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Abstract: Satellite crop detection technologies are focused on the detection of different types of
crops in fields. The information of crop-type area is more useful for food security than the earlier
phenology stage is. Currently, data obtained from remote sensing (RS) are used to solve tasks related
to the identification of the type of agricultural crops; additionally, modern technologies using AI
methods are desired in the postprocessing stage. In this paper, we develop a methodology for the
supervised classification of time series of Sentinel-2 and Sentinel-1 data, compare the accuracies
based on different input datasets and find how the accuracy of classification develops during the
season. In the EU, a unified Land Parcel Identification System (LPIS) is available to provide essential
field borders. To increase usability, we also provide a classification of the entire field. This field
classification also improves overall accuracy.

Keywords: crop detection; sentinel-1; sentinel-2; supervised classification; time series; agriculture;
food security

1. Introduction

Satellite crop detection technology is focused on the detection of different types of
crops in the field in the early stage before harvesting. There exists a large area of domains
where such technologies can be used [1–5]. As examples, we can mention:

• The public sector and organizations dealing with food security, e.g., the Common Agri-
culture Policy [6] in Europe, GEOGLAM/GEO monitoring [7] and FAO agriculture
production monitoring [8];

• The food industry, investors and business owners for their strategic decisions, invest-
ment making and sustainability forecasts [9];

• Insurance brokers (risk assessment, data collection, client claim verification, etc.) [10];
• Agriculture machinery producers (information about crops are important for combi-

nations with other information and management) [11].

Multispectral satellite images are used in remote-sensing crop detection. Remote
sensing has the advantage of providing information over a large area in a relatively short
time. After processing, the images can be used to produce thematic maps. The act of
processing the data into maps is called image classification [12]. Two types of classification
exist: supervised and unsupervised classification [13].

1.1. Classification

In supervised classification, the analyst selects pixels from the input image based
on knowledge of the land cover, also called “training sites” [14]. Each training site is
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placed in the spectral space based on its values of input layers. The analyst then chooses
a statistical rule (an algorithm) that assigns every pixel of the input layers to one of the
predefined classes.

Unsupervised classification does not require any prior information about the area of
interest [12]. A large number of pixels are analyzed and then classified into several classes
based on statistical groupings of pixels in this type of categorization [14].

The first technique, supervised classification, is the most commonly used for quan-
titative analysis of remote-sensing image data [13]. Generally, supervised classification
includes the following practical steps [13]:

1. Output classes—the supervisor determines the number and meaning of the de-
sired classes.

2. Training sites—the supervisor chooses known pixels which represent each of the
output classes defined in step 1. Training data can be acquired using site visits,
additional measurements, maps, imagery of different origins or photo interpretation
of the input layers. When a set of training pixels lies in a region enclosed by a border,
we call it a training field;

3. Spectral signature—irrespective of the chosen algorithm, the positions of the training
pixels in the spectral space are calculated by the classification software.

4. Classification—each pixel in the image is assigned to one of the classes defined in
step 1, whereas in step 2 the supervisor labels only a small portion of the pixels,
and all pixels are assigned to a predefined class based on the chosen statistical rule
(algorithm);

5. Thematic map production—classification is visualized, the number of pixels in each
class may be summarized and from that class, the area can be derived.

6. Accuracy—an important step is to assess the accuracy of the final product.

Supervised classification has the potential to be more accurate than unsupervised
classification. However, it is highly dependent on the training sites as well as the skill of
the image analyst and the spectral distinction of the classes [14]. If several classes are very
similar in terms of spectral reflectance (e.g., annual versus perennial grasslands), classifica-
tion errors will tend to be high. Supervised classification requires more care in processing
the training data. If the training data is poor or unrepresentative, the classification results
will also be poor. In general, supervised classification requires more time and money than
unsupervised classification, so both methods have advantages and disadvantages.

Most land-cover types are usually classified using a single-date image. This is because
land cover does not change rapidly. Crops cultivated on fields, however, undergo fast
changes in several months. During the vegetation season, the crop is planted, grows and is
harvested. The difference among phenology stages of individual crop types can be used to
distinguish crop types from each other. The substitution of single-image classification by
time-series classification has a great positive impact on classification accuracy [15–18].

1.2. Overview of Relations of Phenology and Earth Observation

Phenology is a branch of science that studies the periodic events of biological life
cycles that depend on many external environmental influences, such as weather and
climate changes and other ecological factors. Over time, species have evolved in response
to their environment and adapted specifically to biotic and abiotic factors. Because of
these interconnections, the study of phenology is useful in many ways. For example, the
study of a plant can provide information about the environment in which it evolves, and
conversely, the study of biotic and abiotic factors can help to understand how a plant
responds to environmental factors [19]. Moreover, phenological events are easy to observe.
Therefore, this science is used in many disciplines such as ecology, climatology, forestry
and agriculture.

In agriculture and horticulture, phenology has been used for a very long time. These
observations are essential for many practical purposes. They allow, among other things, the
careful selection of crops and varieties adapted to the environment and the organization
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of rotations. They also play an important role in the choice of irrigation, fertilization and
protection against pests and diseases. These observations can also be useful in preventing
the risk of frost damage and in predicting harvest dates. By studying the phenophases of
different crops and taking the right measures at the right time, it is therefore possible to
improve management, increase yields, achieve greater stability in production and have
better-quality food [20].

Today, climate change impacts all ecosystems and threatens the balance of global
food production. In addition, the world population continues to grow (9.7 billion people
estimated in 2050 according to the United Nations) [21]. The scientific community must
analyze the impacts of climate change and anticipate their consequences in order to propose
concrete solutions in terms of the management of living resources. Phenological traits
are key characteristics of climate adaptation and are of particular interest to the scientific
community [19,22].

Efforts have been made worldwide to enlarge the phenology databases. Data collection
and observations have been facilitated by technological advances, progress in computing
and satellite remote sensing, which has allowed the development of research methods and
models on phenology [19].

Nevertheless, in situ phenological data are only available over limited areas [19]. Since
1970, technical advances in ground-based satellite observations have made it possible to ob-
serve phenology on a larger scale. Several satellites can be used for such observations, such
as AVHRR (since 1980), MODIS (since 2000) and more recently VIIRS (since 2012) [19,23,24].
The phenology observed at the landscape scale by earth-observation satellites is called
land-surface phenology (LSP) [25]. To study phenology at this scale, vegetation indices
(VI) are created from land-surface reflectance acquired by satellite optical sensors. The
phenology observations obtained by LSP are different from in situ phenology observations.
Because they are based on a regional and global scale, these observations can be compared
with regional climate information. This makes LSP remote sensing an important biological
indicator for detecting the response of terrestrial ecosystems to climate variation.

It is now possible to use the time series of vegetation index response curves to track
crops over a growing season. Based on results presented in [26], the development of a
vegetation index during the vegetation season was visualized (Figure 1).

