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Abstract: Analyses of climate change based on point observations indicate an extension of the
plant growing season, which may have an impact on plant production and functioning of natural
ecosystems. Analyses involving remote sensing methods, which have added more detail to results
obtained in the traditional way, have been carried out only since the 1980s. The paper presents the
results of a bibliometric analysis of papers related to the growing season published from 2000–2021
included in the Web of Science database. Through filtering, 285 publications were selected and
subjected to statistical processing and analysis of their content. This resulted in the identification
of author teams that mostly focused their research on vegetation growth and in the selection of the
most common keywords describing the beginning, end, and duration of the growing season. It was
found that most studies on the growing season were reported from Asia, Europe, and North America
(i.e., 32%, 28%, and 28%, respectively). The analyzed articles show the advantage of satellite data
over low-altitude and ground-based data in providing information on plant vegetation. Over three
quarters of the analyzed publications focused on natural plant communities. In the case of crops,
wheat and rice were the most frequently studied plants (i.e., they were analyzed in over 30% and
over 20% of publications, respectively).

Keywords: phenology; end of season; start of season; season metrics; plant phenology; UAV; satellite
data; earth observations

1. Introduction

Phenology is a branch of science associating the events of the life cycle of organisms
with their biotic and abiotic determinants [1]. Detailed knowledge of phenological phe-
nomena and their mechanisms facilitates the identification of changes involved in plant
growth and yield. The length of the growing season in a given area is the number of plant
growing days. It determines the species of plants that can be grown in the area, as some
plants require a longer growing season. Other species develop faster; hence, their growing
season can be shorter. The length of the growing season is determined by multiple factors.
Depending on the region, these include air temperature, frosty days, rainfall, and sunshine
duration [2].

Changes in the length of the growing season may have both positive and negative
effects on the yield of some crops [3–7]. A longer growing season may increase yields and
improve plant living conditions on one hand, but may result in species modification on the
other [8–11]. Changes taking place in plants are most often a result of climatic fluctuations;
therefore, observations provide the basis for the formulation of conclusions about the
consequences of contemporary climate changes [12–14]. In general, global warming is
assumed to have a negative impact on the yield of staple crops; however, climate change
may have a positive effect on crop yields in some regions [15–19]. A longer growing season
may contribute to the diversification of crops or a possibility to harvest crops several times
in one season. On the other hand, it may lead to the reduction in the number and types

Remote Sens. 2022, 14, 1331. https://doi.org/10.3390/rs14061331 https://www.mdpi.com/journal/remotesensing

https://doi.org/10.3390/rs14061331
https://doi.org/10.3390/rs14061331
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/remotesensing
https://www.mdpi.com
https://orcid.org/0000-0002-3539-0024
https://orcid.org/0000-0003-1574-7468
https://doi.org/10.3390/rs14061331
https://www.mdpi.com/journal/remotesensing
https://www.mdpi.com/article/10.3390/rs14061331?type=check_update&version=2


Remote Sens. 2022, 14, 1331 2 of 34

of cultivated plant species and varieties, unfavorable spread of invasive alien species,
increased weed infestation, or higher irrigation requirements. A longer growing season
may also disturb the function and structure of ecosystems in the region and indirectly affect
the range and number of fauna species in the area [20–22].

Plant vegetation can be investigated with multidimensional temporal and spatial
analyses. One of the most frequently used approaches in vegetation research is the method
based on non-invasive and non-destructive remote sensing techniques [10,23–88]. As al-
ready mentioned, this method is based on the use of devices and techniques that allow
measurements of plant characteristics and properties without direct contact with the ana-
lyzed object. In contrast to traditional methods, remote sensing facilitates a quick analysis
and evaluation of plant growth and development conditions [89,90].

Plant analyses are mainly focused on the chlorophyll content [25] or substances con-
tained in plants [91] and, consequently, the condition of plants [24,27]. Research on the
growth and development of vegetation can be carried out in both strictly controlled labora-
tory conditions [29,79,92,93] and using satellite techniques [42,44,46,49–51,56,59,61,62,64–
66,68,71,75–78,80,88,94–139] or other means of transporting remote sensing devices (UAV,
airships, airplanes) [43,47,54,55,65,84,108–110,118,140–153]. Laboratory studies are usually
carried out only on the scale of one plant or several specimens [22,29,85,92,154], while
analyses carried out in larger areas (fields, provinces, continents, or global scale) require
the use of remote sensing techniques based on spatial data acquisition [14,23,26,28,30–
35,40,108–132,134–139,154–230].

The description of the growing season mainly consists in the determination of basic
parameters (i.e., the start and end of the season). There are also attempts to define the peak
season and its duration. The history of research on the temporal parameterization of the
growing season is very long, as it dates back to the first decades of the 20th century [231].
For many years, measurements were based on traditional sources of information (i.e., direct
phenological observations combined with meteorological data). The dynamic development
of technology in recent decades has allowed for the use of remote sensing data, mainly
properly processed satellite data with different temporal and spatial resolutions [10,14,23,
26,28,30–35,40–56,58–72,94,95,108–132,134–139,151,152,154–230,232,233].

