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Abstract: The use of a fast and accurate unmanned aerial vehicle (UAV) digital camera platform
to estimate leaf area index (LAI) of kiwifruit orchard is of great significance for growth, yield
estimation, and field management. LAI, as an ideal parameter for estimating vegetation growth,
plays a significant role in reflecting crop physiological process and ecosystem function. At present,
LAI estimation mainly focuses on winter wheat, corn, soybean, and other food crops; in addition, LAI
on forest research is also predominant, but there are few studies on the application of orchards such
as kiwifruit. Concerning this study, high-resolution UAV images of three growth stages of kiwifruit
orchard were acquired from May to July 2021. The extracted significantly correlated spectral and
textural parameters were used to construct univariate and multivariate regression models with LAI
measured for corresponding growth stages. The optimal model was selected for LAI estimation
and mapping by comparing the stepwise regression (SWR) and random forest regression (RFR).
Results showed the model combining texture features was superior to that only based on spectral
indices for the prediction accuracy of the modeling set, with the R2 of 0.947 and 0.765, RMSE of
0.048 and 0.102, and nRMSE of 7.99% and 16.81%, respectively. Moreover, the RFR model (R2 = 0.972,
RMSE = 0.035, nRMSE = 5.80%) exhibited the best accuracy in estimating LAI, followed by the
SWR model (R2 = 0.765, RMSE = 0.102, nRMSE = 16.81%) and univariate linear regression model
(R2 = 0.736, RMSE = 0.108, nRMSE = 17.84%). It was concluded that the estimation method based
on UAV spectral parameters combined with texture features can provide an effective method for
kiwifruit growth process monitoring. It is expected to provide scientific guidance and practical
methods for the kiwifruit management in the field for low-cost UAV remote sensing technology to
realize large area and high-quality monitoring of kiwifruit growth, thus providing a theoretical basis
for kiwifruit growth investigation.

Keywords: UAV; kiwifruit orchard; LAI; texture; stepwise regression; random forest

1. Introduction

UAV remote sensing (RS) plays an outstanding role in precision agriculture due to
its convenient, fast, and accurate acquisition of surface information [1]. Hyperspectral
and multispectral remote sensing platforms carried by UAVs are widely used in profes-
sional fields or departments such as land and scientific research; however, on account
of the complexity and redundancy in the post-processing stage of hyperspectral data, its
application in the common farming environment is limited to some extent [2,3]. Some
additional methods of crop growth monitoring have gradually emerged lately owing to
the enhanced affordability and accessibility of the drones with multispectral imaging, es-
pecially digital cameras [4]. To date, several studies have indicated that drones equipped
with digital cameras played an irreplaceable role in crop growth monitoring, which was
commonly represented using parameters of growth condition such as leaf area index [5],
leaf chlorophyll content [6], biomass [7], yield [8,9], leaf nitrogen content [10], nitrogen
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nutrition index [11], water content [12], etc. Furthermore, there were also some examples
of UAV-based analysis on the vegetated water ways [13–15], and some applications of
machine learning approaches in agricultural and geoscience research [16–18]. In particular,
real-time dynamic monitoring of LAI is of great significance to crop growth diagnosis and
management regulation.