Figure 1. Time-series of Enhanced Vegetation Index profiles of field averages for chosen crops in
Rostenice farm in 2018.
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1.3. Vegetation Indices

Vegetation indices have been widely used in agriculture for decades. They serve as a
tool for monitoring crop health and supporting farmers’ decisions. Vegetation indices are,
along with soil and water indices, part of spectral indices which come from satellite multi-
spectral sensors. Mathematically, spectral indices are combinations of surface reflectivity
of two or more wavelengths, converting values of multiple spectral bands into a single
value [27]. The normalized difference vegetation index (NDVI) and enhanced vegetation
index (EVI) are among the most widely used indices [19]. The spectral response of green
leaves on which these two indices are based is characterized by strong chlorophyll absorp-
tion in the red band and strong reflectance of the leaf structure in the near-infrared band of
optical sensors [19]. Nevertheless, in dense vegetation NDVI suffers from saturation [28]
which makes the index less suitable for time-series monitoring. Other widely used VI are
the (modified) soil-adjusted vegetation indices (SAVI and MSAVI) [29]. They are used most
commonly in medium- and low-resolution imagery and low-density vegetation cover due
to their ability to minimize soil brightness influences [30]. An appropriate well-established
index not suffering from mentioned limits is the enhanced vegetation index (EVI) [31].

VI =
NIR − RED

NIR + 6 RED − 7.5 BLUE + 1

This index was originally developed over NDVI by optimizing the vegetation signal
in areas of high leaf area index (LAI). It is most useful in high LAI regions where NDVI
may saturate. It uses the blue reflectance region to correct for soil background signals and
to reduce atmospheric influences, including aerosol scattering [32]. Interpretation of the
EVI values is not important in this study because classification takes into account only the
index values.

The radar vegetation index RVI (RVI4S1 for using Sentinel-1 radar data) has been
proposed as a method for monitoring the level of vegetation growth, particularly when
time series of data are available. RVI is a measure of the randomness of the scattering and
is sensitive to biomass; vegetation water content also has low sensitivity to environmental
condition effects.

The RVI is the measure of randomness of scattering and can be written as

RVI =
8σHV

σHH + σVV + 2σHV

where σHH and σVV are polarized backscattering coefficients and σHV is the cross-polarization
coefficient in power units. RVI generally ranges from 0 to 1 mostly, similar to how NDVI
may exceed 1 in some cases when double-bounce scattering is encountered. The RVI is
near zero for a smooth bare surface and increases as the crop grows (up to a point in the
growth cycle) [33].

1.4. Land Parcel Information System

The Common Agricultural Policy (CAP) finances, via the European Agricultural
Guarantee Fund, direct payments to farmers and measures to face environmental chal-
lenges. To guarantee payments are well-distributed, the CAP depends on the Integrated
Administration and Control System (IACS). This system comprises solid administrative
and on-the-spot checks of subsidy applications and is managed by the member states. The
Land Parcel Information System (LPIS) is a key component of the IACS. It contains imagery
(aerial or satellite photographs) of all agricultural parcels in the EU. LPIS aims to locate
all eligible agricultural land and calculate their maximum eligible area. The area is key
information for the calculation of the subsidy amount. Contrariwise, LPIS serves as a basis
for cross checking during the administrative control procedures and on-the-spot checks by
the paying agency. Member states usually use their LPIS for other environmental rules and
restriction applications [34].
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1.5. Objectives of Research

The main objectives of our research are:

• To determine which input dataset gives the best crop classification accuracy;
• To answer the questions, “What is the development of crop classification accuracy

during the vegetation season?” and “When is the classification sufficient for serious
yield prediction?”;

• To determine how to ensure data availability for crop classification—what is the
accuracy of classification based on Sentinel-1 data?

2. Materials and Methods
2.1. Pilot Areas

The first experiments with supervised classification were carried out on the Rostenice
farm, South Moravia, Czech Republic (Figure 2). In the study year of 2020, the temperature
was significantly higher (+2.5 ◦C) and the year was extraordinarily rich in precipitation
(+144 mm) compared to the long-term averages (10.8 ◦C and 517 mm, respectively). It was
the second-rainiest year since the beginning of the weather records (1961). Despite the
cloudy and rainy weather, it was possible to find useful satellite images for crop analyses.
The terrain is flat, sometimes slightly undulating. The altitude ranges from 194 to 376 m
above sea level.

Figure 2. Overview of the experiment site.

2.2. Used data
2.2.1. Field data

LPIS is regularly used by the farmers, as subsidies need to be updated yearly. It
is therefore a valuable source of field data. The availability of LPIS data is dependent
on the member state which manages it. In the Czech Republic, field borders from LPIS
are publicly available through public export. This dataset does not contain crop data.
Each farmer, however, can export their data through private export which also contains
crop-type attributes.
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This study uses data from Rostenice farm. The farm granted the crop data together
with field borders. The Rostenice farm company manages 870 fields, with a total area of
10,094 ha. In this study, we used crops that occupy more than 1.5% of the overall area listed
in Table 1.

Table 1. Crops whose area is greater than 1.5% of the total.

Crop Type Area [ha] Portion of the Crop [%]

Spring barley 3914 39

Winter wheat 1756 17

Winter oilseed rape 1263 13

Corn for grain 1059 10

Corn for silage 910 9

Two-row winter barley 359 4

Spring field peas 186 2

Poppy 164 2

Total 9447 96

2.2.2. Satellite Data

In the study, satellite data from Sentinel-1 and Sentinel-2 satellites were used. These
data have an optimal combination of spatial resolution (10 m), time resolution (2–3 days)
and cost (free). The Sentinel satellites are part of ESA’s space program, Copernicus. The
data from all Sentinel satellites are freely available on the Copernicus Open Access Hub
maintained by ESA [35].

Sentinel-2 Level 1C images are downloaded from ESA Open Access Hub [35]. Atmo-
spheric corrections are being calculated utilizing Sen2Cor software resulting in Level 2A
images that are used for further image processing and vegetation index calculation (NDVI,
EVI and others).

Sentinel-1 data request quite extensive preprocessing in several steps, using Sentinel-1
toolbox functions placed in the SNAP Graph Builder process. These include calibration,
speckle filtering, terrain correction and others (see Figure 3).

Figure 3. Sentinel-1 processing steps.

After finalizing the preprocessing steps, the Radar Vegetation Index for Sentinel-1
(RVI4S1) was calculated.

All the satellite-data processing was carried out on our own built cloud environment
based on open-source software (OpenStack, CentOS Linux, etc.). Image- and spatial-data-
processing software is also open-source (SNAP, QGIS, JupyterHub, GDAL, OrfeoTool-
box, etc.)