The start of season (SOS) (or often—the start of spring) is defined as a sharp increase in
the green-up directly after a long period of photosynthetic dormancy [234]. At present, the
beginning of the season is determined mainly with the use of remote sensing techniques,
most often properly processed NDVI or EVI data. Growing season data are compiled as
a smoothed curve, and season metrics are determined from the thresholds of seasonal
amplitude. The term ‘start of season’ indicates the beginning of the growing season and
usually refers to the date when there is a substantial increase in NDVI values. However,
various SOS measures can be derived from the time-series (e.g., the time point with NDVI
values exceeding a certain threshold) [235,236], breakpoints in the graph or the time point
when the curve begins to rise [237], and the maximum development of the growing season
(i.e., the time with the highest green-up increase rates) [238].

Another phenological parameter measured with the use of remote sensing techniques
is the ‘end of season’ (EOS) [8,23,32–34,36,38,40,140,143,155,157,158,161,162,164–166,
169,171,173,176,177,180,182–186,188,189,191,194,195,197–201,204,208,212,215,217,219,
220,223,225,227,228,239–257]. It indicates the moment of a marked decrease in the values
of certain plant indicators. The ‘length of season’ is most often defined as the duration from
the start (SOS) to the end of the season (EOS). Some researchers have also defined the ‘peak
of season’ as the date of maximum NDVI values [73,77,112,115,139,179,189,195,199,200,208–
210,213,220,246,258–261].

Leaf greening is an important attribute of vegetation throughout the growing season
and is a basis for quantifying the water, energy, and carbon exchange between the atmo-
sphere and the biosphere [262–264]. A special case analyzed in terms of the growing season
transition dates is the impact of urban complexes. The growing season in cities is generally
longer than in non-urban areas [265].
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Phenological phases can be established based on several types of observations
(i.e., (1) direct visual observations by a human observer; (2) close-range near-surface mea-
surements; and (3) satellite remote sensing) [71]. Direct visual observations of plant
phenology have been carried out for over a century in many locations, and there are large
observation networks in different regions of the world (e.g., the Pan European Phenology
Network [266,267] and the National Phenology Network (NPN) [244] in the United States).

Growing season dates may differ in agricultural and urban areas [62]. This is related to
the fact that, in autumn, leaves remain on urban trees for a longer time. Monitoring of vege-
tation may also be carried out with the use of the solar-induced fluorescence technique [268].
Radar is another relatively frequently used sensor for monitoring vegetation [151,269,270].
In combination with ground-based data, it can be a valuable source of information.

Special IT tools have even been devised for a better and faster analysis of vegeta-
tion data (e.g., the QGIS plugin developed by Duarte et al.) [195]. This plugin is in-
tended for quick identification of various stages of vegetation growth based on multiyear
MODIS observations.

One of the effects of changes in the length of the growing season may be the increased
accumulation (sequestration) of carbon in forest [158,271,272] or grassland [152] areas.

The research on plant phenology is extremely important from the point of view of food
production. Investigations of arable crops predict that, in the future, there may be changes
in the possibility to cultivate species with specific requirements in climatic zones other
than at present [273,274]. On the other hand, this research supports modifications of the
requirements aimed at better adaptation of crops to climate change [275,276]. In the case of
natural vegetation, analyses of the growing season may provide better understanding of
species encroachment into areas previously occupied by less climate-demanding vegetation.

The aim of this study was to compile a comprehensive review of investigations based
on remote sensing methods used for the determination of plant phenology in various
aspects. In the scientific literature, there are reports summarizing this type of research,
but they represent a merely fragmentary approach limited to a specific region, type of use,
period of time, or data. There is no comprehensive study summarizing studies conducted
with the use of specialized tools. This review is intended to fill this gap.

2. Materials and Methods

The most common approach in review papers consists of bibliometric analyses of
available journal databases [8,9,11,22,24,71,79,89,90,93,142,207,272,277–281]. Publications
included in the Web of Science Core Collection database were the basic material used in the
present study; these were found using the following filters:

• abstract: “remote sensing” + “growing season”, keyword plus: “phenology”, “satel-
lite”, “ground”;

• abstract: “remote sensing” + “growing season” + “airplane”, “UAV”, “ground-based”,
“flux”, “crop monitoring”, “forest”, “optical”, “radar”, “thermal”, “microwave”; and

• abstract: “remote sensing”; keywords: “start of season”, “end of season”.

The search yielded over 1295 publications. All search effects were combined into
one database. Pre-2000 publications and duplicate entries were removed (Figure 1). In
the subsequent stage, a manual selection of articles was carried out by analyzing the title,
abstract, and content of the article with the use of the following questions (verification
stage 1):

(a) Does the paper fall within the scope of phenological research?
(b) Does the paper address the issue of the plant growing season?
(c) Were the remote sensing data used in the study satellite, low-altitude, or ground-based?
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Figure 1. Procedure scheme—creation of a database and analysis of articles.