Leaf area index (LAI) is defined as the total area of photosynthesis in a one-sided plant
per unit of land area, which can be understood as the ratio of the total leaf area of plants to
the land area [19]. LAI, as an ideal parameter for estimating vegetation growth, plays an
individual role in reflecting crop physiological process and ecosystem function [20]. In gen-
eral, the direct measurement of LAI causes great damage to crops and is time-consuming
and labor-intensive; at the same time, sampling is subjective and unrepresentative, which
makes it difficult to achieve large-scale overall monitoring. Indirect measurement methods
such as optical instruments based on Beer-Lambert Law can precisely measure LAI by
measuring the extinction coefficient of vegetation accurately in the region [21]. Currently
widely used optical instruments can be divided into two methods according to principle,
which are based on radiation and image measurement respectively. Representative instru-
ments of the former are LAI-2000 (Licor Inc., Lincoln, NE, USA), Sunscan (Delta-T Inc.,
Cambridge, UK), etc. The advantage of radiometric instruments is that they are fast and
convenient to measure. However, they are susceptible to weather and often need to work
in sunny weather [22]. Typical instruments based on image measurement are CI-110 (CID
Inc., Washington, DC, USA), WinScanopy (Regent Inc., Thunder Bay, Canada), etc. With
the innovation of technology, the image measurement method represented by CI-110 has
higher measurement accuracy than the radiation measurement method represented by
LAI-2000; meanwhile, the need for a specific measurement environment is greatly reduced,
which is especially suitable in the monitoring of forest and fruit trees [23]. Because kiwifruit
is different from ordinary crops in its planting structure and pattern, such as its thin stem,
large leaves, and unique growth period, the non-destructive measurement of LAI in ki-
wifruit orchards is relatively more difficult [24]. CI-110 is suitable for LAI exploration of
low lying plant canopies up to forest canopy through the measurement of sunflecks in the
range of photosynthetically active radiation (PAR), and the calculation of diffuse radiation
transmission coefficients (the sky view factor), mean foliage inclination angles, and plant
canopy extinction coefficients [25,26]. At present, there are few reports on the kiwifruit
orchards by CI-110; therefore, the application of CI-110 in nondestructive, accurate, and
rapid LAI monitoring is of great significance for breeding and guiding the production of
kiwifruit with high quality. Drones can also overcome these ground measurement problems
and have practical significance in the precise management of kiwifruit orchards.

In the research of precision agriculture, RS platform mainly focuses on the estimation
of chlorophyll content [6,27], nitrogen content [11,28], LAI [29,30], and biomass [9,31] of
winter wheat [32,33], corn [34,35], soybean [36], and other food crops. However, LAI
studies on orchards such as kiwifruit are rarely involved. In terms of research methods, it
is common to use spectral index, texture, plant height, and other parameters to construct
an estimation model [28,37,38]. As an important characteristic, texture is not only used to
identify objects or regions of interest in images and image classification [39–41], but also
used to estimate forest [42,43] and some crops [33,37]. However, texture in the UAV imagery
was rarely used for orchards monitoring. The primary objective of this investigation was
to predict LAI in the kiwifruit orchard using the color and texture feature extracted from
UAV high-resolution RGB images of the study area. A secondary objective was to verify
whether the model with spectral indices combining texture features was more beneficial to
LAI estimation.

2. Materials and Methods
2.1. Study Area Overview

The study was performed in a kiwi orchard located in Yangling Agricultural High-tech
Demonstration Zone, Shaanxi Province, China (108◦01′32′ ′ E, 34◦18′09′ ′ N) (Figure 1). This
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area has a temperate, continental, and semiarid climate. The average annual precipitation
and average annual temperature are 649.5 mm and 12.9 ◦C, respectively. In this experiment,
80 kiwifruits with similar tree age and suitable growing conditions in the kiwi orchard
were selected as the study samples, which were sampled in the initial flowering stage (IF),
young fruit stage (YF), and fruit enlargement stage (FE) in 2021.
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Figure 1. Geographic location and observation points of the study area.

2.2. Data Acquisition
2.2.1. LAI Measurement of Kiwi Orchard

The Plant Canopy Imager CI-110 (CID Inc., Washington, DC, USA) was used to make
two observations on the same horizontal plane (about 0.5 m above the ground) below
the canopy of each sampling point, and the average value was taken as the LAI value of
the sampling [44]. The length is 0.84 m, and the imaging probe and arm weigh 1.5 kg. It
is equipped with a 170◦ fisheye lens with an image resolution of 8 million pixels. LAI
was calculated using the CI-110 Plant Canopy Analysis software (https://cid-inc.com/,
accessed on12 January 2022). During image capture, the brightness (luminosity) and
contrast (between background and foreground) were tuned to provide visual quality. The
measured data were imported into the software for further processing and the ground
observation values were derived. Figure S1 shows the observation of some growth periods.
In addition, a global navigation satellite system (GNSS) receiver was used to locate each
measuring sample point, and coordinated the point position with the actual position of
the image.

