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Abstract: Leaf pigments are sensitive to various stress conditions and senescent stages. Variation in 
the ratio of chlorophyll to carotenoid content provides valuable insights into the understanding of 
the physiological and phenological status of plants in deciduous forests. While the use of spectral 
indices to assess this ratio has been attempted previously, almost all indices were derived indirectly 
from those developed for chlorophyll and carotenoid contents. Furthermore, there has been little 
focus on the seasonal dynamics of the ratio, which is a good proxy for leaf senescence, resulting in 
only a few studies ever being carried out on tracing the ratio over an entire growing season by using 
spectral indices. In this study, we developed a novel hyperspectral index for tracing seasonal vari-
ations of the ratio in deciduous forests, based on a composite dataset of two field measurement 
datasets from Japan and one publicly available dataset (Angers). Various spectral transformations 
were employed during this process in order to identify the most robust hyperspectral index. The 
results show that the wavelength difference (D) type index, using wavelengths of 540 and 1396 nm 
(calculated from the transformed spectra that were preprocessed by the combination of extended 
multiplicative scatter correction (EMSC) and first-order derivative), exhibited the highest accuracy 
for the estimation of the chlorophyll/carotenoid ratio (R2 = 0.57, RPD = 1.52). Further evaluation 
revealed that the index maintained a good performance at different seasonal stages and can be con-
sidered a useful proxy for the ratio in deciduous species. These findings provide a basis for the 
usage of hyperspectral information in the assessment of vegetation functions. Although promising, 
extensive evaluations of the proposed index are still required for other functional types of plants. 

Keywords: chlorophyll/carotenoid ratio; reflectance; spectral transformations; spectral index;  
deciduous species 
 

1. Introduction 
Plant pigments are crucial determinants in driving plant photosynthesis through 

light capture and conversion [1–3] and are involved in a series of physiological and bio-
chemical processes necessary for plant growth [4–6]. Investigations into quantifying the 
amount of leaf pigments, including chlorophyll and carotenoid, have been conducted ex-
tensively, both in the field and via modeling studies [7–9]; however, the proportions be-
tween the two have been less studied. A number of previous studies have indicated that 
knowledge of the proportion of the leaf chlorophyll and carotenoid content can be more 
beneficial than the amount of individual pigments in determining plants’ physiological 
status, since it has become a good indicator for evaluating plant senescence and stress [10–
12]. Thus, the ratio provides critical information for quantifying the functioning of terres-
trial ecosystems [13–16].  
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The ratio of chlorophyll to carotenoid content varies for different environments [17–
20], particularly with light conditions, which have been extensively demonstrated in dif-
ferent species [21–24]. Generally, the chlorophyll/carotenoid ratio in leaves with high light 
irradiance is lower when compared to leaves with low light irradiance [25,26]. It is also 
notable that the ratio varies between different species [27,28]. For example, Villa et al. [28] 
indicated that the chlorophyll/carotenoid ratio diverges strongly at species level across 
macrophyte species. What is more, considerable seasonal variations in the ratio of chloro-
phyll to carotenoid have been reported in deciduous forests. Yang et al. [29] demonstrated 
that the ratio of chlorophyll to carotenoid increased during the early seasons and then 
steadily declined in two temperate deciduous forests; such seasonal variations in the chlo-
rophyll/carotenoid ratio were also detected in other forest types [30–32]. 

Traditional destructive sampling approaches do not satisfy the high frequency re-
quired to keep pace with the dynamics and variability of the ratio. Alternatively, non-
destructive estimations of the wide variations in chlorophyll and carotenoid content using 
spectroscopic techniques have become feasible due to the well-known absorption features 
of chlorophyll and carotenoid in the visible regions [33,34]. Accordingly, numerous stud-
ies have demonstrated the retrieval of chlorophyll and carotenoid content via a large num-
ber of remote sensing methods, ranging from the empirical relationships between pig-
ments and reflectance to radiative transfer models [35–37]. Among these, a common and 
successfully used approach is the use of remotely-sensed spectral indices, which employ 
multiple bands inside the visible and near-infrared spectral regions [38–42]. For instance, 
Main et al. [43] found that the vegetation indices based on red-edge derivatives had the 
strongest correlation with leaf chlorophyll content, while Hernández-Clemente et al. [44] 
found that the indices using a simple ratio type are sensitive to carotenoid content. These 
studies clearly demonstrated the feasibility of estimating different pigments with spectral 
indices. Thus, non-destructive methods that remotely quantify the proportion of leaf chlo-
rophyll and carotenoid may enhance our understanding of plant functions across differ-
ent temporal and spatial scales. 

