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Abstract: To understand the factors that make certain areas especially prone to landslides, statistical
approaches are typically used. The interpretation of statistical results in areas characterised by com-
plex geological and geomorphological patterns can be challenging, and this makes the understanding
of the causes of landslides more difficult. In some cases, landslide inventories report information on
the state of activity of landslides, adding a temporal dimension that can be beneficial in the analysis.
Here, we used an inventory covering a portion of Northwestern Turkey to demonstrate that active
and relict landslides (that is, landslides that occurred in the past and are now stabilised) could be
related to different triggers. To do so, we built two landslide susceptibility models and observed that
the spatial patterns of susceptibility were completely distinct. We found that these patterns were
correlated with specific controlling factors, suggesting that active landslides are regulated by current
rainfalls while relict landslides may represent a signature of past earthquakes on the landscape. The
importance of this result resides in that we obtained it with a purely data-driven approach, and this
was possible because the active/relict landslide classification in the inventory was accurate.

Keywords: landslide susceptibility; landslide inventory; controlling factor; slope unit; generalised
additive model

1. Introduction

Data-driven models can be thought as empirical tools that extract functional relation-
ships from past phenomena to estimate the expected behaviour of the same phenomena
in a pre-defined (or ill-defined) future. This framework is commonly referred to as Hut-
ton’s uniformitarian principle, and is more commonly translated as the past is the key to the
future [1–3]. Hutton first and subsequently Lyell helped to develop and spread the concept
of uniformitarianism, replacing the then prevailing idea of catastrophism. Since then, this
concept has formed the backbone of any landslide susceptibility study [3].

Landslide susceptibility models (LSM) can be used to predict the spatial occurrence
of future landslides by assuming, consistently with the uniformitarian principle, that in
any given area, slope failures will occur under the same circumstances and because of the
same conditions that caused them in the past. However, this principle may not always
hold true [4]. First-failure landslides and reactivations may have different controls, acting
both on their triggers and kinematics: think of the peak and residual shear strengths, or the
role of strong earthquakes as opposed to aftershocks or rainfall [5]. Changes in material
properties also are reflected in morphological changes which, in turn, affect the process
dynamics [6].

Uniformitarianism still represents a fundamental component of the literature [7–12],
albeit the current climate change has led us to question its present-day validity [13]. In
fact, data-driven models are generally built upon the effects of past events, which may
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not inform on the slope response to events of different nature in the future. This topic is
hardly addressed in the literature as it requires an understanding not only of the evolution
of the triggers, but also of the predisposing or preparatory conditions. These may behave
differently in time [4], reflecting changes in mechanical [14], hydrological and hydraulic [15],
or thermal conditions [13,16].

Moreover, the complexity of a seismically active area does not help perform a straight-
forward analysis and interpretation of both the predisposing and triggering factors. This is
true, for instance, in Turkey (Figure 1a), where the huge variability and complexity of the
territory makes the modelling difficult to tackle. The capability and feature of an existing
landslide inventory [17], able to discern relict (termed “inactive” in the inventory) from
active landslides, comes to our aid as it could enable the distinction of different processes in
place and their drivers. Moreover, especially for active landslides, the definition of the main
triggering factors is crucial for the evaluation of economic costs related with the frequency
and magnitude of disaster events [18].

Seismically active areas may contain many landslide bodies. The seismic shaking
likely triggers their first movement, while subsequent remobilisations become increasingly
related to different triggers and predisposing factors as time goes by [16,19]. Different
triggers can also produce distinct patterns in space [20]. In Northwestern Turkey, which we
took as our study area, we can discern two sub-areas: the North Anatolian fault region in
the southwest, characterised by a higher density of relict bodies, and the region close to
the Black Sea in the northeast, richer in active ones (Figure 1b,c). These sub-areas display
an attitude of surface processes to be related to distinct triggers: seismicity and rainfall
(Figure 1d,e). However, these differences may be difficult to discern in an inventory in
which landslide types or activity states or stages are not classified.

The effect of biases in susceptibility modelling has been explored in the literature [21–23].
The necessity to operate with an unbiased area [24,25] led us to focus on a specific sector in
Northwester Turkey, rich in landslides but not too tectonically complex, and sufficiently
geologically and geomorphologically homogeneous.