2.2.2. UAV RGB Image Acquisition and Preprocessing

DJI Phantom 4 PRO quadcopter (SZ DJI Technology Co., Shenzhen, China) was used
for aerial data acquisition. The take-off weight is 1.38 kg and the endurance time is
approximately 30 min. The 1-inch CMOS sensor equipped with a 20-megapixel camera
on the UAV platform obtained high-resolution visible-light images of the initial flowering
stage, young fruit stage, and fruit enlargement stage respectively (Table 1). Each flight
was completed between 10 a.m. and 2 p.m. when the sun was steady and clear with few
clouds. DJI GS Pro platform, which supports route planning, was adopted to set the course

https://cid-inc.com/
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and side overlap properties of this mission were set to 80%, at a height of 30 m from the
ground. Agisoft PhotoScan Professional software (https://www.agisoft.com/, accessed on
12 January 2022) was applied to mosaic the obtained digital images. The software aligns
the photos with the Position and Orientation System (POS), the coordinate system of which
is WGS84, as recorded by the drone at the time of shooting, and generates a dense point
cloud of the flight area. The spatial grid and texture are then established to obtain the
digital elevation model (DEM) and digital orthophoto map (DOM) of the study area with a
nominal resolution of 0.014 m mean ground sampling distance (GSD) at 30 m above ground
level with reference to the WGS84/UTM zone 49N as a map projection method. Figure 2
displayed a 3-dimensional image in the study area by ArcGIS 10.6 and instrument CI-110
for LAI observation.

Table 1. Image information obtained by UAV.

Growth Stages Date Number of Images

Initial flowering stage (IF) 8 May 145
Young fruit stage (YF) 5 June 144

Fruit enlargement stage (FE) 8 July 146
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Figure 2. Three-dimensional visualization of sampling sites and equipment in the kiwifruit orchard.

2.3. Methods
2.3.1. Extraction of Spectral and Texture Features

The average digital number (DN) values of the region of interest (ROI) from the
orthorectified image were calculated by ArcGIS 10.6. The average DN value, normalized
DN value, and other spectral indices related to LAI were selected based on the image
characteristics of red (R), green (G), and blue (B) bands (Table 2). Gray Level Co-occurrence
Matrix (GLCM) was used to calculate texture information by ENVI 5.2; that is, the frequency
of pixels in the 3 × 3 window was calculated based on the second-order probability
statistical filtering. There were 24 texture features in total in terms of eight statistical
methods on each band (Table 3). In order to simplify the parameter name, underline and
band name were added to distinguish the texture information of each band, for example,
MEA_R represented the mean of the red band. A group of images in Figure 3 illustrate part
of the parameters analyzed in the study, and more images of parameters are exhibited in
Figure S2.

https://www.agisoft.com/
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Table 2. Spectral parameters related to LAI of UAV RGB images.

Parameters Name Formulas Sources

R DN value of Red Channel R = DNR

Conventional
empirical parameters

G DN value of Green
Channel G = DNG

B DN value of Blue Channel B = DNB

r Normalized Redness
Intensity r = R/(R + G + B)

g Normalized Greenness
Intensity g = G/(R + G + B)

b Normalized Blueness
Intensity b = B/(R + G + B)

EXG Excess Green Index EXG = 2× R−G + B [45]

VARI Visible Atmospherically
Resistant Index VARI = (R + G)/(R + G− B) [46]

GRRI Green Red Ratio Index GRRI = G / R [47]
GBRI Green Blue Ratio Index GBRI = G / B [48]
RBRI Red Blue Ratio Index RBRI = R / B [48]

RGBVI Red Green Blue Vegetation
Index RGBVI =

(
G2 − BR

)
/
(

G2 + BR
)

[49]

GLA Green Leaf Algorithm GLA = (2G− R− B) / (2G + R + B) [50]

MGRVI Modified Green
Red Vegetation Index MGRVI =

(
G2 − R2

)
/
(

G2 + R2
)

[49]

WI Woebbecke Index WI = (G− B) / (R−G) [51]
ExGR Excess Green Red Index ExGR = ExG− 1.4R−G [52]
CIVE Color Index of Vegetation CIVE = 0.441R− 0.881G + 0.385B + 18.78745 [53]

Table 3. Textural parameters related to LAI of UAV RGB images.