However, despite the successful application of spectral indices for retrieving both 
chlorophyll and carotenoids, very few studies have been conducted on the estimation of 
the ratio of chlorophyll to carotenoid using empirical spectral indices. All of the currently 
available studies naturally begin with the spectral indices of chlorophyll and carotenoids, 
in order to assess the ratio. For instance, Peñuelas et al. [45] proposed a normalized pig-
ment chlorophyll ratio index (NPCI) to estimate the ratio of total pigments to chlorophyll 
in nitrogen and water-limited sunflower leaves. Peñuelas et al. [46] further observed the 
structure insensitive pigment index (SIPI) at the wavelengths of 445 and 680 nm, which 
could be employed for the estimation of the carotenoids/chlorophyll a. Merzlyak et al. [10] 
indicated that the plant senescence reflectance index (PSRI) using the wavelengths of 678, 
500, and 750 nm is sensitive to the ratio of carotenoid to chlorophyll content and could be 
used as an important indicator of leaf senescence. In addition, Zhou et al. [47] proposed a 
new spectral index through the combination of the carotenoid index (CARI) [48] and the 
red-edge chlorophyll index (CIred-edge) [49], to assess the ratio of carotenoid to chloro-
phyll content, thereby monitoring a crop’s physiological and phenological status. Such 
studies have advanced the possibility of estimating the ratio between carotenoid and chlo-
rophyll content from spectral indices. On the other hand, several other studies found a 
correlation between the photochemical reflectance index (PRI), an indicator of photosyn-
thetic efficiency, and the carotenoid/chlorophyll ratio [37,50,51]. In particular, Gitelson et 
al. [52] found that PRI is better correlated with the carotenoid/chlorophyll ratio than with 
total chlorophyll and carotenoid content, suggesting that the ratio should, rather, be as-
sessed independently. Furthermore, almost all of these studies focused on specific periods 
and the feasibility of using hyperspectral indices for tracking the dynamics of the ratio at 
different phenological stages has not yet been assessed. 

Deciduous forest is one of the major vegetation types in Japan and can be character-
ized by the profound plant phenological stages of expansion, maturation, and senescence 
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[53–55], which determine the potential photosynthetic carbon uptake in the growing sea-
son of a given ecosystem [56–58]. A leaf’s biophysical, biochemical, and physiological 
characteristics (as well as its spectral properties in this type of forest) vary considerably 
throughout the seasons [59,60], especially its pigments. Chlorophyll degradation is ac-
companied by an increase in carotenoids during leaf senescence [61,62], which leads to 
the ratio being the proxy for tracking leaf senescence [10]. However, to the best of our 
knowledge, very few studies have treated the ratio independently to date, and directly 
pursued a remote sensing index using hyperspectral information. Consequently, devel-
oping a new spectral index that is able to quantify the ratio accurately and robustly, and 
more importantly, is able to trace its seasonal dynamics, is in demand.  

Developing an index from hyperspectral information has often been carried out from 
the various biophysical and biochemical parameters of leaves [63,64]. In this study, we 
followed the methodology demonstrated in Jin et al. [65] for developing new types of in-
dices. Furthermore, since spectral transformations of hyperspectral reflectance have been 
commonly applied when estimating vegetation characteristics from spectral information 
[65,66], we have explored those representative transformations explicitly in order to iden-
tify the best-performing indices. Among them, the spectral derivatives transform is the 
most commonly used, due to its potential for removing baseline effects and eliminating 
the influences of background information on the spectral characteristics of targets, thereby 
amplifying absorption features and obviously enhancing the correlations between the 
spectral reflectance and target variables [67–69]. In addition, standard normal variate 
(SNV), multiplicative scatter correction (MSC), and extended multiplicative scatter cor-
rection (EMSC) have been reported to be capable of removing the effects caused by light 
scattering and baseline shift in the spectra [70–72]. Besides the aforementioned individual 
transformations, we have also examined the combinations of different transformation 
techniques.  

Hence, the specific objectives of this study are (1) to evaluate the performance of pre-
viously reported spectral indices in estimating the chlorophyll/carotenoid ratio; (2) to ex-
plore the effects of pre-processing and transformations of spectra for developing a new 
hyperspectral index; and (3) to develop a robust spectral index that is able to trace the 
seasonal dynamics of the ratio of chlorophyll to carotenoid, and thus provide a quick ap-
proach for assessing vegetation functions. 

