conversely, the use of 25 cm voxels yielded canopy gaps ranging from
23–71% with an overall mean of 44 ± 8%.

4. Discussion

While it is well known that canopy structure governs the spatial and temporal dis-
tribution of light transmittance to the forest floor [5,56] relationships between the spatial
arrangement of vegetation, and how this vegetation is characterized with 3D models
derived from point-clouds, has not been examined extensively. To our knowledge, this
analysis represents the first effort for evaluating canopy structure directly from voxelized
LiDAR data in longleaf pine ecosystems. We developed a method that circumvents the
need to rasterize point-cloud data for input into specialized software designed for digital
hemispherical photography. Furthermore, our voxel-based approach provides some key
advantages over DHP, including (1) the ability to scale estimates with LiDAR coverage and
(2) the ability to sample the study area regardless of lighting conditions, which is often a
time constraint with hemispherical photography because images should be acquired before
sunrise, after sunset, or under overcast lighting to maximize the contrast between the sky
and vegetation.

4.1. Voxel-Size Influence

Identification of an optimal voxel size played a critical role in LiDAR analysis because
individual LiDAR returns do not have a defined area or volume, and therefore cannot
be used directly to quantify the space occupied by vegetation. Previous research has
demonstrated that voxel-size selection represents a compromise among factors including
point density, beam diameter, occlusion, and vegetation structure [33,57]. Sampling bias is
also introduced due to occlusion, which increases in probability as distance from the scanner
increases. Zong et al. [58], for example, reported that denser understory vegetation caused
higher rates of occlusion with TLS. Voxel-size also influences occlusion compensation.
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Generally speaking, smaller voxels have less occlusion compensation relative to larger
voxel sizes [32]. For structural assessments such as canopy gap estimation, the voxel size
should be small enough to exclude large gaps between branches and crowns, but large
enough to characterize regions that are insufficiently sampled by the LiDAR instrument
due to low point density and/or occlusion.

The results from our sensitivity analysis indicate that different voxel-sizes yield sub-
stantially different canopy gap estimates. As illustrated in Figure 7, canopy gap estimates
are inversely related to voxel size. The use of relatively large voxels resulted in a substantial
underestimation of canopy gaps, suggesting that voxel sizes of 50 cm and larger did not
sufficiently exclude gaps between branches and crowns, resulting in an overestimation of
the space occupied by vegetation. The use of 10 cm voxel sizes resulted in an overestimation
of canopy gaps with both LiDAR platforms; however, the RMSE and bias were very low
with terrestrial LiDAR and generally compared well with the hemispherical photographs.
With aerial LiDAR, the lowest overall RMSE and bias was obtained with 25 cm voxels,
which suggests that 10 cm voxel sizes were not sufficiently large enough to compensate for
occluded regions, and therefore underestimated the space occupied by vegetation.

Our results indicate that 10–25 cm is the optimal size for estimating canopy gaps from
voxelized point-cloud data in longleaf pine ecosystems, but estimation agreement with
CGDHP varied considerably with vegetation density, canopy height, and LiDAR platform.
These findings generally support those of Zong et al. [58], who determined that the optimal
voxel size for TLS-derived visibility estimates was 10 cm in forest plots with low to medium
understory cover, but decreased to 5 cm for forest plots with high understory cover. Our
results also support the hypothesis of Béland et al. [33], who reported that the optimal voxel
size is a function of leaf size, branching structure, and the predominance of occlusion effects,
and may range from ca. 5–30 cm. When occlusion effects are negligible, however, Béland
et al. [33] postulate that voxel-size selection is mostly related to leaf size. In this analysis,
TLS occlusions were minimized by using multiple scanning positions in conjunction with a
voxel-based approach, which may explain why TLS-derived estimates had better agreement
with hemispherical photography with the use of 10 cm voxels. Conversely, better agreement
between ALS and hemispherical photography with 25 cm voxels may be related to occlusion
compensation of the midstory and understory stratum.