Parameters Name Formulas Sources

MEA Mean
MEAi =

n−1
∑

i,j=0
i
(
Pi,,j
)
,

MEAj =
n−1
∑

i,j=0
j
(
Pi,,j
)

[39]

VAR Variance
VARi =

n−1
∑

i,j=0
Pi,,j(i−MEAi)

2

VARj =
n−1
∑

i,j=0
Pi,,j
(
j−MEAj

)2

HOM Homogeneity HOM =
n−1
∑

i,j=0

Ai,j

1+(i−j)2

CON Contrast CON =
n−1
∑

i,j=0
Ai,j(i− ji)

2

DIS Dissimilarity DIS =
n−1
∑

i,j=0
Ai,j|i− j|

ENT Entropy ENT =
n−1
∑

i,j=0
A(i, j)logA(i, j)

ASM Angular Second Moment CON =
n−1
∑

i,j=0
Ai,j

2

COR Correlation HOM =
n−1
∑

i,j=0
Pi,,j

(i−MEAi)(j−MEAj)√
VAR2

i VAR2
j
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2.3.2. Model Calibration and Evaluation

In the model training, we randomly selected 80% of the samples as the modeling data
sets according to different growth periods. The parameters with the highest correlation
with LAI were selected as the independent variable of estimation and LAI was selected as
the dependent variable. Then LAI estimation was performed using univariate regression
models including unary linear equation, unary quadratic polynomial equation, power
function, and exponential and logarithmic function. Additionally, concerning multivariate
regression models, machine learning algorithms (MLA) were adopted, such as stepwise
regression and random forest regression. The remaining 20% of samples were used as
validation sets to evaluate the prediction accuracy of the LAI estimation model.

In multivariate regression analysis, stepwise regression selects the optimal model by
iteratively adding or deleting independent variables. At the same time, Akaike Information
Criterion (AIC) is a weighting function of fitting accuracy and unknown number of param-
eters, which is used to measure the complexity and performance of the stepwise regression
model. While pursuing the maximum likelihood of the model, the number of stepwise
regression variables should be as small as possible. That is to say, the smaller the AIC, the
better the model. In the training stage of random forest regression, bootstrap sampling is
used to collect multiple different sub-training data sets from the input training data sets
to train multiple different decision trees successively. In the prediction stage, the random
forest averages the prediction results of all internal binary decision trees to obtain the final
result. The benefit of bagging algorithms such as random forest is that they increase the
robustness and stability of the final model’s prediction results by using multiple different
sub-models; in other words, it can reduce the variance.

The coefficient of determination (R2) and root mean square error (RMSE), normalized
root mean square error (nRMSE), were used to measure the predictive performance of
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each estimation model by different methods. The higher values of R2 and the lower
values of RMSE and nRMSE indicate a better imitative effect and accuracy of the model
in predicting LAI. In Formulas (1)–(3), yi is the measured value, y is the mean value
of the measured value, ŷi is the predicted value, and n is the number of samples. In
addition, all statistical analysis was completed with software R. More details on the MLA
and method of calibration mentioned above can be found in the library packages (http:
//www.r-project.org/, accessed on 12 February 2022).