In terms of modelling approaches, the literature offers many options. We opted for
the Generalised Additive Model (GAM; [15,26]), which can explain the spatial distribution
of landslides via a family of Bernoulli exponential functions, in which the influence of the
covariates can be captured via linear and nonlinear relationships. As such, the approach
allows us to display the uncertainties in the estimations, which are intrinsically part of a
Bayesian framework [27]. This statistical implementation is utilised here for the first time to
investigate relationships between two distinct models covering the same area but differing
by a categorical entity (active/inactive landslide). Furthermore, we decided to use Slope
Units (SUs) as they are geomorphologically-consistent subdivisions that can be linked with
landslide processes and are thus preferrable to grid-based subdivisions [28–31].

2. Study Area

The geology and geomorphology of Turkey is unique and extremely complex, owing
to both past and ongoing processes in place. Various studies exist [32–36], in which the
national settings are dissected per geological history and geomorphological processes.
Figure 1 displays the large-scale geomorphological and geological features.

The diversity of morphologies derives from a geodynamic environment that is still
quite active and determines a variety in outcropping lithologies [35]. Three main landslide-
dominated landscapes are recognised, corresponding to the tectonostratigraphically-distinct
Western, Central, and Eastern Pontides [37]. The lithological units forming the Pontides
vary along the belt, featuring west-east-oriented sub-parallel bands of sedimentary, meta-
morphic, and igneous rocks. While the western portion is richer in Triassic to Paleogene
sedimentary and medium-grade metamorphic outcrops, the central zone comprises Eocene
volcaniclastic and sedimentary rocks and Palaeozoic metamorphic rocks, and the east-
ern zone features Paleogene and Cretaceous plutonic and igneous formations underlying
Eocene and Neogene sedimentary and volcanic formations [38].
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The portion chosen as our study area (Figure 1) corresponds to the Zonguldak quad-
rangle in the Western Pontides. Here, the North Anatolian Fault System (NAFS) produced
a landform dominated by mountain belts and plateaus. The NAFS is an over 1600 km long,
right-lateral strike-slip, active transform fault running along Northern Anatolia in the E–W
direction, that also separates the study area in a southern and a northern sector (Figure 1a).

Climatically, the area belongs to the Black Sea climatic region in the north and the
continental inner Anatolian climatic region in the southeast [39]. The former receives rainfall
throughout the year (>1000 mm mean annual precipitation, up to 2300 mm in its eastern
portion) [39]. The north-facing slopes of the coastal mountain belt are comparatively
wetter as they intercept the weather fronts, and this is reflected by a relative abundance of
landslides (Figure 1e). Precipitation decreases southward, where the Palaeocene-Eocene
flysch and Palaeocene-Middle Miocene volcanics are the most landslide-prone units [39].

Figure 1. Identification of the study area in Turkey and the North Anatolian Fault (a); density maps
of inactive (b) and active (c) landslides (see Section 2.2 for definitions); Peak Ground Acceleration
map (d) from [40]; mean annual precipitation map (e) from [41].
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2.1. Mapping Units

We used SUs as terrain partitions characterised by similar hydrological and geomor-
phological conditions [42]. Each SU has a distinct shape given by the interplay between
lithotypes and morphometries, and thus offers morphological and lithological character-
istics that can be analysed statistically. An SU-based subdivision is not the only possible
choice. In fact, most contributions in the literature opt for a regular lattice or pixel-based
subdivisions [3]. These, however, even though they can be expressed at a fine to very-fine
resolution, do not reflect any natural characteristics. Conversely, SUs can, better than
pixels, represent geomorphological processes (e.g., [43,44]) and, at the same time, reduce
the computational burden, especially in models covering large areas (in our case, SU-based
calculations are ~100 faster than pixel-based ones).

We used the r.slopeunits software [28]) to generate SUs. Specifically, we subdivided
the study area into SUs [28–30,45]. We computed 50,104 SUs, covering ~24,000 km2 out of
~29,400 km2 of the study area as we excluded flat areas that are not prone to landslides
(Figure 2) [31,46,47].

Figure 2. Slope Unit partition of the study area: SUs containing inactive (left) and active (right)
landslides are shown. The sub-panels show a detail for a small region, in which it is possible to
observe the flat areas excluded by the SU calculation (see Section 4.2 for explanation). The legend is
valid for the whole area and zoomed panels.