2. Materials and Methods 
2.1. The Composite Dataset  

This study has combined the field measurement data obtained from two cool tem-
perate deciduous forests (Naeba Mountain and Nakakawane) in Japan. The full descrip-
tions of these two sites can be found in the studies of Wang et al. [55] and Jin et al. [65], 
respectively. Briefly, synchronized data pairs of leaf pigments (chlorophyll and carote-
noid content) and reflectance collected in 2008 and 2009 from the dominant species of Fa-
gus crenata Blume in Naeba, and from several species (Acer shirasawanum Koidz, Betula 
grossa Siebold & Zucc., Stewartia pseudocamellia Maxim., Stewartia monadelpha Siebold & 
Zucc., Carpinus tschonoskii Maxim., and Fagus crenata Blume) in 2017, 2018, and 2019 in 
Nakakawane were used in this study. These two datasets contain the data covering the 
entire growing season, which generally runs from May to October, thus enabling investi-
gations across different phenological stages [55,73]. In this study, only fully sunlit portions 
of the uppermost tree crowns (a total of 243 samples) were used for further analysis. Leaf 
reflectance from 350–2500 nm was measured with the ASD FieldSpec spectroradiometers 
(Analytical Spectral Devices Inc., Boulder, CO, USA) equipped with the leaf clip, while 
the chlorophyll and carotenoid contents of each leaf were taken for spectral analysis, 
which was determined using a dual-beam scanning ultraviolet-visible spectrophotometer 
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(Ultrospec 3300 pro, Amersham Biosciences, Piscataway, NJ, USA). However, the carote-
noid in the Naeba dataset was measured using an HPLC system (Shimazu, Japan). The 
ratio of chlorophyll (Chl) to carotenoid (Car) content (Chl/Car) was then calculated. 

In addition to field-based datasets, the publicly available Angers dataset (http://opti-
cleaf.ipgp.fr/, last accessed on 21 December 2021), which contains simultaneously meas-
ured leaf-level chlorophyll, carotenoid, and spectral reflectance from temperate plants in 
2003, was also used in this study. In this dataset, the reflectance spectra were measured 
from 400 nm to 2450 nm using ASD FieldSpec instruments with a sampling resolution of 
1.4 nm (for the region 400 to 1050 nm) and 2 nm (for the region 1000 to 2450 nm). The leaf 
chlorophyll a, chlorophyll b, and carotenoid for each sample was determined according 
to the methods of Lichtenthaler [74]. More information on the Angers dataset is provided 
by Féret et al. [75]. In this study, deciduous tree species were selected from the dataset 
and a total of 204 samples were adopted for further analysis.  

2.2. Spectral Preprocessing Transformations 
The marginal ranges of 350–399 nm and 2401–2500 nm were removed from each spec-

trum, to reduce the noise effects in the original reflectance, leaving the reflectance spectra 
in the region of 400–2400 nm for further analysis. With the aim of determining the best 
index for estimating the ratio of chlorophyll to carotenoid, various spectral preprocessing 
transformations (standard normal variate transformation (SNV), multiplicative scatter 
correction (MSC), and extended multiplicative scatter correction (EMSC)) were calculated 
[72,76,77] to correct for scattering effects. Furthermore, the original reflectance spectra 
(OR) were converted into apparent absorption spectra (Log) using the formula of log 
(1/OR) for reducing nonlinearities [67]. In addition, the first-order (1st) and second-order 
(2nd) derivatives transform were also applied in this study and their specific formulas can 
be found in Wang et al. [54]. 

2.3. Published Spectral Indices  
The capabilities of previously published Chl/Car (or Car/Chl) indices were examined 

in this study. The selected spectral indices include the photochemical reflectance index 
(PRI), the normalized pigment chlorophyll ratio index (NPCI), the structure insensitive 
pigment index (SIPI), the plant senescence reflectance index (PSRI), the carotenoid/chlo-
rophyll ratio index (CCRI), the chlorophyll/carotenoid index (CCI), and the normalized 
difference vegetation index (NDVI). The details regarding these published spectral indi-
ces are shown in Table 1. 

Table 1. Previously published spectral indices for the estimation of the chlorophyll (Chl)/carotenoid 
(Car) ratio in other studies. 