R2 = 1− ∑n
i=1(yi − ŷi)

2

∑n
i=1(yi − y)2 (1)

RMSE =

√
∑n

i=1(ŷi − y)2

n
(2)

nRMSE =
RMSE

y
× 100% (3)

3. Results
3.1. Correlation between LAI and UAV RGB Image Parameters

Correlation analysis was conducted between LAI of each growth period and 41 param-
eters which contained 17 spectral indices and 24 texture features constructed by UAV RGB
images in the corresponding period, and then inversion variables that could continue to
participate in this study were screened out. Because there were many selected research pa-
rameters, they were combined into variable sets according to the research method, and each
variable set was named separately (Table 4). It can be seen from Figure 4 that 26 parameters
at the initial flowering stage were highly significantly correlated with LAI (p < 0.01), and
the absolute value of the correlation coefficient ranged from 0.291 to 0.713, with the highest
correlation coefficient being R (−0.713). The variable set α was composed of 10 spectral
features, and 16 texture features formed the variable set β in IF. In total, 35 parameters were
highly significantly correlated (p < 0.01) with LAI at YF and FE, with the absolute value of
the correlation coefficient in the range of 0.292–0.815, and the highest correlation was ExGR
(0.815). Among them, 15 spectral features constituted the variable set γ, 20 texture features
formed the variable set δ.

Table 4. The set of variables used in the study.

Set
Name Variables Methods for

Combination

α
R, G, ExGR, B, b, RBRI, GBRI,

CIVE, EXG, RGBVI
Spectral indices highly

correlated with LAI in IF

β

VAR_G, VAR_R, MEA_R, MEA_G,
VAR_B, MEA_B, CON_R, CON_G,

CON_B, DIS_R, DIS_G, DIS_B,
HOM_B, HOM_R, HOM_G, ASM_G

Texture features highly
correlated with LAI in IF

γ
R, G, B, r, g, b, EXG, VARI, GRRI, GBRI,

RGBVI, GLA, MGRVI, ExGR, CIVE
Spectral indices highly

correlated with LAI in YF and FE

δ

MEA_R, VAR_R, HOM_R, DIS_R, ENT_R,
ASM_R, COR_R, MEA_G, VAR_G, HOM_G,

DIS_G, ENT_G, COR_G, MEA_B, VAR_B,
HOM_B, DIS_B, ENT_B, ASM_B, COR_B

Texture features highly
correlated with LAI in YF and FE

Note: High correlation is defined as significance level of p < 0.01.

http://www.r-project.org/
http://www.r-project.org/
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3.2. LAI Modeling and Accuracy Verification
3.2.1. Unitary Linear Model Construction and Precision Analysis

According to the above correlation analysis results, the comparative analysis of LAI
estimation models was conducted based on five single-factor and two multi-factor modeling
methods. In single-factor modeling, the parameter with the highest correlation was selected
as the independent variable in each period (Table S1), and five conventional functions were
used for modeling. The model accuracy and other details were shown in Table 5. The fitting
effect of quadratic polynomial function was the best in all growth stages, and the ability
of prediction was general. In particular, R2 only reached 0.466 in IF, so the model should
be prudently applied. In order to verify the applicability of the model, the validation set
data were used to verify the model; moreover, fitting analysis was performed between the
predicted and measured values. Figure 5 showed that in general the predicted value in the
low value interval was lower than the measured value, while in the high value interval
it was higher than the measured value. The precision of single-factor model was not
preferable to model the monitoring LAI, so the multi-factor model needed to be established.

Table 5. Comparison of single-factor model for kiwifruit LAI in each growth stage.

Growth
Stages

Independent
Variable Modeling Equation R2 RMSE nRMSE/%

IF R y = 0.0005x2 − 0.1028x + 5.2873 0.466 0.081 15.86
YF ExGR y = −0.00001784x2 + 0.00006079x + 1.004 0.719 0.061 14.22
FE ExGR y = 0.00006931x2 + 0.03275x + 4.215 0.736 0.108 17.84