2.2. Landslides

The landslide inventory was compiled by the General Directorate of Mineral Research
and Explorations of Turkey (MTA) and published in 1:25,000 scale for the entire national
territory (http://yerbilimleri.mta.gov.tr/, accessed on 1 February 2022). It is a general
polygon-based-inventory that carries some complexities because the mapped phenomena
are related to a plurality of causes. Thus, the identification of unstable areas should
benefit from the use of as many variables as possible to discern the main factors affecting
slope stability.

The catalogue [39], within our study area, comprises 4084 active landslides and
1140 inactive landslides. The former are those that were moving at the time of mapping
(1997–2003), while the latter could be classified as relict according to the UNESCO Working
Party on World Landslide Inventory (1993) [48]. Qualitatively, we notice an abundance of
active phenomena in the northeastern area where the climatic influence of the Black Sea is
stronger. A less dense but significant presence of landslides can be seen in the southwestern
sector (Figure 2).

http://yerbilimleri.mta.gov.tr/
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We extracted the highest point in the landslide polygon to better represent the source
material and/or lithology [49,50]. Subsequently, separately for each model, we reported the
count of active or inactive landslides within each SU, attributing the presence of landslides
to those SUs containing at least one point. Finally, we identified 2822 SUs (X% of SUs) with
active phenomena, and 983 (Y%) with inactive phenomena.

3. Modelling Strategy

In a binomial GAM, the data (y) are assumed to be conditionally independent given
the linear predictor η:

yi | ηi ∼ Binomial (Ni, pi) (1)

ηi = pi ⁄ (1−pi) (2)

where pi is the binomial probability.
Here, we assume Ni = 1 for all i because we have binary data. The ηi as a function of

pi is called the link function, and we describe it using a logit, but we note that other link
functions are possible. The linear predictor η is where we put the additive model:

ηi = β1x1,i + ... + βmxm,i + f(Slope) + f(Precipitation), (3)

where βj are the fixed (or linear) effects, with weak priors, describing the linear relationship
of the covariates xj. Each f represents a random (or nonlinear) effect with

f ∼ N (0, τ−1) (4)

and τ is a constant. For the two f, we use a spline model, also referred to as Random Walk
of the first order (RW1; [51])

A RW1 induces adjacent class dependence among mean slope and precipitation bins,
respectively [52]. The whole implementation makes use of the INLA framework [46,47].

To quantitatively compare the inventories of active and inactive landslides, we relied
on the effects of the selected covariates. Active and inactive phenomena should present
distinct correlations with physical variables owing to changes in predisposing and trig-
gering conditions as well as their values. For instance, active and inactive phenomena
could be characterised by distinct distributions of slope angles or vegetation coverage.
However, while morphological and climatic factors can change rather rapidly, geological,
lithological, and structural factors are not expected to vary over human time scales (in
absence of catastrophic events).

Possible multicollinearity issues among covariates (Figure S1) were eliminated by
discarding those showing more than 0.75 collinearity with another covariate [53–55]. The
final list of covariates is reported in Table 1. We preferred covariates that are well known
in the literature [3,56], and analysed their linear effects in most cases. We investigated
the nonlinear effect of slope and precipitation to better capture the role of gravitative-
hydrological processes in landsliding.

For model fitting, we used the whole sets of active and inactive landslides (sepa-
rately). For validation, we used a tenfold Cross Validation (CV) with mutually exclusive
subsets, implying that no SUs are repeated across CV replicates, and thus, there is no
autocorrelation [57]. We used the Area Under the Receiving Operating Characteristic
Curve (AUC) and the confusion matrix to evaluate the model performance. This is not the
only possibility. In fact, new articles suggest a spatial CV with connected packages [58–60].
However, this solution is still under discussion [61], which is why we preferred to use a
pre-consolidated methodology.
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Table 1. List of covariates. L and NL indicate that the linear and nonlinear effects were investigated,
respectively. SD stands for standard deviation. All values are calculated within each SU.