Sentinel-2 is a state-of-the-art satellite delivering optical data of the studied locality
every two or three days with band resolutions 10, 20 and 60 m. Based on the phenology of
the crops planted on the area of interest, the period of interest was determined and named
“vegetation season”. For the studied crops (Table 1), it runs from the start of March to the
end of August. Following the survey of data availability, processing and infrastructure
preparation, the methodology was prepared in 2019. The main research was carried out
in the vegetation season of 2020. In 2021 it was impossible to use a meaningful amount of
Sentinel-2 images due to lingering cloud cover over the studied area.
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There were 74 Sentinel-2 images of the studied locality in the vegetation season 2020.
However, it was impossible to use 44 of them due to clouds covering most of the image
(Figure 4). The remaining 30 images could be hypothetically used for the analysis of part
of the farm or individual fields; however, to carry out crop classification, it was essential
to use cloud-free images as input layers. Satellite images downloaded from the ESA hub
contained metadata about the approximate cloud cover of the scene. There were 19 images
that had cloud cover under 10% of the scene area and 9 images with less than 1% of the
area under the cloud cover. To have the images equally distributed, one image per month
(from March to August) was selected to enter the classification calculation. The dates were
18 March 2020, 22 April 2020, 22 May 2020, 4 June 2020, 1 July 2020 and 28 August 2020,
making six EVI layers in total.

Figure 4. Cloud coverage of the images available across the whole vegetation season 2020.

Filtering Sentinel-1 images was significantly easier. Sentinel-1 satellites make images of
Rostenice farm every 1 or 2 days. To make the calculations less computationally expensive
and retain classification quality at the same time, the number of input images was reduced
to one image every 6 days starting 16 March 2020 and ending 31 August 2020. There were
26 RVI4S1 layers in total.

2.3. Used Tools and Algorithms

The preprocessed data were loaded into QGIS version 3.16 and classified using Semi-
Automatic Classification Plugin version 7 (SCP). The plugin is intensively developed
by Luca Congedo [36] and enables many earth-observation operations, including the
downloading of satellite images of various sources, preprocessing, clustering, classification
and accuracy calculation.

Supervised classification is a common tool to determine land cover. The quality of
the output product is strongly dependent on the quality of the defined training areas [37].
The process of definition of output classes is work-intensive, as the supervisor must select
a representation of all the desired classes. The training samples for each class should be
distributed throughout the layer.

The SCP plugin offers three classification algorithms:

1. Minimum Distance firstly calculates the mean vector for each output class [14]. Each
pixel is then assigned to a class based on the shortest distance in the multidimensional
space. The minimal distance means maximum similarity [12]. The Minimum Distance
algorithm is widely used for classification using remote-sensing data [38]. Theoret-
ically, the algorithm can use one of the following distances: (a) Euclidean Distance,
(b) Normalized Euclidean Distance and (c) Mahalanobis Distance. The SCP Mini-
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mum Distance algorithm uses Euclidean Distance [36]. This algorithm was chosen to
perform the supervised classification because it gives good results in good time.

2. Maximum Likelihood is based on the probability of each belonging to a predefined
class [39]. It assumes normal distribution for each class in each band. Each pixel
is put in the class that has the highest probability [14]. Maximum likelihood is a
computationally expensive and accurate classifier [40]. It is an optimal classifier when
the probability distribution functions of classes are Gaussian [12].

3. Spectral Angle Mapping uses the n-dimension angle to match unclassified pixels to
training data. The spectral similarity between unclassified pixels and training data
is calculated as the spectral angle. Mathematically it is a vector with dimensionality
equal to the number of bands [14]. Spectral angle goes from 0, when signatures are
identical, to 90 when signatures are completely different. Therefore, a pixel belongs
to the class with the lowest angle [36]. It is usually used with data of high spectral
dimensionality—a high number of bands or spectrometers recorded [13].

2.4. Experiments Provided

The SCP plugin enables the user to create band sets which are then used as an input
to further analyses. The bands in the band sets can be of different origins. The innovative
approach of this experiment was to put index layers from different dates and satellites into
one band set. By making a vegetation index from a multispectral image, we preserve the
important information while making a single-band raster from a multiband image. Thanks
to this, we can put more layers from different dates in one band set. Index layers come
from both Sentinel-1 and Sentinel-2, radar vegetation index for Sentinel-1 (RVI4S1) and
enhanced vegetation index (EVI), respectively.

2.4.1. Supervised Classification for Agricultural Land

As mentioned above, there are two steps when performing supervised classification
of a satellite image(s). First is the learning step, in which the supervisor (human) manually
identifies the desired categories in the image. The database of the polygons which contains
attribute information about the output class is called the “seed sample” or an SCP “training
input”. In our experiment, there were altogether 43 training inputs (polygons) for seven
categories of the crop (Table 2). For these vector layers, their place in the spectral space—the
so-called signature—was calculated. Second is the prediction step, where the algorithm
predicts the class for all the pixels of the input layers based on the signature calculated
in the first step. In pixel-based classification, the algorithm takes each pixel individually,
and using specific decision rules, puts the pixel in one of the predefined classes. In our
study, the minimum distance algorithm was applied. It assigned each pixel to one of the
seven predefined classes. This process was repeated for all the band sets. As there are many
isolated pixels, the performance of the classification was improved by a sieve filter, making
the result more compact. The described process is illustrated in Figure 5.

Table 2. Training inputs.

Class Name Count of Training Inputs Area Summary [ha]

Spring barley 3 88.2

Winter wheat 7 215.5

Winter oilseed rape 10 270.9

Corn for grain and silage 10 330.0

Two-row winter barley 5 139.4

Spring field peas 3 75.7

Poppy 5 55.6

Total 43 1175.3
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Figure 5. Flowchart of methodological process.

2.4.2. Majority Classification for Field

Although the number of isolated pixels was reduced by the sieve filter, there were
usually more classes in one field. When the desired output information should be clear
and not a probability of the present categories, the whole polygon must be assigned to
the dominant class. Each field was assigned to the most frequent class using the Zonal
Statistics tool. The accuracy of this product differs from pixel-by-pixel accuracy and can
also be measured. With label rules, the results can be visualized to be suitable for visual
interpretation.

2.4.3. Individual Crop Classification

For further improvements and a more detailed understanding of crop types, the
classification and accuracy development of individual crops was desired. The accuracy was
assessed for all seven classified crops and months of interest. The calculations were realized
only for a combination of Sentinel-1 and Sentinel-2 data. The accuracies of individual
crop classification are parts of the overall accuracy calculation for a combination of EVI
and RVI4S1.

3. Results
3.1. Statistical Evaluation of Results
3.1.1. Supervised Classification of Agricultural Land

Several layers of supervised classification were created in order to compare the results
from three aspects (see also Figure 6):

1. The input band sets—Sentinel-1 vs. Sentinel-2. Three types of input were compared.
The input layers come from the indices EVI, RVI4S1 or a combination of both. RVI4S1
layers had the lowest accuracy. When the classification was made based on 26 RVI4S1
layers from March till August and was improved by the sieve filter, the overall
accuracy came to 67%. When the input was made of seven EVI layers, the overall
accuracy reached up to 91% without sieve improvement. The third set of inputs
consisted of the combination of EVI and RVI4S1 layers. The overall accuracy of the
classification coming from the band set reached 89% without the sieve filter.