Index Variable Formula Reference 
Photochemical reflectance index (PRI) LUE (R570−R531) (R570 + R531⁄ ) Gamon et al. [38] 

Normalized pigment chlorophyll ratio 
index (NPCI) 

Total 
pigments

/Chl 
(R680 − R430) (R680 + R430⁄ ) Peñuelas et al. [45] 

Structure insensitive pigment index (SIPI) Car/Chla (R800 − R445) (R800 − R680⁄ ) Peñuelas et al. [45] 
Plant senescence reflectance index (PSRI) Car/Chl (R678 − R500) (R750⁄ ) Merzlyak et al. [46] 

Carotenoid/chlorophyll ratio index (CCRI) Car/Chl ((R720 − R521) R521⁄ )) ((R750 − R705) R705⁄ ))⁄  Zhou et al. [47] 
Chlorophyll/carotenoid index (CCI)  Car/Chl (R532 − R630) (R532 + R630⁄ ) 

Wong et al. [78] Normalized difference vegetation index 
(NDVI)  

Car/Chl (R800 − R630) (R800 + R630⁄ ) 
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2.4. Development of New Hyperspectral Indices 
Besides the previously reported vegetation indices, new types of hyperspectral indi-

ces were developed to estimate the ratio of Chl to Car. The index types adopted in this 
study included the reflectance at a given wavelength (R), simple ratio (SR), wavelength 
difference (D), normalized difference (ND), inverse difference (ID), and double difference 
(DDn) [66]. Besides this, several modified types of indices were also included in this study, 
namely, the modified simple ratio 1 (mSR1), modified simple ratio 2 (mSR2), modified 
normalized difference (mND), and the modified inverse difference (mID) [65]. Their for-
mulas are presented in Table 2. All possible combinations of the wavelengths within the 
entire wavelength domain for a given index type were examined for their performance 
based on linear regression analysis. 

Table 2. New types of indices were developed for the estimation of the chlorophyll (Chl)/carotenoid 
(Car) ratio in this study. R and the suffixes (λ1 or λ2) represent the reflectance and wavelength, 
respectively. 

Index Type Wavelength Formula 
R λ1 Rλ1 

SR λ1, λ2 Rλ1 Rλ2⁄  
D λ1, λ2 Rλ1 − Rλ2 

ND λ1, λ2 (Rλ1 − Rλ2) (Rλ1⁄ + Rλ2) 
ID λ1, λ2 (1 Rλ1⁄ ) − (1 Rλ2⁄ ) 

DDn λ1, ∆λ 2Rλ1 − Rλ1−∆λ − Rλ1+∆λ 
mSR1 λ1, ∆λ (Rλ1−∆λ − Rλ1) Rλ1+∆λ⁄  
mSR2 λ1, ∆λ (Rλ1−∆λ − Rλ1) (Rλ1+∆λ⁄ − Rλ1) 
mND λ1, ∆λ (Rλ1−∆λ − Rλ1) (Rλ1−∆λ⁄ + Rλ1 − 2Rλ1+∆λ) 
mID λ1, ∆λ Rλ1−∆λ(1 Rλ1⁄ − 1 Rλ1+∆λ⁄ ) 

2.5. Statistical Criteria 
Linear regression analysis was used for revealing the relationships between the 

Chl/Car ratio and spectral indices. The performances of the spectral indices were evalu-
ated based on the statistical criteria of the coefficient of determination (R2), root mean 
square error (RMSE), and the ratio of performance to deviation (RPD). When RPD < 1.40, 
the index was recognized as having performed poorly [79].  

3. Results 
3.1. Leaf Chlorophyll/Carotenoid Ratio of the Composite Dataset 

The distribution of the chlorophyll (Chl)/carotenoid (Car) ratio in the two field da-
tasets (Naeba and Nakakawane) and the public dataset (Angers) are presented in Figure 
1a. The Chl/Car ratio ranged from 2.00 to 7.31 (mean ± standard deviation (SD): 4.63 ± 
0.94) for the Naeba dataset, from 2.58 to 6.55 (mean ± SD: 5.02 ± 0.65) for the Nakakawane 
dataset, and from 1.98 to 5.92 (mean ± SD: 3.80 ± 0.63) for the Angers dataset. The coeffi-
cient of variation (CV, the ratio of the standard deviation to the mean) of these three da-
tasets was 20.21%, 12.93%, and 16.59%, respectively. Furthermore, for the composite da-
taset, the Chl/Car ratio varied from 1.98 to 7.31 with a mean of 4.35, an SD of 0.90, and a 
CV of 20.71%. In addition, the Chl/Car ratio during different phenological stages in the 
two field measurement datasets was also explored (Figure 1b). The Chl/Car ratio reached 
its highest value in the leaf maturity period (mean ± SD: 5.06 ± 0.75), followed by leaf 
senescence (mean ± SD: 4.58 ± 0.76) and flushing periods (mean ± SD: 3.87 ± 0.69), with 
corresponding CV values of 14.74%, 16.59%, and 17.91%, respectively. 
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Figure 1. Violin plots with boxplots (inside) for the ratio of chlorophyll (Chl) to carotenoid (Car) 
(Chl/Car) in different datasets (Naeba, Nakakawane, and Angers) (a), and during different pheno-
logical stages (flushing, maturity, and senescence) of the Naeba and Nakakawane datasets (b). The 
boxplots indicate the interquartile range (box), median (gap), and 1.5 times the interquartile range 
(whiskers). 