Name Abbreviation Reference
Usage in the Inventory

Inactive Active

Mean slope Slope [62] NL NL
SD of slope Slopeσ [62] L L

Mean Rainfall Precipitation [5] NL NL
Mean peak ground acceleration PGAµ [5] L L

Topographic relief Reliefµ [35] L L
Elongation of the SU Elongation [46] L L

Mean Eastness ESTµ [50] L L
Mean Northness NRTµ [50] L L
SD of Northness NRTσ [50] L L

SD of planar curvature PLCσ [63] L L
Mean profile curvature PRCµ [63] L L

Mean Relative slope position RSPµ [64] L L
SD of Relative slope position RSPσ [64] L L

Mean topographic wetness index TWIµ [64] L L
SD of topographic wetness index TWIσ [64] L L

Mean Stream power index SPIµ [65] L L
SD of Stream power index SPIσ [65] L L

Mean Distance to Fault D2Fµ [15] L L
SD of Distance to Fault D2Fσ [15] L L

4. Results

We report the outcomes of the so-called fitting (within sample) and cross-validation
(out of sample) procedures. The former is used to interpret the patterns of the explanatory
variables, while the latter is a tool for model validation. We then produce two susceptibility
maps (that is, two spatial probability maps), one for the active landslides, and one for
the relict landslides. These maps are compared with those of a number of explanatory
variables, to seek common patterns. It should be stressed that the susceptibility maps are
intended as descriptions of past/present phenomena and not as a temporal prediction tool.

4.1. Distinct Patterns of Explanatory Variables

The main tool that we can use to evaluate the extent to which the classification into
inactive and active landslides relates to distinct controlling factors is the analysis of the
effects of these factors, represented by sets of covariates in the statistical model. We believe,
in fact, that inactive and active landslide phenomena should be spatially correlated with
physical variables in a distinct way. Predisposing factors that cause landslides must be
congruent in inactive as well as in active landslides. Hence, what should stand out the
most is that the predisposing factors can change over time.

The posterior marginal distributions of the linear effects of each covariate in the
models constructed with inactive and, separately, active landslides are displayed in Figure 3.
Notably, about half of the covariates exhibit distinct effects in the two models, suggesting
that the phenomena featured in the two classes may be controlled by different processes.

Geomorphologically, reasonable patterns are described. The role of Northness is con-
sistent with the distribution of precipitation, which comes from the Black Sea, north of the
study area (Figure 1). Negative values of RSPµ are observed in active landslides. Seemingly
counterintuitively, PGAµ is positively correlated with inactive landslides. However, this
is consistent with the observation [39] that these landslides may be related to historical
earthquakes in the NAFS. The elongation of the SUs has a negative effect on both active and
inactive landslides, as elongated slopes offer less room for large, deep-seated landslides
to form. The average slope negatively correlates with the presence of active landslides,
while no correlation is found with inactive ones. For active landslides, this suggests that
phenomena on very steep slopes are unlikely; in fact, unstable bodies are quickly removed
from steep slopes, while landslide inventories tend to better capture movements over
more gentle slopes, which can remain active for a longer time. Hydrological covariates
(TWIσ and SPIµ) seem to exert a negative effect in both active and inactive landslides,
suggesting their preferential occurrence in the upper portions of catchments. The effect
of lithology (Figure S2, Table S1) also shows some differences between the models. For
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instance, granitoid areas are negatively correlated with active landslides, while the opposite
holds true for carbonate rocks.

Figure 3. Fixed effects of geomorphological variables expressed as marginal distributions for inactive
and active landslides.

4.2. Distinct Landslide Triggers

The behaviours of the nonlinear effects of covariates for inactive and active phenomena
also are different, as shown in Figure 4. These nonlinear effects clearly point to distinct
triggers for inactive and active landslides. In fact, for inactive landslides, neither slope
nor precipitation exert significant effects (95% confidence level). For active landslides,
positive effects are seen within a certain range of slope angles (10–20◦) that could be related
to specific materials capable of sustaining prolonged landslides, and for large amounts
of annual precipitation (>800 mm/year), capable of frequently triggering or sustaining
a variety of movements. On the contrary, in areas with less precipitation, the effect is
slightly negative.
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Figure 4. Nonlinear effects of slope (left column) and precipitation (right column) for inactive
(top row) and active (bottom row) landslides. The effect is modelled as a random effect estimated
over 20 classes with adjacent dependency. Thick coloured lines represent the posterior means whereas
the coloured dashed lines indicate the posterior 95% credible interval. Dashed grey lines indicate the
zero line along which coefficients play no role in the modelling outcome.