Finally, 285 publications [10,14,28,30–34,36–59,61–70,72–78,80–88,96–107,109–131,
133–141,143–148,150–157,159–179,181–206,208–230,232–234,240–243,245–247,249–261,
265,269,277,279,282–354] were compiled and analyzed using the VOSviewer soft-
ware [355,356]. This software is applied for bibliometric analyses of the network of
links and dependencies between the keywords contained in the publication. The aim of
the analysis was to investigate the relationship between keywords related to vegetation
in terms of the beginning, end, and duration of the growing season. From the available
link types, a link based on partial calculation of the dependency strength was selected
(Figure 2)—when an author is a co-author of a paper together with other authors (number
n), the link has the strength of 1/n for each of the n coauthor links. There are similar differ-
ences between the two counting methods in the calculation of the strength of cooccurrence,
bibliographic coupling, and co-citation links.

Figure 2. Scheme for the calculation of the strength of links between publications and authors based
on the “fractional counting” function [Based on the VOSviewer manual].

Detailed query based on a detailed search for specific keywords was carried out.
Publications with keywords related to season metrics (e.g., “start of season”, “end of
season”, “length of season”, and related phrases used by the authors were analyzed).
The publications compiled in the database were analyzed using Zotero software, which
searched for possible combinations of words defining the season metrics (i.e., “onset of
season”, “season end”, and “duration of the growing season”). The Zotero lookup engines
use article metadata, indexed content, and assigned tags. The results were summarized as
the basic statistics.

The next stage of the detailed analysis was focused on:
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(a) localization of the research taking into account climatic zones;
(b) scales of studies;
(c) types of input data used; and
(d) types of plant communities studied.

The analysis was based on the traditional verification of the substantive content of
individual publications.

3. Results
3.1. Link Analysis

The clustering of information related to the keywords provides a certain view of the
trends in the analyses performed in the publications (Figure 3). The publications analyzed
in the literature review in terms of the keywords were organized into eleven clusters
of various sizes. The largest cluster comprises the linking of 75 keywords (red color in
Figure 3). Keywords such as “phenology”, “spring phenology”, “climate change”, ‘NDVI”,
or “MODIS” occur most frequently in the analyzed set of publications on the growing
season (Figure 4). This is associated with the applied key of the search.

Figure 3. Link analysis of keywords.
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Figure 4. Most frequent keywords used in the analyzed articles.

The link between the term “start of season” and “phenology” is obvious due to
the very close conceptual link between these words. There are also links (common use in
keywords) between the words “start of season” and “snow cover duration”, “precipitation”,
or “budburst”. The analysis of keywords provides a basis for grouping terms into mutual
cause-and-effect relationships without indicating the cause and the effect. In the case of the
growing season, the analysis of keywords facilitates inference about the impact of various
factors on its beginning, end, and duration.

Importantly, the analysis of keywords should take into account their spelling. Some-
times, several different keywords have the same meaning (budburst, bud burst, but-burst).
This may have a negative impact on the search results in such cases.

The frequency of the “start of season” keyword showed a close link of this phrase
with “phenology”, “spring phenology”, “climate-change”, “vegetation phenology”, “plant
phenology”, “trends”, or “MODIS” (Figure 5a). Less frequently, the phrase “start of season”
is linked with “snow cover duration”, “carbon-dioxide”, or “backscatter”, which may imply
negligible author interest in the analysis of the dates of the start of the growing season
relative to the snow cover, CO2 absorption, and backscattering.

Before 2015, “spatial resolution”, “stress”, “frost damage”, “CO2”, and “different
vegetation index” were the most frequently used keywords in publications. In turn, the
most recent publications (after 2018) focused on keywords such as “crop phenology”,
“digital camera”, and “unmanned aerial vehicle”. Such a distribution of keywords may
suggest rapid implementation of modern technologies in studies on the growing season.

The links between phrases related to the beginning, length, and end of the growing
season exhibited high variability. The definition of phrases describing the phenophase
events is not clear. The beginning of the growing season is defined in various ways by
different authors; hence, various phrases are used as keywords. “Spring phenology” is
much more frequently used than the “start of season” phrase. This may lead to a conclusion
that, before formulation of the keywords, authors should analyze those used in similar
publications, in order to provide a correct definition and increase the efficiency of searches.
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Figure 5. Links between the selected keywords in terms of their strength; (a) start of season; (b) soil;
(c) spring phenology; (d) land-surface phenology; (e) green-up dates; (f) end of season.

The phrase “land-surface phenology” is most often used with the keywords “green
up”, “spring phenology”, “phenology”, and “climate-change” (Figure 5d). The greatest
distance in the figure related to the low co-frequency of “land-surface phenology” was
observed for the “reflectance”, “net ecosystem productivity”, “Sentinel-2”, “cover change”,
and “green-up date” keywords. The phrase “green-up dates” is most often linked with
“Tibetan Plateau” and “winter” (Figure 5e). In the case of the end of the growing season
defined by the “end of season (EOS)” keyword, this phrase in the publications was accom-
panied by the “NDVI”, “start of season”, or “remote sensing”, and “MODIS” keywords
(Figure 5f).