On the other hand, the mean and SD of the corresponding original reflectance (OR) 
data in these three datasets, and during different phenological stages, are shown in Figure 
2. Obvious variations were found over the entire spectral domain, especially the near-
infrared spectral regions in the OR data. The mean values of Nakakawane and Angers 
datasets were higher than that of the Naeba dataset from 780 to 1700 nm. Meanwhile, the 
reflectance also varied in the leaf flushing, maturity, and senescence stages. The OR data 
in the flushing stage had higher mean values than the other two stages (approximately 
550 nm). 

 
Figure 2. The corresponding original reflectance (OR) data in the Naeba, Nakakawane, and Angers 
datasets (a), and during the flushing, maturity, and senescence stages (b). Solid lines and shading 
zones represent the averages of the original reflectance values and the corresponding standard de-
viations, respectively. 
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3.2. Evaluation of the Reported Spectral Indices Using the Composite Dataset 
The ability of previously published spectral indices (PRI, PSRI, SIPI, NPCI, CCRI, 

CCI, and NDVI) to quantify the ratio of Chl to Car was investigated in this study, and 
their performance is shown in Table 3. All of the reported spectral indices performed 
poorly for individual datasets, the Nakakawane dataset in particular (R2: 0.00–0.13, RPD: 
1.00–1.08). Their performance on the Angers dataset (R2: 0.14–0.45, RPD: 1.08–1.35) was 
relatively better than the Naeba dataset (R2: 0.00–0.43, RPD: 1.01–1.33). The best reported 
spectral indices for the Chl/Car ratio differed with different datasets: they were CCRI, PRI, 
and NDVI for the Naeba, Nakakawane, and Angers datasets, respectively. For the com-
bined dataset, all reported spectral indices exhibited relatively poor performances, with 
the R2 values ranging from 0.01 to 0.36, RMSE ranging from 0.72 to 0.90, and RPD values 
varying from 1.00 to 1.25. Among the reported indices, CCI had the lowest R2 (0.01) and 
RPD (1.00) values, while having the highest RMSE value (0.90). Even though the CCRI 
was more accurate (R2 = 0.36, RMSE = 0.72, and RPD = 1.25) than other indices, it cannot 
be used to estimate Chl/Car ratio because of its low RPD value (RPD < 1.40). 

Table 3. Performance of reported indices for the evaluation of the ratio of chlorophyll (Chl) to ca-
rotenoid (Car) in the individual and composite datasets. 

Dataset Criteria PRI PSRI SIPI NPCI CCRI CCI NDVI 

Naeba 
R2 0.28 0.00 0.00 0.02 0.43 0.04 0.03 

RMSE 0.79 0.93 0.93 0.92 0.70 0.91 0.92 
RPD 1.19 1.01 1.01 1.02 1.33 1.03 1.02 

Nakakawane 
R2 0.13 0.02 0.00 0.04 0.02 0.00 0.05 

RMSE 0.60 0.64 0.65 0.63 0.64 0.65 0.63 
RPD 1.08 1.01 1.00 1.02 1.01 1.00 1.03 

Angers 
R2 0.36 0.37 0.24 0.31 0.29 0.14 0.45 

RMSE 0.50 0.50 0.55 0.52 0.53 0.58 0.47 
RPD 1.25 1.26 1.15 1.21 1.19 1.08 1.35 

All 
R2 0.17 0.12 0.22 0.19 0.36 0.01 0.25 

RMSE 0.82 0.84 0.79 0.81 0.72 0.90 0.78 
RPD 1.10 1.07 1.14 1.11 1.25 1.00 1.16 

3.3. Establishment of New Spectral Indices 
New types of indices for quantifying the Chl/Car ratio using the leaf reflectance, cal-