Voxel resolution also affected the LiDAR-derived canopy gap estimates by altering
the probability distributions of the voxelized data. Specifically, larger voxel sizes tended
to pull the distribution towards the lower stratum layers (Figure 5). While this affected
the vertical distributions derived from each laser-scanning platform, it had a larger effect
on TLS-derived canopy gaps at lower canopy heights. For example, the largest overall
difference between the LiDAR-derived estimates was observed with the use of 200 cm
voxels at a height of 1.4 m (Figure 7). Voxel size, however, did not dramatically affect the
relative proportion of the probability distributions. The best agreement between the two
platforms, for example, occurs in the midstory canopy layer (Figure 5). These findings
suggest that occlusion from the canopy had a larger effect on the ability of ALS to detect
vegetation in the lower stratum layers, while occlusion from the midstory layer had a larger
effect on the ability of TLS to detect vegetation in the upper canopy.

4.2. Caveats and Considerations

There are several caveats regarding the strength of the assessment results that should
be discussed. First, it is important to emphasize that our comparison with CGDHP is
considered an evaluation rather than a true model validation. Although hemispherical
photography is widely used in forestry and ecophysiological studies investigating canopy
structure and light transmittance at the plot-scale [5,39], the method is sensitive to envi-
ronmental lighting conditions, exposure settings, the file format used (e.g., JPG vs. raw),
and in-camera gamma correction and therefore cannot be considered a proper ground
truth [15].
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Despite its widespread acceptance in forest gap fraction assessments, directly compar-
ing the two methodologies has some inherent challenges, as the analysis of hemispherical
photographs is raster based (e.g., pixel classification), whereas the processing of LiDAR
data involves the exploration of patterns and distributions derived from three-dimensional
point clouds. Furthermore, hemispherical photography is a passive sensing technique that
depends on illumination conditions, whereas active sensors such as LiDAR do not need
external sources for illumination of targets. The resulting values are therefore regarded as
estimates rather than actual ground truths. As such, the structure of the canopies sampled
in this study may be more or less open than the hemispherical photographs suggest. For ex-
ample, hemispherical images are frequently contaminated by non-uniform sky conditions,
resulting in sky elements being misclassified as vegetation. Despite the aforementioned
limitations, DHP-derived estimates serve as a useful proxy for model evaluation. Moreover,
our results are consistent with similar studies that have reported canopy gaps ranging from
ca. 38–85% in longleaf pine [13,59], which provides further confidence in our evaluation of
LiDAR-derived estimates.

5. Conclusions

In this analysis, we used voxelized LiDAR data to model the three-dimensional distri-
bution of vegetation structure, from which canopy gaps were calculated to characterize
the within-canopy light-environment variability of an open woodland. Proof of concept
was demonstrated at six vertical transects, exploring the potential influence of voxel size
on canopy gap estimates at the plot scale, without inherent ground sampling bias. Our
results indicate that the optimal voxel resolution for canopy gap estimation in open wood-
lands such as longleaf-pine ranges between 10–25 cm. However, the optimal voxel size
varied with LiDAR platform—which may be related to laser penetration and occlusion
compensation between the two platforms. Our estimates are characterized by a consider-
able amount of within- and between-transect variation, which indicates that the horizontal
and vertical distribution of vegetation varies considerably within old growth longleaf pine
ecosystems, and that the canopy is mostly open but structurally complex. The active vs.
passive remote-sensing methodology comparison discussed in this analysis was carried
out with the purpose of obtaining a better understanding of the information that can be
derived from voxelized LiDAR data and to use that information to develop a method for
estimating canopy gaps that scales with LiDAR coverage. The use of vertical transects at
each plot allowed us to approximate the three-dimensional nature of canopy structure from
hemispherical photography, which is a novel way of quantifying the vertical distribution
of canopy gaps as well as the vertical variability associated with these estimates across all
three methodologies. Identification of an optimal voxel size is critical for future interpre-
tations of LiDAR data for ecophysiological applications. The ability to leverage findings
from this study will allow for a more accurate characterization of the within-canopy light
environments, which may in turn explain crown development and other intermediate
stand processes [60].
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