2. Number of layers. As expected, the overall accuracy of the supervised classification
roses when more data came into the input band set. If we want to identify the crop in
March, there is 51% overall accuracy with March satellite images from both Sentinel-1
and Sentinel-2. When we add April data, the accuracy jumps to 68%. By further
adding index layers from later months, we can obtain up to 93% overall accuracy.

3. Sieve filtering. The resulting layers, which were postprocessed by the sieve filter,
show higher accuracy than without it in all classifications. The effect of the sieve filter
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is stronger on classification with RVI4S1 because these classifications contain more
isolated pixels and small islands of pixels than classifications coming from EVI. The
sieve filter applied on EVI+RVI4S1 classifications has a higher effect, with fewer data
(early months) and lower accuracy than with high-accuracy classifications.

Figure 6. Comparison of all classification products.
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From the example of the confusion matrix of individual classes (Table 3) it is possible
to explore how many pixels of a specific crop were misclassified as other crop types. This
shows how similar the crops are during the vegetation season. The rest of the confusion
matrices are appended in Appendix A.

Table 3. Pixel-count confusion matrix of RVI4S1+EVI May classification after sieve filtering. Classified
rows contain classified classes and the number of pixels that were assigned to a reference class. In the
reference columns, there are true crops from the farmer’s data.

Reference/Classified 1—Spring
Barley

2—Winter
Oilseed

Rape

3—Corn for
Grain and

Silage

4—Winter
Wheat

5—Spring
Field Peas 6—Poppy

7—Two-
Row Winter

Barley
Total

1—Spring barley 333,951 1720 488 1514 631 40 3 338,347

2—Winter oilseed
rape 1446 108,186 227 25,887 36 0 626 136,408

3—Corn for grain
and silage 2870 801 144,781 2456 1799 2758 3 155,468

4—Winter wheat 2334 3917 21 108,388 0 0 4969 119,629

5—Spring field
peas 19,334 284 11,599 475 12,889 371 0 44,952

6—Poppy 5189 11 28,962 200 2418 11,826 40 48,646

7—Two-row winter
barley 185 2412 1 22,113 0 0 27,661 52,372

Total 365,309 117,331 186,079 161,033 17,773 14,995 33,302 895,822

3.1.2. Majority Classification for Field

In order to make the results easy to understand and practical to use, every field was
assigned one prevalent class based on the highest representation of a class within the field.
The real and classified attributes were visualized with multilabels (Figure 7).

Figure 7. Visualization of the majority classification of Sentinel-1’s whole vegetation season classifica-
tion (26 layers) [41].
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The accuracy of the majority classification is summarized in Table 4. The accuracy
values are mostly slightly higher compared to the pixel classification. The highest value
is 96.3%. When processing Sentinel-1 data, the area of the field had an influence over the
accuracy. When small fields (less than 10 ha) were filtered out, the accuracy of the majority
classification increased in all months. On average, the accuracy improved by 9.6%. On the
contrary, if only small fields were kept in the dataset, the classification accuracy decreased
significantly; the mean fall was 10.7%.

Table 4. Overall accuracy for majority field classification.

Input Data Months\Index RVI4S1 + EVI EVI RVI4S1_all RVI4S1 ≥ 10 ha RVI4S1 < 10 ha

march 48.3% 44.4% 32.6% 36.2% 29.3%

march+april 71.6% 64.0% 27.9% 32.1% 24.1%

march+april+may 82.5% 84.4% 65.5% 80.9% 51.5%

march+april+may+june 85.7% 89.8% 68.4% 81.6% 56.5%

march+april+may+june+july 88.2% 92.2% 70.3% 84.3% 57.7%

march+april+may+june+july+august 88.0% 96.3% 71.3% 85.0% 59.0%

3.1.3. Individual Crop Accuracy

Individual crop classification shows more details than the overall accuracy of the
whole classified layer. The accuracy development is not equal for all the crop types. While
Poppy starts with 0% accuracy in March and ends with 97.5% accuracy in August, the
accuracy of Winter wheat rises from 62.0% to 80.1%, which makes only an 18.1% increase.
We see that Spring barley already has 91.4% classification accuracy in May and Corn is
recognized with 96.2% accuracy in June (Table 5).

Table 5. Classification accuracy development for individual crop types of combination of RVI4S1 +
EVI layers after sieve filtering.

Month/Crop Type March March + April March + April
+ May

March + April
+ May + June

March + April
+ May + June +

July

March + April
+ May + June +
July + August

Spring barley 57.6% 72.1% 91.4% 89.6% 92.1% 92.7%

Winter wheat 62.0% 59.8% 67.3% 71.5% 78.5% 80.1%

Winter oilseed rape 6.5% 86.3% 92.2% 93.0% 92.9% 96.4%

Corn for grain and silage 62.3% 62.8% 77.8% 96.2% 99.3% 99.5%

Two-row winter barley 68.7% 68.9% 83.1% 86.7% 97.6% 97.8%

Spring field peas 11.1% 22.6% 72.5% 80.7% 85.1% 84.5%

Poppy 0.0% 57.8% 78.9% 92.4% 96.6% 97.5%

Overall accuracy 51.0% 67.7% 83.0% 87.5% 91.1% 92.3%

3.2. Visual Interpretation

Chosen classification outputs were published using the HSLayers-NG web mapping
framework [41] and are available on the Agrihub web portal (Figure 8).

This application allows to visualize time series of data during the season by using date
selection control, applying data transparency and combining data with field data and data
from ground measurement. The map window can also be split and multiple layers can
be compared at one moment using the swipe control. Any other relevant data can be also
added to the map from other resources (WMS, files, etc.) to find possible correlations.
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Figure 8. Comparison of crop classification development in the season. Sentinel-1 and Sentinel-2
data-based pixel classification with input data from March + April on the left side and input data
from March to August on the right side [41].

4. Discussion

The agriculture of developed countries is strongly dependent on subsidies and there
is no sign that this should change in the future. More likely, subsidies will become even
higher and more important for landscape management. A potential utilization of this
method is checking agriculture subsidies.

Public availability of field borders (LPIS) supports necessary innovation in the agri-
cultural sector, especially in combination with open and quality satellite data of sufficient
space and time resolution, such as the Sentinel mission.

Sentinel-2 satellites produce excellent data but also have a serious limitation that
cannot be ignored. Due to the physical principle of the limit, Sentinel-2′s optical sensor
cannot be improved to overcome clouds. The ambition of satellite earth observation is to be
an essential part of the food industry in many ways. To make this possible, the data need
to be reliable and regularly available even if it is cloudy for a long period. In this study, we
investigated possible Sentinel-1 alternatives in case of scarcity of Sentinel-2 data. The radar
data are not degraded by clouds, so a usable Sentinel-1 image is ready on a regular basis.
Further preprocessing steps are needed to obtain the correct radar signal values. Even
after these adjustments, the radar vegetation index values for Sentinel-1 vary significantly
within a field.