3.2. Main Research Topics
3.2.1. Season Metrics

Remote sensing investigations have focused on various growing season parameters.
The first of the metrics is the beginning of the season defined as “start of season” or, less fre-
quently, “start of spring”, “beginning of season”, or “spring onset” (Figure 6). Authors have
also described the beginning of the spring phenophase, directly referring to the vegetation
cover as “green-up” or “spring vegetation green-up”. A wide spectrum of metrics were
presented by Baumann et al. [331]: “green-up (GU)”, “start-of-season (SoS)”, “maturity
(Mat)”, “senescence (Sen)”, “end-of-season (EoS)”, and “dormancy (Dorm)”. These were
determined based on MODIS/Landsat satellite data. Similarly, Berman et al. [329] analyzed
the “start of season (SOS)”, “peak instantaneous rate of green-up date (PIRGd)”, “peak
of season (POS)”, and “end of season (EOS)”. An example of another parameter is the
“beginning of spring growth (BOSG)” described by Boyte et al. [340].
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Figure 6. Frequency of phrases expressing season metrics in the analyzed publication database.

Analyses have been carried out for many years to verify/validate the methodology of
determination of the growing season parameters based on remote sensing and a comparison
with traditional methods [170]. Many studies, both those regarded as ‘classic’ and cited
repeatedly [234] and the contemporary ones [341], present the problem of the methodology
of determination of season metrics based on remote sensing data. There are also attempts to
improve the existing algorithm models [49]. An interesting example of combining various
data sources and their mutual validation is the use of low-budget photo-traps, which
facilitate local analysis of plant development phases [64] and comparison of the indicators
obtained with satellite data.

Some researchers have focused on a detailed analysis of factors influencing some
parameters of the growing season, in particular, the impact of snow cover on the begin-
ning of the growing season [59]. Spring frosts were also analyzed in relation to season
metrics [204].

Research on the beginning and end of the growing season is often only a tool and a
preliminary stage in far more advanced analyses (e.g., determination of the crop calendar
for rice in [53], identification of forest habitat types [52], or analyses of the occurrence of
fires [242]). Interesting investigations were conducted by [265], who studied the impact of
the urban tissue on the differentiation of the beginning, end, and peak of the growing season.
Researchers have used advanced digital tools to analyze the vegetation season metrics. A
popular tool is TIMESAT, which was designed and developed at Lund University. The use
of open-source GIS tools has also been described in the literature [195].

3.2.2. Location of Research

The distribution of the current research on the growing season with the use of re-
mote sensing techniques is disproportionate. The majority of the analyzed studies have
been conducted in Asia, Europe, and North America (i.e., 32%, 28%, and 28%, respec-
tively) (Figure 7). Some studies analyzed data covering the entire area of a given conti-
nent (e.g., Europe [45,197]), or a large geographically homogeneous part of a continent
(e.g., West Africa [58,210,323] or Southern Europe with the Maghreb [205]). Africa (5%
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of the analyzed studies), Australia (4%), and South America (2%) are much less popular
among the researchers. This was also found in the case of studies (2%) carried out in the
Arctic area, which is particularly distinguishable from the other regions.

Figure 7. Percentage of research carried out on the continents. The sum does not coincide with the
number of the analyzed publications, as studies performed on the global and hemisphere scale are
not included in the analysis.

Some research has focused on large areas (e.g., the Northern Hemisphere [36,63,
121,134,178,265]). Some researchers have used large datasets from the entire world and
undertaken phenological investigations from a global perspective [37,218,325,345]. In most
European countries, there were only single papers or no studies were recorded (Figure 8).
The investigations were most frequently undertaken in Germany and France. In Asia, over
two thirds of all publications (70%) were based on research conducted in China, and 10%
were in India.

Figure 8. Remote sensing research conducted in Europe (number of publications shown by the query
is indicated in the circles).
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Precise determination of the climatic zone where the research was conducted would
require a very thorough analysis of individual publications. This review paper presents
the approximate location in relation to the physical regionalization. It should be noted that
the reference to climatic conditions is difficult in many cases due to their high variability
in the analyzed area. Europe, where the studies were carried out in a warm and dry
climate [54,192,205], high mountain conditions (Swiss Alps—[170]), warm maritime climate
(e.g., Ireland), or temperate climate (e.g., Germany) is one example. Similarly, in China,
studies of the growing season were conducted in Tibet [353] and in loess uplands [259].

3.2.3. Research Scale

In terms of the scale of the research, the publications can be assigned to several groups.
The first of these groups comprises research conducted on a global scale. For example,
Ren et al. [325] analyzed the impact of climatic conditions on wheat phenophases from a
global perspective; additionally, they analyzed the influence of haze on phenology in India
and China.

Studies on a regional scale have been conducted in the USA [261,357,358], especially in
the Corn Belt [329]. Similar studies have been carried out in Canada [194], where the analy-
sis covered 26 areas in Wapusk National Park [32] and in northern Yukon [183]. Another
relatively vast area was investigated in China [104] (i.e., North China Plains [359]). Zhu and
Meng [219] analyzed the temporal variability of the phenology of grasslands in northern
China from 1982 to 2010. In China, Wang et al. [126] analyzed the differences between
the courses of phenological phases using different methods for the determination of the
phenological transition dates. The data used in this study were provided by the MODIS
sensor. As reported by the authors, the LAI (leaf area index) product is more suitable for
analyses than the analogous phenological product in the area of evergreen forests and crop
fields, whereas the phenological product provides better results than LAI in areas covered
by low vegetation cover and meadows. Regional studies on plant phenology have also been
conducted in East Africa [360], West Africa [58], and North and East Australia [42,327]. In
Iran [354], researchers used data from the MODIS spectroradiometer to analyze the devel-
opment phases in orchards surrounding Lake Urmia. Similarly, Rankine et al. [130] used
MODIS data and ground-based data from observation stations to determine phenophases
in the tropical zone. Baltzer et al. [242] investigated the influence of plant development
phases on the occurrence of fires in the polar zone. An interesting study was carried out by
Skakun et al. [129], who considered the middle states in the USA and Ukraine as research
fields to develop a methodology for mapping winter crops based on phenology.