culated from different spectral transformations (OR, SNV, MSC, EMSC, Log, 1st deriva-
tive, and 2nd derivative), have been developed in this study (Table 4). Among the indices 
developed using the OR data, the ND had the strongest correlation to the Chl/Car ratio, 
with an R2 of 0.53, an RMSE of 0.61, and an RPD of 1.47. In comparison, when using the 
1st derivative spectra, the best index type was D, which had a slightly higher R2 (0.54) and 
the same RPD (1.47) values. Furthermore, the accuracy of the estimation of the Chl/Car 
ratio was relatively lower when the indices were developed from other spectral transfor-
mations. 
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Table 4. The performance of different types of indices developed for the estimation of the chloro-
phyll (Chl)/carotenoid (Car) ratio using various spectral transformations. 

Form Criteria 
Index Types 

R SR D ND ID DDn mSR1 mSR2 mND mID 

OR 
R2 0.35 0.51 0.50 0.53 0.50 0.44 0.48 0.51 0.47 0.49 

RMSE 0.73 0.63 0.64 0.61 0.64 0.67 0.65 0.63 0.66 0.64 
RPD 1.24 1.43 1.42 1.47 1.41 1.34 1.39 1.42 1.37 1.41 

SNV 
R2 0.46 0.50 0.51 0.44 0.46 0.46 0.48 0.51 0.47 0.47 

RMSE 0.66 0.64 0.63 0.68 0.66 0.66 0.65 0.63 0.66 0.65 
RPD 1.36 1.42 1.43 1.33 1.37 1.36 1.39 1.42 1.37 1.38 

MSC 
R2 0.46 0.50 0.51 0.52 0.51 0.46 0.48 0.51 0.47 0.47 

RMSE 0.66 0.64 0.63 0.62 0.63 0.66 0.65 0.63 0.66 0.65 
RPD 1.36 1.41 1.43 1.44 1.42 1.37 1.38 1.42 1.37 1.38 

EMSC 
R2 0.42 0.48 0.45 0.48 0.47 0.47 0.46 0.45 0.44 0.48 

RMSE 0.69 0.65 0.67 0.65 0.66 0.66 0.66 0.67 0.67 0.65 
RPD 1.31 1.39 1.35 1.39 1.37 1.37 1.36 1.35 1.34 1.39 

Log 
R2 0.33 0.53 0.53 0.53 0.49 0.43 0.46 0.51 0.47 0.42 

RMSE 0.74 0.62 0.62 0.62 0.64 0.68 0.66 0.63 0.66 0.69 
RPD 1.22 1.45 1.46 1.45 1.40 1.33 1.36 1.43 1.38 1.31 

1st 
derivative 

R2 0.44 0.50 0.54 0.46 0.37 0.51 0.52 0.53 0.53 0.49 
RMSE 0.68 0.64 0.61 0.66 0.71 0.63 0.62 0.62 0.62 0.64 
RPD 1.33 1.42 1.47 1.36 1.26 1.43 1.44 1.46 1.46 1.41 

2nd 
derivative 

R2 0.39 0.47 0.45 0.49 0.45 0.45 0.46 0.46 0.47 0.33 
RMSE 0.70 0.66 0.67 0.64 0.67 0.67 0.66 0.66 0.66 0.74 
RPD 1.28 1.38 1.35 1.40 1.36 1.35 1.37 1.36 1.37 1.22 

Further combinations of various spectral transformations were attempted during 
data preprocessing, in order to explore the best index for the Chl/Car ratio. Among all the 
combinations, the D-type index (dDEMSC), based on the spectral data transformed by the 
combination of EMSC and 1st derivative (Figure 3a), performed the best, with an R2 of 
0.57, RMSE of 0.59, and RPD of 1.52 (Figure 3b). The wavelengths adopted in this index 
were 540 nm and 1396 nm, respectively. 