In this study, EVI was identified as the most suitable vegetation index to be used as
input for the classification. However, not only one single index needs to be used. Similarly,
as EVI was combined with RVI4S1, it can be combined with any other optical vegetation
index. Ninety-one vegetation indices coming from the Sentinel-2 image were used as an
input for crop classification in [42]. Single-image classification used in that study was
upgraded to multi-image classification in our study. The available computational sources
together with an increasing number of Earth-observing satellites have led to increased
attention to the potential of multi-source satellite imagery, as is reviewed in [43]. There
are plenty of other satellites that could be added to crop-classification development efforts,
especially Landsat missions. Potential improvements of classification accuracy develop-
ment during the vegetation season can be achieved by comparison of the classification
algorithms, development of improved classification algorithms or application of machine
learning algorithms [44]. Further investigation in this field of study with emphasis on
development during the season would be beneficial as most of the studies care only about
the highest accuracies at the end of the season [17,18,42–44].

Another modern alternative coming into question is Unmanned Aerial Vehicles
(UAVs) [45]. They are ready to collect data whenever the user needs it and can go high
enough for even cloud cover to not be an obstacle. On the other hand, wind can make it im-
possible to fly a UAV. Moreover, the time consumption of a UAV flight is disproportionately
high compared with the satellite data download. The key decision element of choosing
the data acquisition platform is spatial resolution. If the purpose of the application is
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crop detection on a regional or national scale, there is no point in thinking about UAVs.
A resolution of 10 m which Sentinel satellites offer is just enough for most applications
concerning most common crops such as cereals, corn and oilseed rape (in Europe). It is
more profitable to grow these crops on large fields, as big machines are used to handle
them. It is not an exception when the fields are tens of hectares. On the other hand, there
are a lot of niche crops that are typically grown on a few acres. UAV’s spatial resolution
of several centimeters per pixel is fine for these high-value crops (grapevines, vegetables,
various kinds of berries, herbs, etc.). A promising idea worthy of further research is the
combination of satellite and drone data. The drone data can be used to increase the spatial
resolution and to calibrate the satellite data.

Crop-phenology dynamics inspired us to use time series of vegetation indices for
crop detection during different stages of vegetation growth. If the experiment will be
reproduced at another site, it is important to determine the specific period of interest based
on the phenology of the crops to be detected. Our work shows that the use of time series
can significantly improve the accuracy of the classification of individual crops compared
to single-image classification. Surprisingly, it is possible to have good estimates already
in April (72%) and very accurate results in May (84%). This could be important for many
purposes, especially for food security strategies but also for the food market. The earlier
reliable predictions are available, the more effective the reaction can be. Remote-sensing
crop detection is the key to global yield estimates. If we know how big an area is sown by
which crop, we only need an average yield per hectare to predict the yield and we do not
have to be surprised with the yields after harvest.

This study was intended as an experiment to learn how reliable satellite-data-based
crop classification is. We classified only fields where classification could be verified, i.e.,
where we have crop data from the farmer. This did not bring any added value to the farmer,
but we confirmed that it is possible to use this method in unknown fields and expect similar
accuracy. Supervised classification always needs some training data so the area cannot
be unknown. Nevertheless, when the field borders are available (for example LPIS), it is
possible to classify all the fields in the Sentinel tile using data from only a farmer or a few
farms. It is important to train all the classes which are desired as the outcome.

5. Conclusions

The main contribution of this study is the accuracy development of crop detection
during the vegetation season.

The results reveal a higher classification accuracy based on Sentinel-2 data than the
Sentinel-1-based classification. However, this does not mean that Sentinel-1 data are useless.
When there are enough Sentinel-2 data, it is better to use them. Nevertheless, a lack of
Sentinel-2 data can occur, and in this case, we are ready to use the Sentinel-1 alternative.

Based on the experiments, further research will continue. We assume that there is
still some space for improvement of crop-classification accuracy. Individual crop-detection
accuracy assessments showed that there are significant differences among crops. From the
confusion matrices, appended in Appendix A, we can learn which crop types were hard
for the classifier to distinguish between. These crop types can be better trained by adding
some training data. We will also deal with the utilization of unsupervised classification. It
is much less time-demanding, as there is no training stage and we do not need any other
data besides satellite data. Extensive cloud cover for most of the 2021 vegetation season
demonstrated that further research of a Sentinel-2 alternative is needed, as there is no
guarantee of the availability of these data.
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Appendix A Confusion matrices of the supervised classification

Explanatory notes:
Reference—from the farmer’s dataset, true
Classified—classification layer, prediction

1—Spring barley

2—Winter oilseed rape

3—Corn for grain and silage

4—Winter wheat

5—Spring field peas

6—Poppy

7—Two-row winter barley

RVI4S1+EVI-based classification before sieve filtering

Table A1. Error matrix for RVI4S1 + EVI-based classification before sieve filtering in March.

>ERROR MATRIX (Pixel Count)

>Reference

V_Classified 1 2 3 4 5 6 7 Total

1 214,785 337 55,360 141 6493 7172 14 284,302

2 60 7695 2588 14,683 229 0 789 26,044

3 154,390 3907 117,166 7725 8961 8224 19 300,392

4 873 59,647 3979 102,921 483 0 9831 177,734

5 1249 487 8325 1582 2035 50 0 13,728

6 1286 0 323 0 34 1 0 1644

7 82 46,616 258 38,876 20 0 23,372 109,224

Total 372,725 118,689 187,999 165,928 18,255 15,447 34,025 913,068

Table A2. Error matrix for RVI4S1 + EVI-based classification before sieve filtering in March + April.

> ERROR MATRIX (Pixel Count)

>Reference

V_Classified 1 2 3 4 5 6 7 Total

1 262,268 1473 3897 2240 362 214 1 270,455

2 1307 101,181 446 38,024 21 0 1597 142,576

3 41,857 1015 114,948 683 9752 5075 2 1733,32

4 953 10,242 99 97,234 15 0 8708 117,251

5 12,098 107 19,717 101 4009 889 18 36,939

6 45,137 23 43,807 45 3616 8468 10 101,106

7 99 3163 0 24,179 0 0 22,933 50,374

Total 363,719 117,204 182,914 162,506 17,775 14,646 33,269 892,033
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Table A3. Error matrix for RVI4S1 + EVI-based classification before sieve filtering in March + April + May.