At the local scale, most often defined as the scale of a field [361] or several fields,
researchers have performed a detailed analysis of crop development conditions [139,151,
152,268,269,326,362,363].

3.2.4. Source Data

Remote sensing data used in the analyses of vegetation development stages can be
divided into several groups. A clear advantage of the use of satellite data was observed
(over half of the analyzed publications). In slightly over one quarter of the analyzed articles,
the authors used ground-based data. Unmanned aerial platforms equipped with devices
recording electromagnetic radiation in the range reflected and absorbed by plants are a
relatively new source of spatial information about plant phenology [43,47,54,55,65,84,108–
110,118,140–153]. Investigations conducted with such devices accounted for less than
10% of all the analyzed publications. The authors of papers on the stages of vegetation
development also used indirect sources of remote sensing information (e.g., databases
providing processed information from long-term satellite observations such as SPOT-
VEGETATION or AVHRR) [28,177]. Such sources were mentioned in slightly more than
10% of the analyzed publications.

Due to the frequent use of satellite data, both alone and in combination with other
data, the most frequently used information is provided by the MODIS sensor aboard the
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EOS Terra and Aqua satellites (Figure 9). Satellite data from Landsat and AVHRR are also a
frequent source of information about vegetation. In recent years, there has been an increase
in the number of publications on the plant growing season analyzed with the use of satellite
data (Figure 10), especially those from commonly available medium-resolution satellites
such as Sentinel-2.

Figure 9. Number of publications with data provided by specific satellite sensors; most of the studies
were based on more than one satellite dataset.

Figure 10. Variation in the number of publications based on satellite and ground-based data.

Since 2008, the number of publications based on ground-based data has increased,
which may be associated with the development of the PhenoCam network for phenological
observations [364] and processing of data from cameras directed at individual plants or
groups of plants.

Satellite information combined with climate data and ground-based measurements
are an invaluable source of information. Berma et al. [329] used satellite data and reanalysis
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data supported by information from the PhenoCam network to determine the variability
of selected phenological dates in the U.S. Using ground-based data and MODIS satellite
observations, Gao et al. [326] performed a net primary productivity analysis in the max-
imum plant growth phase in China. The authors used the NDVI index calculated from
a hand-held spectroradiometer. To acquire high-resolution information about the devel-
opment of vegetation, Gao et al. [97] used data from the commercial VENµS satellite and
analyzed two growing seasons to determine corn phenological dates. Additionally, they
used data from Sentinel 2 and Landsat 8 to obtain an operational product. Li et al. [365]
used EVI data series provided by MODIS satellites to determine the beginning and end of
the growing season in winter wheat. MODIS data and ground-based observations were
used by Rankine et al. [130] to determine phenophases in the tropical forests of Brazil.
Processed MODIS and SPOT data were used to monitor the functioning of pastures located
in northern China [219]. Shen et al. [327] used LST and EVI data in combination with
meteorological data to determine the relationship between crop phenology and climatic
conditions. To determine the beginning and middle of the growing season, Younes et al. [42]
used a combination of Sentinel 2 and Landsat data. Ren et al. [26] used 1981–2014 data from
the AVHRR and MODIS satellites to analyze the vegetation from a long-time perspective. A
very interesting trend in the phenology research is the application of knowledge provided
by analyses of the time-series of vegetation indices to classify crop plants. To identify
communities of crops such as corn, alfalfa, and wheat, Jakubauskas et al. [240] used the
NDVI index time-series from AVHRR and constructed models for the identification of
crops in Kansas. Ulsig et al. [128] used a MODIS data series from 2002 to 2014 to determine
the annual variability of NDVI and PRI. MODIS data were also used by Ibrahim et al. [58]
in their analyses of the variability of the growing season in Africa. Data from ground-
based observations and MODIS data were used by Skakun et al. [129] to forecast the yield
of winter crops. The authors also used a combination of various satellite data (Landsat
and MODIS) [326] for the estimation of the plant growth rates in an arable field. MODIS
and AVHRR, in combination with Landsat data (daily maximum, minimum, and mean
temperature, and snow cover) and field measurements, were used to determine the onset
and end of the growing season using the BLOSSOM methodology [194]. Processed data
from the MODIS spectroradiometer were also used to determine the growth phases in
orchards [354]. Various approaches were used by Shen et al. [48] to downscale the informa-
tion from low-resolution satellite data (250 m) provided by the MODIS spectroradiometer
to higher resolution (Landsat data) using various mathematical methods. Fraser et al. [183]
used AVHRR data and available Landsat scenes to determine the temporal and spatial
variation of vegetation in the northern Yukon area. A series of long-term AVHRR and
SPOT-VEGETATION observations were used to determine the multi-seasonal variability of
plant vegetation in East Africa [37]. The combination of satellite and ground-based data
allowed the authors to determine the impact of various factors (mainly climatic) on the
variability of vegetation growth in this part of the globe. In their study, Yang et al. [26] used
a time-series based on the AVHRR sensor to analyze the influence of various meteorological
factors on plant productivity. The results indicated the greatest effect of precipitation,
potential evapotranspiration, and the number of growing days on the temporal and spatial
variability of the vegetation season.