In order to validate the result, the out-of-sample performance of the model is inves-
tigated. This is done in two steps: the first one involves the use of AUC for each of the
considered landslide classes, whereas the second one maintains the same structure but
focuses on the summary metrics of confusion matrices.

Figure 5a shows the ROC curves and their AUC values for ten cross-validations for the
active and inactive landslide models. The AUC values (~0.8) can be deemed satisfactory
and are consistent across the replicates, indicating robustness of the model [66]. The figure
(bottom row) also shows the confusion plots of the two models, which are rather similar in
both the high ability to detect true positive cases (~90%) and the lower ability to identify the
true negative ones (47–50%). Consequently, the error rate (bottom right) is also of similar
magnitude (44–50%), and it seems to fail on the stable conditions, together with the ratio
between Predicted True Negatives and Observed Negatives.

However, we should remind that the SUs had been calculated only for areas with slope
topography, as we excluded the flat areas that are obviously not susceptible to gravitative
movements. This could be interpreted as a weakness of the model, but actually facilitates
its ability in recognising the instable areas.
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Figure 5. (a) ROC curves and their AUCs for ten cross-validations for the inactive (left) and active
(right) landslide models. (b) Confusion plot (left) constructed via the percentage of Observed TP and
fitted TP against the percentage of Observed TN and fitted TN (for each landslide type), and error
rates (right), both have been obtained from a tenfold CV.

4.3. Distinct Susceptibility Maps

In Figure 6, we show the resulting susceptibility maps for the inactive and active
landslides. The maps display markedly different spatial patterns that are consistent with the
qualitative (Figure 1) and quantitative (Figures 3 and 4) observations that the distribution
of active landslides better correlates with the annual precipitation and that the distribution
of inactive landslides better correlates with the peak ground acceleration.

What is more, the two maps are not “one the negative of the other”. The patterns
that emerge are, in fact, distinct. Indeed, we do not observe a specular negative effect of
precipitation in the distribution of inactive landslides (in fact, we do not observe a significant
effect at all). However, we do see a negative effect of the peak ground acceleration in the
distribution of active landslides, but the magnitude of this effect is smaller than that seen
for inactive landslides.

The absence of correlation between the two maps is demonstrated quantitatively in
Figure 6d, where the Pearson correlation shown is 0.5, indicating a random dependence.
Similarities in the two maps mainly exist in areas with low density of landslides, indepen-
dently of their state of activity, such as the northwestern and southernmost portions.



Remote Sens. 2022, 14, 1321 10 of 14

Figure 6. Susceptibility maps for inactive (a) and active (b) landslides. The maps are obtained by
merging ten cross-validated subsets and thus entirely come from predicted estimates. The resulting
probability values have been binned into seven susceptibility classes using a quantile criterion. The
difference in susceptibility between (a) and (b) is shown in (c), while the graph in (d) displays their
Pearson correlation.

5. Discussion
5.1. Controls and Fate of Active Landslides

From our analysis, it emerged that, consistently with the definition of relict landslides
(used to classify the inactive landslides), the conditions that caused their occurrence in the
past are distinct from those that are responsible for the active movements in the present.
Moreover, the locations of the inactive landslides point to areas with high seismicity, sug-
gesting that they may be earthquake-induced phenomena, now stabilised and insensitive
to hydrometeorological forcing. Conversely, the distribution of active landslides reflects the
pattern of present-time annual precipitation, suggesting the rainfall-induced nature of these
phenomena. If we interpret the active landslides as slow-moving mass movements (that is,
processes that remain active for a comparatively long time, and thus more easily captured
by inventories), the correlation between the rainfall pattern and the spatial distribution of
landslides makes very much sense. There is a large literature showing that the mobilisation
and acceleration of slow-moving landslides along slopes is mostly governed by rainfall
events causing an increase in pore water pressure and thus a reduction in the available shear
strength [67]. On the other hand, in the absence of significant shifts in hydro-meteorological
patterns, the stabilisation of these landslides should mostly be related to their transition
from steeper to gentler slopes and/or to plains or valleys without significant fluvial erosion
at the toe). In other words, active landslides could be described as meta-stable hillslopes
materials experiencing creep and consolidation processes while the ratio between driving
and resisting forces fluctuates over time mostly under the control of hydro-meteorological
factors.