>ERROR MATRIX (Pixel Count)

>Reference

V_Classified 1 2 3 4 5 6 7 Total

1 333,951 1720 488 1514 631 40 3 338,347

2 1446 108,186 227 25,887 36 0 626 136,408

3 2870 801 144,781 2456 1799 2758 3 155,468

4 2334 3917 21 108,388 0 0 4969 119,629

5 19,334 284 11,599 475 12,889 371 0 44,952

6 5189 11 28,962 200 2418 11,826 40 48,646

7 185 2412 1 22,113 0 0 27,661 52,372

Total 365,309 117,331 186,079 161,033 17,773 14,995 33,302 895,822

Table A4. Error matrix for RVI4S1 + EVI-based classification before sieve filtering in March + April +
May + June.

>ERROR MATRIX (Pixel Count)

>Reference

V_Classified 1 2 3 4 5 6 7 Total

1 326,512 1694 198 1553 470 45 1 330,473

2 3617 108,905 89 22,164 30 0 400 135,205

3 1208 269 180,918 3060 471 679 2 186,607

4 4794 3231 30 114,820 0 0 3986 126,861

5 24,870 596 2881 365 14,404 423 2 43,541

6 3268 12 4034 220 2470 13,972 41 24,017

7 142 2377 0 18,469 0 0 28,814 49,802

Total 364,411 117,084 188,150 160,651 17,845 15,119 33,246 896,506

Table A5. Error matrix for RVI4S1 + EVI-based classification before sieve filtering in March + April +
May + June + July.

>ERROR MATRIX (Pixel Count)

>Reference

V_Classified 1 2 3 4 5 6 7 Total

1 337,600 1361 123 1263 266 10 0 340,623

2 2062 108,962 88 25,092 22 0 186 136,412

3 927 351 188,079 2775 144 107 5 192,388

4 3441 1691 26 127,006 0 0 560 132,724

5 20,700 304 372 429 15,260 397 1 37,463

6 1845 11 804 249 2246 14,742 40 19,937

7 74 4667 0 5007 0 0 32,779 42,527

Total 366,649 117,347 189,492 161,821 17,938 15,256 33,571 902,074
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Table A6. Error matrix for RVI4S1 + EVI-based classification before sieve filtering in March + April +
May + June + July + August.

>ERROR MATRIX (Pixel Count)

>Reference

V_Classified 1 2 3 4 5 6 7 Total

1 338,175 1044 73 1285 176 27 4 340,784

2 2219 113,266 80 22,979 30 0 154 138,728

3 945 137 187,908 2175 55 36 0 191,256

4 2115 814 4 128,840 0 0 550 132,323

5 19,237 584 184 901 15,073 315 0 36,294

6 1926 35 594 259 2511 14,848 38 20,211

7 93 1657 0 4346 0 0 32,873 38,969

Total 364,710 117,537 188,843 160,785 17,845 15,226 33,619 898,565

EVI-based classification before sieve filtering

Table A7. Error matrix for EVI-based classification before sieve filtering in March.

>ERROR MATRIX (Pixel Count)

>Reference

V_Classified 1 2 3 4 5 6 7 Total

1 162,062 3 28,321 0 2403 5339 0 198,128

2 904 41,327 5556 60,418 586 25 7573 116,389

3 133,646 7764 98,803 12,826 10,253 7150 219 270,661

4 429 41,638 1308 62,427 102 3 7787 113,694

5 15,361 791 15,811 759 1823 837 11 35,393

6 78,773 75 46,934 23 3427 3017 0 132,249

7 54 34,706 195 39,120 0 0 20,337 94,412

Total 391,229 126,304 196,928 175,573 18,594 16,371 35,927 960,926

Table A8. Error matrix for EVI-based classification before sieve filtering in March + April.

>ERROR MATRIX (Pixel Count)

>Reference

V_Classified 1 2 3 4 5 6 7 Total

1 330,558 2228 5357 2633 136 672 44 341,628

2 830 35,988 32 60,706 0 0 8140 105,696

3 4501 2594 141,111 1015 9629 2628 10 161,488

4 796 69,614 686 90,892 14 17 5232 167,251

5 48,372 47 17,207 3 5550 2009 0 73,188

6 6102 23 32,535 0 3265 11,045 0 52,970

7 70 15,810 0 20,324 0 0 22,501 58,705

Total 391,229 126,304 196,928 175,573 18,594 16,371 35,927 960,926



Remote Sens. 2022, 14, 1095 18 of 27

Table A9. Error matrix for EVI-based classification before sieve filtering in March + April + May.

>ERROR MATRIX (Pixel Count)

>Reference

V_Classified 1 2 3 4 5 6 7 Total

1 345,035 2354 275 1470 143 57 14 349,348

2 1050 91,725 15 30,592 0 0 1286 124,668

3 3029 2151 173,693 2140 1328 867 38 183,246

4 684 27,658 344 120,188 13 15 7250 156,152

5 38,083 168 5594 81 11,060 1178 3 56,167

6 3294 55 17,005 48 6050 14,254 4 40,710

7 54 2193 0 21,054 0 0 27,332 50,633

Total 391,229 126,304 196,926 175,573 18,594 16,371 35,927 960,924

Table A10. Error matrix for EVI-based classification before sieve filtering in March + April + May + June.

>ERROR MATRIX (Pixel Count)

>Reference

V_Classified 1 2 3 4 5 6 7 Total

1 361,655 3231 530 1741 206 121 17 367,501

2 987 97,380 13 25,553 1 2 1467 125,403

3 2239 638 190,355 1620 467 852 44 196,215

4 800 21,993 351 122,581 28 31 8343 154,127

5 22,410 289 1595 68 13,396 915 0 38,673

6 2984 43 4082 8 4496 14,450 0 26,063

7 154 2730 0 24,002 0 0 26,056 52,942

Total 391,229 126,304 196,926 175,573 18,594 16,371 35,927 960,924

Table A11. Error matrix for EVI-based classification before sieve filtering in March + April + May +
June + July.

>ERROR MATRIX (Pixel Count)

>Reference

V_Classified 1 2 3 4 5 6 7 Total

1 365,477 3522 272 2833 139 67 12 372,322

2 490 82,003 4 18,854 0 2 665 102,018

3 997 772 193,353 1154 188 91 65 196,620

4 1087 12,931 244 146,777 31 30 665 161,765

5 16,857 119 268 84 14,300 483 3 32,114

6 6284 299 2785 159 3936 15,698 1 29,162

7 37 26,658 0 5712 0 0 34,516 66,923

Total 391,229 126,304 196,926 175,573 18,594 16,371 35,927 960,924
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Table A12. Error matrix for EVI-based classification before sieve filtering in March + April + May +
June + July + August.

>ERROR MATRIX (Pixel Count)

>Reference

V_Classified 1 2 3 4 5 6 7 Total

1 366,174 2872 100 2788 173 80 7 372,194

2 571 100,634 34 11,669 14 1 756 113,679

3 787 716 193,857 725 118 47 43 196,293

4 1091 9197 201 153,711 13 31 652 164,896

5 15,459 113 255 102 14,180 553 2 30,664

6 7113 455 2479 417 4096 15,659 6 30,225

7 34 12,317 0 6161 0 0 34,461 52,973

Total 391,229 126,304 196,926 175,573 18,594 16,371 35,927 960,924

RVI4S1-based classification after sieve filtering

Table A13. Error matrix for RVI4S1-based classification after sieve filtering in March.