3.2.2. LAI Estimation Models Established by Spectral Index Only

The results in the SWR analysis are shown in Table S2. The combinations and quanti-
ties of spectral indices are diverse from each other in different growth stages. Iterated by
the SWR model, the quantity of spectral indices was the most in YF with 9, followed by
FE with 6 and IF with 3. The SWR analysis results indicated that the modeling R2 reached
0.541–0.819, and RMSE and nRMSE were 0.049–0.102 and 11.55–16.81% respectively (Ta-
ble 6). In addition, verification R2 was 0.690–0.819, RMSE and nRMSE were 0.057–0.084 and
13.10–16.36%, separately (Figure 6). As seen here, there was a certain extent of improvement
after adopting the SWR model in model accuracy at different growth stages. The analysis
results of the RFR model showed that the modeling R2 of each period was greater than
or equal to 0.965, with the highest reaching roughly 0.973. In terms of validation sets, the
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RFR model performed best at YF. Furthermore, the RFR model was consistently better
performing than the SWR model at each growth stage.
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Table 6. Comparison of SWR and RFR analyses for spectral parameters in each growth stage.

Growth Stages Modeling
Method

Spectral
Parameters AIC R2 RMSE nRMSE/%

IF
SWR G, b, GBRI −323.23 0.541 0.075 14.70
RFR α - 0.965 0.021 4.05

YF
SWR R, G, r, g, VARI, GRRI, GBRI,

RGBVI, GLA −365.10 0.819 0.049 11.55

RFR γ - 0.973 0.019 4.42

FE
SWR R, G, g, GRRI, GBRI, MGRVI −278.64 0.765 0.102 16.81
RFR γ - 0.972 0.035 5.80

3.2.3. LAI Estimation Models Combined with Texture Features

The spectral indices and texture features were combined to construct LAI estimation
models of kiwifruit based on the SWR and RFR algorithms respectively. The independent
variable sets of the SWR model in Table 7 are the results screened by stepwise regression
(Table S3) with the variables combining spectral indices and texture features. YF contains
the most variables with 27, followed by FE with 21, and IF with 18. Due to the addition of
texture information, the prediction accuracy of the two models was significantly improved
at each growth stage. In particular, the SWR model performance of IF was significantly
improved after combining the spectral indices and texture feature, with R2 increased
by 0.318 to 0.859 at least; RMSE and nRMSE increased by 0.034 and 6.56% to 0.042 and
8.14%, respectively. Moreover, compared with the inversion only by the spectral index, the
modeling R2 values of the RFR model with integrated texture features at each period were
all greater than or equal to 0.968, and the RMSE and nRMSE were 0.032 and 5.30% at least.
According to the validation results (Figure 7), the RFR model had the best performance in FE,
and the R2, RMSE, and nRMSE were 0.829, 0.069, and 13.49%, respectively. Coincidentally,
after combining the spectral indices and texture information the RFR model performed
better than the SWR model at each period.
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Table 7. Comparison of SWR and RFR analyses for combined texture features in each growth stage.

Growth Stages Modeling
Method

Spectral
Parameters AIC R2 RMSE nRMSE/%

IF
SWR

R, G, B, b, GBRI, RBRI, RGBVI,
VAR_R, HOM_R, CON_R, DIS_R,
MEA_G, VAR_G, ASM_G, VAR_B,

HOM_B, CON_B, DIS_B

−368.88 0.859 0.042 8.14

RFR α + β - 0.968 0.020 3.88

YF
SWR

R, G, B, g, VARI, GRRI, GBRI,
RGBVI, GLA, MGRVI, MEA_R,

VAR_R, DIS_R, ENT_R, ASM_R,
COR_R, VAR_G, HOM_G, DIS_G,
ENT_G, COR_G, MEA_B, VAR_B,
HOM_B, DIS_B, ENT_B, ASM_B

−465.04 0.978 0.017 3.99

RFR γ + δ - 0.978 0.017 4.08

FE
SWR

R, B, r, g, VAAI, GRRI, GBRI,
RGBVI, GLA, MGRVI, VAR_R,

ENT_R, COR_R, MEA_G,
HOM_G, ENT_G, COR_G,

MEA_B, HOM_B, ENT_B, ASM_B

−343.92 0.947 0.048 7.99

RFR γ + δ - 0.977 0.032 5.30
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Figure 7. Validation results of combined texture feature models with SWR and RFR in each growth
stage. (a) With SWR model in initial flowering stage (IF); (b) with SWR model in young fruit stage
(YF); (c) with SWR model in fruit enlargement stage (FE); (d) with RFR model in initial flowering
stage (IF); (e) with RFR model in young fruit stage (YF); (f) with RFR model in fruit enlargement
stage (FE).