The rapid technological progress facilitating the use of unmanned aerial vehicles (UAVs)
has resulted in an increase in the number of publications related to the acquisition and
processing of phenological data provided by low-altitude measurements [43,84,132,146,152]
(Figure 11). Publications presenting data from low-altitude flying platforms account for
over 9% of all data used. Due to the costs, indicators based on RGB cameras attached
to UAVs are relatively frequently used in studies [151]. The investigations conducted
by Klosterman et al. [118] are an example of the use of the green chromatic coordinate
(GCC) indicator based on the time-series of drone RGB images in forest phenology studies.
Burkart et al. [269] adopted the method of time-series observation of RGB images provided
by UAVs converted into GRVI (green-red vegetation index). Yang et al. [39] used RGB
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data collected from a UAV to determine the dates of the rice phenophases. For the same
purpose (analysis of rice growth), Xue et al. [363] used a drone-mounted Tetracam camera
and ground-based measurements to determine the relationship between GPP and the
vegetation phase.

Figure 11. Number of publications based on UAV data in the analyzed multiyear period.

Given the fairly widespread use of UAVs, the airship seems to be quite an original
research platform [366]. In addition to standard visible-light and near-infrared cameras,
the authors of the study used a thermal imaging camera to determine the condition of
vegetation at an early stage of development.

An equally important trend in the remote sensing phenology research consists of
analyses based on ground-based observations. The most frequently employed methods
include measurements at special stations with the use of stationary measurement devices
at flux-stations [60,184,213,334,339,367]. PhenoCam stations are also a rapidly developing
system for measurements of plant vegetation parameters [45,364]. Measurements at these
stations are performed in a time sequence using RGB cameras directed at region-specific
plants [106,364]. The literature also provides reports on observations dedicated to specific
crops (e.g., where the measurement was performed by a mobile hyperspectral camera plat-
form mounted above a rice field) [368]. Zhu et al. [268] used a hand-held spectroradiometer
to determine phenophase parameters. In turn, Zhou et al. [21] used spectroradiometric
measurements from a two-year period (2015–2017) performed by a camera mounted on a
UAV to determine wheat phenophases. Researchers very often use a combination of various
satellite and ground-based methods to monitor crops [38]. For instance, Zheng et al. [139]
used two portable spectroradiometers to measure rice parameters every five days in order
to determine the plant development conditions.

3.2.5. Vegetation Types

Most of the analyzed publications (over 70%) focused on natural or semi-natural areas,
whereas almost 30% of publications presented studies on arable crops (Figure 12).
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Figure 12. Percentage of the number of studies focused on different types of vegetation in the
analyzed set of publications.

Forests account for over 50% of the analyzed plant communities (Figure 12) [31,51,56,
63,72,173,177,179,181,182,209,221,227,245,250,256,261,338,344,348,351,369,370]. Meadows,
grasslands, and wetlands mainly represent the other cases [10,26,60,63,72,120,147,162,187,
213,225,295,313,336,350]. An example of this type of research is the study conducted by
Ibarahim et al. [58], where satellite phenological data were used to monitor natural plant
communities in West Africa.

Monitoring of crops for the determination of the seasonality of vegetation was mainly
related to the major cereals [327,362]. The analyses of wheat and rice represented over 50%
of all studies of arable crops [13,24,28,34,38,39,41]. Papers on maize accounted for 10% of
the analyzed publications [3,5,65,292], whereas slightly less research has been carried out
on vineyards and other crops such as soybean [98,101,132], oat [285], barley [269,301], and
horticultural plants [30,212,354] (Figure 13).

Figure 13. Percentage of the number of studies focused on different types of crops in the analyzed set
of publications.
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4. Discussion

An important problem in review studies on a specific issue may be the subjectivity
of the selection of publications. Review studies are based on a set of publications selected
arbitrarily by the authors in terms of the specific subject associated with remote sensing
research on plant phenology [371–373]. Review articles may also be based on bibliometric
data contained in their metadata, but manual verification with the use of subjective criteria
and, additionally, the author’s experience, is an indispensable element [374]. It seems
that the available tools can be very helpful in searching for literature references, but they
have serious limitations, as evidenced by the search path used in parallel to the basic
search (i.e., based on keywords representing the basic season metrics: ‘start of season’ and
‘end of season’ (see the Methods section)). Consequently, the search did not yield a large
number of articles on season metrics due to the absence of specific word combinations in
the metadata; however, specific references could be found through a traditional literature
query. A combined search path was used in the literature review presented in this article.