>ERROR MATRIX (Pixel Count)

>Reference

V_Classified 1 2 3 4 5 6 7 Total

1 56,927 14,035 25,217 12,393 2650 2040 1761 115,023

2 980 896 572 1227 46 29 177 3927

3 240,951 25,295 129,250 18,807 9761 11,557 1617 437,238

4 47,269 67,416 19,699 119,811 4862 748 28,381 288,186

5 777 83 470 143 32 0 7 1512

6 1122 158 635 36 44 11 1 2007

7 3904 3835 1763 5215 352 81 1177 16,327

Total 351,930 111,718 177,606 157,632 17,747 14,466 33,121 864,220

Table A14. Error matrix for RVI4S1-based classification after sieve filtering in March + April.

>ERROR MATRIX (Pixel Count)

>Reference

V_Classified 1 2 3 4 5 6 7 Total

1 1634 277 734 129 48 63 0 2885

2 43,688 48,946 17,210 25,936 3621 511 1841 141,753

3 174,566 32,180 74,518 14,564 6334 3025 611 305,798

4 7104 11,807 3979 62,900 357 0 16,299 102,446

5 11,948 162 5637 82 542 389 0 18,760

6 108,901 4964 75,443 1527 6354 10,601 41 207,831

7 4781 13,232 2077 53,757 299 10 14,304 88,460

Total 352,622 111,568 179,598 158,895 17,555 14,599 33,096 867,933
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Table A15. Error matrix for RVI4S1-based classification after sieve filtering in March + April + May.

>ERROR MATRIX (Pixel Count)

>Reference

V_Classified 1 2 3 4 5 6 7 Total

1 235,965 35,465 10,254 12,009 5873 846 45 300,457

2 17,382 28,637 1979 13,448 1806 12 603 63,867

3 40,320 10,121 117,228 8278 5915 6676 2046 190,584

4 19,814 28,292 2151 98,327 636 4 16,034 165,258

5 28,866 1914 2649 635 1513 131 0 35,708

6 8915 98 44,609 198 1421 7182 31 62,454

7 1472 5772 3293 24,336 276 38 14,192 49,379

Total 352,734 110,299 182,163 157,231 17,440 14,889 32,951 867,707

Table A16. Error matrix for RVI4S1-based classification after sieve filtering in March + April + May + June.

>ERROR MATRIX (Pixel Count)

>Reference

V_Classified 1 2 3 4 5 6 7 Total

1 272,982 44,661 10,114 15,189 6367 700 171 350,184

2 13,983 24,032 952 11,230 1077 0 509 51,783

3 22,113 4849 135,394 7476 6253 8405 1274 185,764

4 18,550 25,548 1367 91,581 486 3 12,569 150,104

5 18,863 1772 3745 804 2059 307 2 27,552

6 4050 15 28,333 82 786 5306 33 38,605

7 2591 8212 2124 29,517 375 36 17,985 60,840

Total 353,132 109,089 182,029 155,879 17,403 14,757 32,543 864,832

Table A17. Error matrix for RVI4S1-based classification after sieve filtering in March + April + May +
June + July.

>ERROR MATRIX (Pixel Count)

>Reference

V_Classified 1 2 3 4 5 6 7 Total

1 277,673 34,312 7055 10,341 5737 339 69 335,526

2 18,777 29,751 1325 14,496 1063 14 308 65,734

3 19,721 7003 142,895 8559 6417 9877 1373 195,845

4 13,328 24,074 1284 90,561 461 5 7926 137,639

5 21,130 2599 4348 1027 2705 260 30 32,099

6 1364 0 23,376 66 561 4346 0 29,713

7 1447 11,125 2313 30,318 379 29 23,068 68,679

Total 353,440 108,864 182,596 155,368 17,323 14,870 32,774 865,235
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Table A18. Error matrix for RVI4S1-based classification after sieve filtering in March + April + May +
June + July + August.

>ERROR MATRIX (Pixel Count)

>Reference

V_Classified 1 2 3 4 5 6 7 Total

1 270,777 32,095 5792 10,465 5376 413 86 325,004

2 29,806 33,524 1126 15,398 1141 1 300 81,296

3 15,998 7213 142,761 6402 7028 8561 780 188,743

4 10,514 22,768 606 93,824 343 4 8941 137,000

5 19,951 3085 2923 1251 2424 256 21 29,911

6 2933 11 27,447 174 719 5360 0 36,644

7 1056 9010 983 26,300 201 20 22,226 59,796

Total 351,035 107,706 181,638 153,814 17,232 14,615 32,354 858,394

RVI4S1 + EVI-based classification after sieve filtering

Table A19. Error matrix for RVI4S1 + EVI-based classification after sieve filtering in March.

>ERROR MATRIX (Pixel Count)

>Reference

V_Classified 1 2 3 4 5 6 7 Total

1 189,795 42 31,592 58 2584 6054 0 230,125

2 531 31,036 5270 51,431 591 4 4329 93,192

3 156,872 6812 113,735 11,337 11,692 9370 38 309,856

4 504 40,615 692 61,358 48 1 5409 108,627

5 350 122 7173 53 986 9 4 8697

6 43,067 122 38,331 57 2677 933 9 85,196

7 110 47,555 135 51,279 16 0 26,138 125,233

Total 391,229 126,304 196,928 175,573 18,594 16,371 35,927 960,926

Table A20. Error matrix for RVI4S1 + EVI-based classification after sieve filtering in March + April.

>ERROR MATRIX (Pixel Count)

>Reference

V_Classified 1 2 3 4 5 6 7 Total

1 262,268 1473 3897 2240 362 214 1 270,455

2 1307 101,181 446 38,024 21 0 1597 142,576

3 41,857 1015 114,948 683 9752 5075 2 173,332

4 953 10,242 99 97,234 15 0 8708 117,251

5 12,098 107 19,717 101 4009 889 18 36,939

6 45,137 23 43,807 45 3616 8468 10 101,106

7 99 3163 0 24,179 0 0 22,933 50,374

Total 363,719 117,204 182,914 162,506 17,775 14,646 33,269 892,033
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Table A21. Error matrix for RVI4S1 + EVI-based classification after sieve filtering in March + April + May.