3.3. Model Selection and Inversion Mapping

From the perspective of the model accuracy, the RFR model with spectral indices
combined with texture features was better for LAI estimation of kiwifruit in the study area
at all growth stages. The image matrix for RGB bands and texture features in the three
growth periods were respectively read and substituted into the optimal model, then the
spatial distribution of LAI was symbolized by grading (Figure 8). It can be seen that in
the initial flowering stage, the kiwifruit had just blossomed, and its leaves were small and
sparse, so LAI was mostly less than 0.6 in the study area. At the young fruit stage, vines
of kiwifruit benefited from sufficient rain and light and began to climb; their leaves piled
up and staggered, so LAI generally ranged from 0 to 3.2. During the fruit enlargement
stage, kiwifruit nutrition was provided for fruit accumulation. Although LAI was smaller
in some areas than in the previous period, canopy leaves were also flourishing in most
areas, with the overall LAI values ranging from 0 to 4.0.
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4. Discussion
4.1. Feasibility of LAI Estimation by UAV RGB Images

Through the analysis of kiwifruit observation data in the study area and UAV RGB
images obtained in three periods, it was proved that observed LAI was highly correlated
with some spectral indices and texture information extracted from RGB and GLCM images
to estimate LAI of kiwifruit. Nevertheless, on account of the diverse performance of
these indices, it was complicated to establish general models between LAI and numerous
spectral parameters. In particular, the unitary linear model was not recommended for LAI
estimation of kiwifruit. On the contrary, the model based on machine learning algorithm
performed well in estimating LAI, which could improve the estimation accuracy and
reduce the workload [11,54]. In addition, the estimation accuracy established by the RFR
model was satisfied for LAI estimation of kiwifruit at field scale. There have been many
research results using UAV to monitor important crop growth parameters [7,55], such
as chlorophyll content, nitrogen nutrient index, leaf area index, biomass, etc. Compared
with the research results of many scholars, the feasibility of our results has been proved.
Compared with the traditional LAI measurement method, this method illustrated the
characteristics of nondestructive, convenient, and low-cost monitoring. Meanwhile, UAV
can also realize a larger area of monitoring for kiwifruit LAI compared to the optical
instrumentation method. As we all know, hyperspectral platforms contain many bands,
resulting in complexity and redundancy in practical agricultural applications, the operation
of which was more sophisticated [56]. The UAV platform with only three bands of red,
green, and blue could also meet the accuracy requirements of kiwifruit growth recognition
and monitoring; the operation was easier, and the application was less complicated in the
actual environment. Thus, it had certain potential to estimate LAI of kiwifruit by UAV
RGB images.
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4.2. Advantages of Estimation after Combining with Texture Features

It was observed that the model accuracy of combining texture information was better
than that of spectral index inversion only, for both the SWR or RFR models. The conclusion
was consistent with that obtained by many scholars in the estimation of aboveground
biomass of winter wheat and in diagnosis of winter-wheat water stress, etc. [12,33,37].
Because the spectral index integrating texture features includes both spectral and texture
information of UAV images, it can essentially explain and construct kiwifruit growth from
a two-dimensional perspective; therefore, the model accuracy is significantly improved. It
is strongly suggested that more attention should be paid to the potential combination of
texture features with spectral indices instead of the spectral indices only when analyzing
agricultural-related applications [37]. At present, quantitative estimation of crop physio-
logical and biochemical parameters is mainly focused on the selection of new vegetation
indices, especially the combination of spectral parameters. Information extraction mainly
relies on the spectral features of remote sensing images; however, remote sensing images
are not limited to spectral features. All kinds of the spatial texture features of images are
also important data sources of quantitative remote sensing. In addition, with the develop-
ment of remote sensing in the future, it is hoped that more high-resolution meteorological
satellite images will be added to enable further development of crop growth monitoring.
In this study, the spectral indices extracted from the visible image were combined with
the texture feature information of the image itself. In future studies, kiwifruit’s own state
and environment parameters should be added into the estimation such as the height of
the climbing above the pergola, mean daily temperature, mean daily solar radiation, etc.,
to demonstrate the model from the three or multiple dimensional perspectives in LAI
estimation, so that it is possible to improve the accuracy of the model and simulate the
growth situation of kiwifruit more closely.