Here, we should stress that slow-moving landslides could rapidly turn into catas-
trophic landslides (and thus rapidly stabilise) if at some point the driving forces dramati-
cally exceed their resisting counterparts. Various factors including seismicity or precipita-
tion itself could trigger catastrophic landslides. Yet, this may seem a more likely scenario
for a region exposed to intense seismic external forces rather than precipitation because,
overall, even relatively low-intensity ground shaking may be more destructive than intense
precipitation at triggering landslides [68]. In this context, it is not surprising that the relict



Remote Sens. 2022, 14, 1321 11 of 14

landslides are mostly distributed closer to the North Anatolian Fault zone, whereas the
active landslides concentrate far from it.

5.2. Accuracy of the Active/Inactive Landslide Classification

The binary classification into active and inactive landslides in the inventory was
performed well. This is demonstrated by the fact that it resulted in the production of two
distinct and uncorrelated susceptibility maps. In other words, in addition to suggesting
differences between the conditions responsible for landslides in the past and in the present
in the study area (supporting a non-uniformitarian view in this highly dynamic context),
this result also suggests that we are dealing with a well-done classification. Logically, active
and relict landslides should not be difficult to discern, but the point here is that, if a bias
existed in this classifier, it would have resulted in less distinct (and thus more spatially
correlated) susceptibility maps. Seeing this the other way round, if a classifier is expected to
define distinct regions of space and this does not occur, the severity of the classification bias
could be quantified from the degree of correlation between the maps generated, separately,
for the distinct values of the classifier.

6. Conclusions

The analyses presented in this work aimed at investigating differences in the spatial
patterns of relict and active landslides in a landslide-rich geomorphological context. These
differences, expected in the light of qualitative observations on the possible landslide
triggers and predisposing factors, were expressed quantitatively using a purely data-driven
approach, confirming the validity of such methodology, suggested in the literature [69], and
the accuracy of the classification operated in the inventory. The result that the susceptibility
patterns of relict and active landslides in the study area are spatially distinct and correlate
with distinct explanatory variables suggests that, while current rainfall patterns may
explain the distribution of active landslides, seismicity may have had an impact on the
relict landslides.

Overall, we believe our work can represent a summary of good practices in the defini-
tion of landslide susceptibility mapping and hopefully serve as a reference standardised
assessments in both common and specific applications. It also brings novelty as it presents a
general slope unit-based susceptibility model through a Bayesian approach in a study area,
namely the Turkish Northwesternmost Sector, so far not investigated with this technique.
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68. Tanyaş, H.; Kirschbaum, D.; Görüm, T.; van Westen, C.J.; Lombardo, L. New Insight into Post-seismic Landslide Evolution

Processes in the Tropics. Front. Earth Sci. 2021, 9, 700546. [CrossRef]
69. Lombardo, L.; Bakka, H.; Tanyas, H.; Van Westen, C.; Mai, P.M.; Huser, R. Geostatistical Modeling to Capture Seismic-Shaking

Patterns from Earthquake-Induced Landslides. J. Geophys. Res. Earth Surf. 2019, 124, 1958–1980. [CrossRef]

http://doi.org/10.1007/s00704-016-1919-2
http://doi.org/10.5194/nhess-14-95-2014
http://doi.org/10.5194/nhess-5-853-2005
http://doi.org/10.1038/s41467-020-18321-y
http://doi.org/10.1111/2041-210X.13107
http://doi.org/10.1016/j.ecolmodel.2021.109692
http://doi.org/10.1002/esp.3290120107
http://doi.org/10.1016/0022-1694(82)90155-X
http://doi.org/10.1002/hyp.3360050103
http://doi.org/10.1038/s43017-020-0072-8
http://doi.org/10.3389/feart.2021.700546
http://doi.org/10.1029/2019JF005056

	Introduction 
	Study Area 
	Mapping Units 
	Landslides 

	Modelling Strategy 
	Results 
	Distinct Patterns of Explanatory Variables 
	Distinct Landslide Triggers 
	Distinct Susceptibility Maps 

	Discussion 
	Controls and Fate of Active Landslides 
	Accuracy of the Active/Inactive Landslide Classification 

	Conclusions 
	References