>ERROR MATRIX (Pixel Count)

>Reference

V_Classified 1 2 3 4 5 6 7 Total

1 333,951 1720 488 1514 631 40 3 338,347

2 1446 108,186 227 25,887 36 0 626 136,408

3 2870 801 144,781 2456 1799 2758 3 155,468

4 2334 3917 21 108,388 0 0 4969 119,629

5 19,334 284 11,599 475 12,889 371 0 44,952

6 5189 11 28,962 200 2418 11,826 40 48,646

7 185 2412 1 22,113 0 0 27,661 52,372

Total 365,309 117,331 186,079 161,033 17,773 14,995 33,302 895,822

Table A22. Error matrix for RVI4S1 + EVI-based classification after sieve filtering in March + April +
May + June.

>ERROR MATRIX (Pixel Count)

>Reference

V_Classified 1 2 3 4 5 6 7 Total

1 326,512 1694 198 1553 470 45 1 330,473

2 3617 108,905 89 22,164 30 0 400 135,205

3 1208 269 180,918 3060 471 679 2 186,607

4 4794 3231 30 114,820 0 0 3986 126,861

5 24,870 596 2881 365 14,404 423 2 43,541

6 3268 12 4034 220 2470 13,972 41 24,017

7 142 2377 0 18,469 0 0 28,814 49,802

Total 364,411 117,084 188,150 160,651 17,845 15,119 33,246 896,506

Table A23. Error matrix for RVI4S1 + EVI-based classification after sieve filtering in March + April +
May + June + July.

>ERROR MATRIX (Pixel Count)

>Reference

V_Classified 1 2 3 4 5 6 7 Total

1 337,600 1361 123 1263 266 10 0 340,623

2 2062 108,962 88 25,092 22 0 186 136,412

3 927 351 188,079 2775 144 107 5 192,388

4 3441 1691 26 127,006 0 0 560 132,724

5 20,700 304 372 429 15,260 397 1 37,463

6 1845 11 804 249 2246 14,742 40 19,937

7 74 4667 0 5007 0 0 32,779 42,527

Total 366,649 117,347 1894,92 161,821 17,938 15,256 33,571 902,074
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Table A24. Error matrix for RVI4S1 + EVI-based classification after sieve filtering in March + April +
May + June + July + August.

>ERROR MATRIX (Pixel Count)

>Reference

V_Classified 1 2 3 4 5 6 7 Total

1 338,175 1044 73 1285 176 27 4 340,784

2 2219 113,266 80 22,979 30 0 154 138,728

3 945 137 187,908 2175 55 36 0 191,256

4 2115 814 4 128,840 0 0 550 132,323

5 19,237 584 184 901 15,073 315 0 36,294

6 1926 35 594 259 2511 14,848 38 20,211

7 93 1657 0 4346 0 0 32,873 38,969

Total 364,710 117,537 188,843 160,785 17,845 15,226 33,619 898,565

EVI-based classification after sieve filtering

Table A25. Error matrix for EVI-based classification after sieve filtering in March.

>ERROR MATRIX (Pixel Count)

>Reference

V_Classified 1 2 3 4 5 6 7 Total

1 189,795 42 31,592 58 2584 6054 0 230,125

2 531 31,036 5270 51,431 591 4 4329 93,192

3 156,872 6812 113,735 11,337 11,692 9370 38 309,856

4 504 40,615 692 61,358 48 1 5409 108,627

5 350 122 7173 53 986 9 4 8697

6 43,067 122 38,331 57 2677 933 9 85,196

7 110 47,555 135 51,279 16 0 26,138 125,233

Total 391,229 126,304 196,928 175,573 18,594 16,371 35,927 960,926

Table A26. Error matrix for EVI-based classification after sieve filtering in March + April.

>ERROR MATRIX (Pixel Count)

>Reference

V_Classified 1 2 3 4 5 6 7 Total

1 333,927 1878 4885 1626 44 509 36 342,905

2 535 30,220 863 58,208 0 0 6668 96,494

3 1771 1371 151,484 818 10,131 861 0 166,436

4 599 78,647 460 96,437 72 0 3776 179,991

5 48,911 23 10,195 17 5362 725 0 65,233

6 5393 18 29,040 23 2979 14,276 0 51,729

7 93 14,147 1 18,444 6 0 25,447 58,138

Total 391,229 126,304 196,928 175,573 18,594 16,371 35,927 960,926
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Table A27. Error matrix for EVI-based classification after sieve filtering in March + April + May.

>ERROR MATRIX (Pixel Count)

>Reference

V_Classified 1 2 3 4 5 6 7 Total

1 350,642 1675 1279 637 166 110 42 354,551

2 763 101,508 58 27,068 22 0 379 129,798

3 961 953 182,078 1571 917 576 0 187,056

4 343 20,925 1017 127,477 9 0 5935 155,706

5 35,529 221 1713 33 11,537 587 0 49,620

6 2923 11 10,781 4 5943 15,098 0 34,760

7 68 1011 0 18,783 0 0 29,571 49,433

Total 391,229 126,304 196,926 175,573 18,594 16,371 35,927 960,924

Table A28. Error matrix for EVI-based classification after sieve filtering in March + April + May + June.

>ERROR MATRIX (Pixel Count)

>Reference

V_Classified 1 2 3 4 5 6 7 Total

1 363,046 2165 560 813 126 127 32 366,869

2 603 100,281 22 21,910 6 0 837 123,659

3 1281 341 191,951 1785 374 725 0 196,457

4 378 16,645 278 125,111 16 0 6681 149,109

5 18,880 167 133 8 13,413 157 0 32,758

6 2519 1 973 0 3994 14,520 0 22,007

7 182 2304 12 20,742 0 0 26,800 50,040

Total 386,889 121,904 193,929 170,369 17,929 15,529 34,350 940,899

Table A29. Error matrix for EVI-based classification after sieve filtering in March + April + May +
June + July.

>ERROR MATRIX (Pixel Count)

>Reference

V_Classified 1 2 3 4 5 6 7 Total

1 366,944 2369 442 1238 75 69 15 371,152

2 225 84,048 15 16,196 13 0 66 100,563

3 854 329 194,643 1495 89 45 13 197,468

4 659 7709 216 147,615 0 0 100 156,299

5 13,656 153 1 0 14,465 127 0 28,402

6 4230 99 268 11 3141 15,803 0 23,552

7 48 26,572 0 5749 6 0 34,676 67,051

Total 386,616 121,279 195,585 172,304 17,789 16,044 34,870 944,487
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Table A30. Error matrix for EVI-based classification after sieve filtering in March + April + May +
June + July + August.

>ERROR MATRIX (Pixel Count)

>Reference

V_Classified 1 2 3 4 5 6 7 Total

1 371,663 2052 335 1356 70 73 14 375,563

2 348 104,138 7 7475 90 0 49 112,107

3 961 207 195,936 1591 46 33 0 198,774

4 704 7018 242 158,790 7 0 90 166,851

5 12,326 93 3 3 15,055 267 0 27,747

6 5180 270 403 74 3326 15,998 0 25,251

7 47 12,526 0 6284 0 0 35,774 54,631

Total 391,229 126,304 196,926 175,573 18,594 16,371 35,927 960,924

References
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