Noteworthy, the analysis of the set of publications in terms of the length of the research
period revealed that individual data resources (data based on climatic indicators, data from
direct observations of plants, remote sensing data) were not temporally consistent. The
climate data used originate from the middle of the last century [36,330]; therefore, they
represent the longest continuous data series available. Phenological data derived from
direct observations have also been conducted for several decades at permanent research
sites [343]. The beginning of remote sensing data acquisition dates back to the early 1970s
when the Landsat satellite mission began, and this is the period of origin of the oldest
remote sensing data obtainable [111]. AVHRR data acquisition started at the beginning of
the 1980s [375], and the MODIS sensor was introduced a decade later [258]. However, there
is still a clear difference in the length of data series acquired with the traditional method
and with the use of remote sensing.

The large diversity of the currently available RS data should also be considered. The
AVHRR and MODIS data series fall within the scope of satellite data. The multiyear
automated acquisition is the premise of space missions. The research conducted with
the use of unmanned aerial vehicles (e.g., [54,118,150]) consists of single measurements,
most often performed during one growing season. The intensive development of the UAV
technology used for environmental monitoring (Lee et al. 2018) will probably facilitate the
acquisition of large amounts of data from sensors mounted on unmanned platforms in the
future. However, the existing technological and legal solutions [376] do not allow regular,
repetitive, fully automated, and autonomous flights over a given object to acquire spatial
data, as is the case with sensors mounted on satellites. UAV-mounted sensors already
ensure much higher spatial resolutions than satellite imagery and help to avoid problems
posed by unfavorable weather conditions and the resulting gap in satellite data. However,
they do not ensure the acquisition of long time-series data in a consistent and repeatable
manner for a given area.

Due to the availability of a large amount of data in a wide spectrum, a substantial
portion of publications did not analyze the growing season sensu stricto but focused on the
issue of the validation of one research method using another approach (e.g., [137]).

High spatial resolution may have both positive and negative effects on phenological
information. Insufficient spatial resolution may cause errors in the analyses of specific
plants in the arable field scale. It may cause a problem of pixel heterogeneity [377], which
may result in incorrect determination of the dates of individual phenological phases [35].

High-resolution data facilitate observations of single plants, which in a sense may
cause problems associated with the inability to extrapolate information from one plant
(often wrongly chosen) on the whole species. In such a case, there are also problems
of the impact of habitat conditions, even within one field. Excessive amounts of data
also pose difficulties with processing and correct inference. Appropriate balancing of the
spatial and temporal scale helps to avoid errors in the interpretation of vegetation-related
phenomena. The combination of the possibility of obtaining high-resolution data with fast
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communication over long distances and almost instant multithreaded analysis will allow
future phenological observations to be carried out on each individual of a given species
separately. Unfortunately, at present, authors are struggling with the problem of increasing
the resolution in the context of the speed of the analyses performed and the possibility of
extrapolating the results to larger areas.

Remote sensing input data on plant vegetation are usually acquired by the satellite in
visible and near-infrared light [23,26,378]. The methods of data acquisition have aspects
that limit their usefulness. The problems that may considerably affect the analysis and
inference based on a multiyear observation series of the NDVI indicator are related to
changes in the sensor observation angle, weather conditions (fog and cloud cover), and
land cover (snow). These problems may lead to underestimation or overestimation of the
index value, which impedes the determination of the growing season dates [23,248].

As shown by research, one data source may not be sufficient for correct assessment of
the dates of individual phenophases [137,331]. Given the need for very precise determina-
tion of phenological events in temporal-spatial terms, it is necessary to combine several data
sources with different resolutions for the most accurate analysis of phenology [127,137,311].
Very frequent ground-based observations (several times a day) non-validated by satellite
data are also hardly useful [150].

Data on the growing season are analyzed on various spatial scales, starting with the
global scale (e.g., [325]) through the regional scale (e.g., [63]) to the strictly local scale
limited to the area of one field (e.g., [144]). The methods employed in these studies
are characterized by a different spatial resolution and frequency of data acquisition and
aggregation, starting from low-resolution AVHRR [165,167] or MODIS data aggregated
to 8- or 16-day products [181,220] to high-resolution (centimeter-resolution) data from
UAV [118,150] and RGB camera measurements [45,137] yielding continuous data covering
the selected vegetation index. Such a range of possibilities facilitates the selection of
appropriate data for the analyzed object. A much larger number of works based on low-
resolution data (e.g., MODIS), facilitate analyses related to vegetation on a regional and
local scale. The advantage of MODIS data over other data is the long period of observation,
cost-free acquisition, and the large number of data processing tools. Satellite data with
higher resolution (e.g., Sentinel-2), are used even less frequently due to the relatively
short burst. In the following years, the number of publications is likely to increase in the
importance of medium-resolution satellite data with a resolution of up to 10 m. This type
of data will be used for regional and local analyses.

The use of combined data with different spatial and temporal resolutions allows the
transition of low-resolution data to a higher resolution [180,379], which largely improves
their interpretation and spatial adjustment.

The advantage of using UAVs for phenology monitoring is the substantially lower cost
of data acquisition [132,149] and the higher time resolution than in the case of satellite- or
aviation-derived data [108,142,380]. On the other hand, UAV monitoring has disadvantages.
One of them is the small scale of the obtained data (i.e., an area of the field or a small farm).
In the future, when the powering of unmanned aerial vehicles will be more efficient and
the charging problem is solved, data acquisition will be possible continuously, and data
will be able to be transmitted over long distances.