 
Figure 3. The reflectance resulting from the pre-processing of both extended multiplicative scatter 
correction (EMSC) and first-order derivative (1st derivative) (a) and the performance of the devel-
oped best index for assessing the Chl/Car ratio (b). 
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Moreover, this index was further validated by the two field-measured datasets in 
Japan, which contained various phenological stages, and showed a fair performance (R2 = 
0.52, RPD = 1.47). Interestingly, this index exhibited a relatively consistent performance 
for tracing the Chl/Car ratio in different phenological stages, with R2 values ranging from 
0.47 to 0.58 and RPD ranging from 1.40 to 1.55 (Figure 4). Obviously, the highest accuracy 
for this index in tracing the Chl/Car ratio occurred at the leaf flushing stage (R2 = 0.58, RPD 
= 1.55), followed by the leaf senescence stage (R2 = 0.54, RPD = 1.51). The lowest tracing 
accuracy was found during the leaf maturity stage, which had an R2 of 0.47 and an RPD 
of 1.40. Although not good, the index is still applicable if judged by the RPD value (≥1.40). 

 
Figure 4. Performance of the best developed index for tracing the Chl/Car ratio in the two field-
measured datasets (Naeba and Nakakawane) at distinctive phenological stages. 

4. Discussion 
4.1. Inapplicability of Published Indices Suggest the Ratio Should be Investigated Independently 

In this study, the feasibility of using previously reported spectral indices to estimate 
the Chl/Car ratio using a composite dataset of field measurements in two cool temperate 
deciduous forests and the public Angers dataset, has been validated. Notably, none of the 
published spectral indices performed well in our study; even the best one (CCRI) only 
achieved a low R2 (0.36) and a low RPD (1.25). This index was proposed by Zhou et al. [47] 
and it combines the carotenoid index and the red-edge chlorophyll index, which were 
specifically proposed for carotenoid and chlorophyll assessment, respectively, to estimate 
the ratio of carotenoid to chlorophyll content in crops. The inapplicability of this index 
might, at least to some extent, be attributed to the fact that it was not developed directly 
for this function. but indirectly through the combination of biochemicals. The differences 
in functional plant types may be another reason. Additionally, the PSRI (another pub-
lished index for estimating the ratio of carotenoid to chlorophyll, used to track the onset 
and stage of leaf senescence [10]) similarly showed very poor predictivity. These findings 
are consistent with those reported in a previous study [47], indicating that the PSRI shows 
unstable assessment predictivity for the ratio between carotenoid and chlorophyll in var-
ious tree species. 

As demonstrated in previous studies, the ratio between leaf chlorophyll and carote-
noid can be considered as a proxy to track the physiological and phenological status of 
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vegetation [11,46]. However, until now, few studies have ever attempted to develop spec-
tral indices directly for this ratio, primarily due to its non-obvious absorption features in 
the visible spectral regions. Nevertheless, a few of the studies showed a close relationship 
between PRI and the ratio [52,80,81], since the changes in the ratio associated with the leaf 
ages or stress are critical to the changing PRI signal [37,82]. Wong et al. [83] observed that 
the changes in PRI across the seasons are clearly driven by the variation of carote-
noid/chlorophyll ratio rather than the xanthophyll cycle conversion in evergreen conifers, 
and the PRI could serve as an optical indicator of varying photosynthetic activity 
[78,84,85]. Unfortunately, our results indicated that the PRI only had a weak correlation 
with the ratio of Chl to Car. The discrepancy can partly be explained by the role of the 
ratio between chlorophyll and carotenoid in driving PRI, which should be varied across a 
wide range of vegetation types, conditions, and time scales [86]. Furthermore, the varia-
tions in the de-epoxidation state of the xanthophyll cycle may have an ignorable effect on 
the correlation between PRI and chlorophyll/carotenoid ratio [50]. Accordingly, the PRI 
should be applied with caution when estimating the chlorophyll/carotenoid ratio or fur-
ther assessing photosynthetic efficiency. 

Overall, this study proved that the reported spectral indices are not applicable to the 
estimation of the ratio of chlorophyll to carotenoid, suggesting that a new spectral index 
is highly desirable. The ratio of chlorophyll to carotenoid is a proxy for leaf senescence, 
which should be investigated independently by considering the biological behaviors in-
volved more explicitly. 