4.3. Model Optimization Selection of LAI

In this paper, univariate and multivariable models were used to estimate LAI of
kiwifruit. Among many univariate models, the accuracy of the quadratic polynomial
model was relatively high, which was limited to making a simple prediction for young
fruit stage and fruit enlargement stage, while the prediction accuracy of the model in
the initial flowering stage was far from the inversion requirement. Compared with the
univariate regression model, the inversion effects of multivariate model were improved
significantly. This was relatively consistent with the current LAI estimation results of most
crops [5,57,58], indicating that there was a certain quadratic polynomial fitting relationship
between LAI and specific spectral indices. However, with the increase of variables, the
multivariable model based on MLA was a better solution for LAI estimation. From the
perspective of the differences between the two MLA models selected, this study concluded
that, compared with the SWR model, the RFR model was more suitable for LAI estimation
of kiwifruit. There have been various researchers exerting much effort in the area of crop
growth modeling, who have concluded that stepwise regression is more suitable for the
estimation of wheat crop phenology and crop yield [59,60]. Furthermore, the study of
some researchers proved that random forest had advantages in estimating the chlorophyll
content of apple leaves in the orchard [61]. The reason for the difference between the above
conclusion and this study could be that there were some differences in crop growth trend
and indices of estimation, and possibly also be related to crop varieties and growth period.
Meanwhile, the mechanisms of the impacts of kiwifruit growth monitoring on machine
learning should be further studied, because they always have an excellent performance in
classification and regression. By using more advanced methods such as machine learning
and deep learning involving multiple layers to identify crop growth, more extensible crop
growth monitoring models will be selected. In this study, three representative growth
periods of kiwifruit within one year were adopted to construct the model. In the selection
of location and period, kiwifruit samples of diverse years and locations should be added
in future investigations to obtain a more widely applicable estimation model. In addition,
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the values measured by CI-110 canopy analyzer were used as the calibration data of LAI
in this study, which had the advantage of convenience and the measurement based on
the characteristics of the optical instrument was more accurate and reliable in calibrating
data. The measurement of LAI of kiwifruit by the CI-110 canopy analyzer is an extension
of the study on orchard growth monitoring. However, additional instruments and methods
should be used in the study of kiwifruit growth status as a supplement in follow-up studies.

5. Conclusions

In the investigation, spectral indices and texture features were extracted from UAV
RGB images in the diverse kiwifruit growth period, and the LAI estimation model and
spatial distribution were conducted by a series of new variable sets, constructing the single-
factor and MLA models at the corresponding period. Notably, polytomy variables models
with MLA performed well on estimating LAI, which could improve the estimation accuracy.
In particular, a series of the new index sets combining spectral and textural information
had achieved a higher precision when estimating the LAI, of which the validation R2 was
0.820 with SWR model in FE. Therefore, the new indices were suitable for the monitoring
of kiwifruit growth model and it was strongly suggested that the spectral and textural
information be combined in the growth monitoring of kiwi orchard. Furthermore, using the
RFR model significantly improved the predictability and accuracy of the model according to
the R2, RMSE, and nRMSE values. Verification results indicated that the prediction accuracy
of models among the diverse growth stages was better when using the RFR model and the
validation accuracy (R2 = 0.829) in FE was the best. In conclusion, the inversion technique
with UAV combining spectral indices and texture features can provide a cost-effective, fast,
and effective method for kiwifruit growth monitoring. Meanwhile, it can also realize the
large-scale and high-quality monitoring of kiwifruit orchards, providing a theoretical basis
for kiwi growth investigation.
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each growth stage.
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