4.2. Evaluations of Developed Indices for Quantifying and Tracking the Ratio of Chlorophyll to 
Carotenoid 

Based on the composite dataset, we developed a new spectral index (dDEMSC) using 
the combination of EMSC and first-order derivative transformed spectra, which obtained 
good results for assessing the ratio of chlorophyll to carotenoid. The R2 and RMSE values 
were 0.57 and 0.59, respectively, and the RPD reached 1.52. Such results indicate that this 
index is applicable for assessing the chlorophyll/carotenoid ratio in cool temperate decid-
uous forests. The band combination of this index includes the first wavelength of 540 nm 
and the second wavelength of 1396 nm. As demonstrated by previous studies, the changes 
in reflectance of the spectral regions around 540 nm have been shown to be associated 
with variations in pigments, such as anthocyanins, chlorophyll, and carotenoids [87–89]. 
The wavelength around 1396 nm is characterized as a water-absorption band, providing 
information on plant water status, and this has been demonstrated in previous studies 
[90,91]. Varying pigments and water content have been linked to stress or senescence 
[10,43,92]; this partially explains the feasibility of the index for estimating the chloro-
phyll/carotenoid ratio and tracking leaf senescence. 

The best index identified for the assessment of chlorophyll/carotenoid ratio was fur-
ther validated using a simulated dataset generated by PROSPECT 5 [75] (Figure 5). The 
range of the Chl/Car ratio was set within the average values ± 3 standard deviations in 
this study. The Chl/Car ratio showed a good linear correlation (R2 = 0.52) with the dDEMSC 
(540, 1396), which further confirmed the applicability of the index. Overall, on the basis of 
all the results obtained with the measured and simulated data, the spectral indices have 
great potential for the assessment of the ratio between chlorophyll and carotenoid content 
in deciduous species. 
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Figure 5. The relationship between dDEMSC (540, 1396) and Chl/Car ratio for a simulated dataset from 
PROSPECT 5. 

4.3. Performance of Different Preprocessing and Transformations for Tracing the Ratio of 
Chlorophyll to Carotenoid 

The combination of EMSC and the first-order derivative proved to be effective for 
identifying the best spectral indices for assessing the ratio of chlorophyll to carotenoid. As 
reviewed by Rinnan et al. [70], the EMSC is extended on the basis of MSC, with more 
elaborate augmentations, and includes prior knowledge about the chemical constituents, 
thus avoiding loss in using information from the measured spectra [93,94]. For example, 
Sharma et al. [95] indicated that preprocessing techniques, with expert knowledge of the 
target or interferents, could improve the predictions of partial least squares regression. 

Meanwhile, a large number of previous studies reported very good performance in 
the use of derivatives on vegetation property estimation in the spectral indices and partial 
least squares regression [65,96,97], due to their advantage of reducing background effects 
[68]. The derivatives in this study also performed reasonably well, although not optimally. 
However, the best index for the chlorophyll/carotenoid ratio was found when the reflec-
tance was preprocessed by combining EMSC and first-order derivative, suggesting the 
potential for using combinations of preprocessing methods in the reflectance spectra for 
assessing vegetation functions. 

4.4. Future Studies 
Vegetation functions are fundamental to understanding ecosystem behavior and 

they can be evaluated by tracing vegetation characteristics, which are dynamic in nature 
[98]. Through this study, it is clear that vegetation functions should be investigated inde-
pendently when using reflected information in order for a better understanding of the 
interaction of vegetation and environments under current changes in climate. The results 
obtained in this study may, potentially, provide useful guidance for tracing vegetation 
functions through the development of a general spectral index. Nevertheless, because the 
limited datasets continue to provide synchronous spectral information and vegetation 
functions, simulation datasets are required to detect the general indicators. Unfortunately, 
models that have the ability to simulate both spectral responses and vegetation functions 
are not yet sophisticated enough to produce realistic simulations. This is a bottleneck that 
should be thoroughly addressed in the future. Furthermore, the ratio of chlorophyll to 
carotenoid may behave differently in different species, various plant functional types, 
and/or different environmental conditions, and this study has only explored deciduous 
species. Spectral indices, in general, face limitations in terms of robustness and portability, 
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for which the associations between spectral indices and vegetation characteristics eluci-
dated from a restricted dataset are difficult to apply to other datasets. Consequently, more 
extensive validations in other species and conditions should be carried out in future stud-
ies. 

5. Conclusions 
This study demonstrates the ability of spectral indices to remotely detect the ratio of 

chlorophyll to carotenoid with seasonal changes in deciduous forests. The newly devel-
oped D-type index combined with extended multiplicative signal correction and first-or-
der derivative spectra gave the most accurate estimation of the chlorophyll/carotenoid 
ratio in the combined datasets measured. The capability and feasibility of using D-type 
index spectral indices were compared with previously published, associated spectral in-
dices and were validated for different phenological stages. Overall, the variations in the 
chlorophyll/carotenoid ratio can be captured accurately by spectral indices, which can 
therefore act as proxies for photosynthetic activity. 
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