As already mentioned, it is impossible to link the publications with the climatic zone
unambiguously due to the scope of the analyzed material. Undertaking a literature review
in the context of specific climatic conditions and the related growing season dynamics can
be an interesting challenge, which was beyond the scope of this study. There are reviews of
the growing season of a specific type of plant communities [381], variability of phenology
within a country, and studies based on data provided by a specific sensor. However, there
is a gap in the type of studies conducted in different climate zones. This review confirms
that advanced bibliometric tools can be used in such research by establishing links between
a given parameter of the growing season (e.g., start of season) and a given climate zone
indicated in thematic publications. The analyses carried out in this study showed that, in
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the analyzed set of publications, there were clear connections, for example, between the
“start of season” and the region of Tibet or the “end of season” and Alaska. Performing a
series of reverse analyses using climatic zones as the basis of the query may yield interesting
results. A separate interesting issue is the lack or very few publications from selected areas
of the world (e.g., South America, Central America, North Asia, etc.). The major part of the
research was concentrated in Southeast Asia, Europe, and North America. Certainly, such
inference may be burdened with an error related to the adoption of a specific methodology
of the selection of the publications, but it indicates a large gap in the research on the
growing season.

In the case of analyses carried out on a single-field scale [92,114,115,274,326], the
differentiation of microhabitat conditions is of greater importance. The variability of
phenology is certainly determined by climatic factors, which are, however, not responsible
for spatial variability on the field scale [10,41,271,302].

A serious problem both in bibliometric analysis and in a traditional literature query
may be posed by the non-uniform nomenclature of season metrics. The beginning of
the growing season is described in the literature in 13 different ways. The grammatical
structure of the phrase (e.g., end of season—end of the season) is also of great impor-
tance. As indicated by the bibliometric analyses, the authors more often focus on the
end of the growing season in their research, in contrast to the previous conclusions [345].
Nevertheless, the beginning of the season is most frequently the subject of methodical
publications [28,62,103,134,178,185,186,208,221,247,348], as its variability is regarded as a
symptom of climate change [10,14,26,32,36,42,44,50,59,63,72,80,86,87,103,112,121,125,134,
135,178,190,199,204,217,253,265,278,279,299,324,337,338,347,350,353].

It is significant that most researchers considered individual season metrics individually
(i.e., focusing only on the start or end of season). Obviously, it is then impossible to refer to
the length of the growing season, which requires that both parameters be defined jointly. It
is also worth noting that in recent years, a few selected publications have referred to other
phenophases such as the peak of season or middle season, which indicates the direction
of research development in this area going beyond the most obvious indicators of the
growing season.

During the analysis of the collected material, a clear differentiation of the methodology
for determining season metrics can be observed, which is most often based, in the case of
remote methods, on the analysis of the curve of a given vegetation index. Nevertheless,
different thresholds are adopted, corresponding to the different phenophases. When
comparing studies with each other, it is absolutely necessary to refer to the adopted
methodology, otherwise conclusions may be drawn based on incorrect premises.

Bibliometric analyses revealed a greater number of co-authored than single-author
publications. Phenology studies require the involvement of scientists with different exper-
tise from different countries. For example, the International Long Term Ecological Research
network (ILTER) is a scientific network of over 600 research stations located in various
ecosystems [280]. Similar research networks: “PhenoCam” (http://phenocam.sr.unh.edu/
webcam/, accessed on 17 December, 2021), “European Phenology Network (EPN)”, and
“Phenological Eyes Network (PEN)” (http://www.pheno-eye.org/, accessed on 17 Decem-
ber, 2021) were created for phenological observations in various types of vegetation: forests,
meadows, or arable fields. Scientific networks involving scientists and non-scientists have
been developed over the last several years [364]. Authors should discuss the results and
how they can be interpreted from the perspective of previous studies and of the working
hypotheses. The findings and their implications should be discussed in the broadest context
possible. Future research directions may also be highlighted.

The conducted analysis, resulting in clustering of the keywords, allows determining
the research ranges and the most important elements related to the growing season, which
are of interest to researchers. It should be taken into account that in order to define trends
in research in a proper way, a series of analyses should be carried out in an analogous way,
in terms of time. This goes beyond the scope of this publication, but indicates the direction
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in the authors’ further work in the next publication. A graphical way of presenting the
strength of the relationships between the individual keywords, allowing easy distinction
of clusters distinguished on the basis of the algorithm of the program, enables quick and
easy identification and analysis of keywords in publications. This is of utmost importance
because keywords in their own way constitute the core element of articles, summarizing
the content of a given publication.

The analysis related to the estimation of the strength of connections and concentra-
tion around the selected keyword (start of season, soil, spring phenology, land-surface
phenology, end of season) allows determining the weight and relationship of individual
elements characterizing the growing season. Keywords are authoritative, and indicate how
the authors of a given publication define the scope of the research and what their focal
point is.

As above-mentioned, a challenge for future bibliometric research may be an in-depth
analysis of the weight of a given keyword relative to other keywords over time. Due to
the geographical conditions of the growing season, it might also be interesting to take into
account the spatial differentiation of the research undertaken in this aspect.

5. Conclusions

The review of literature reports on the use of remote sensing techniques in phenological
studies shows a very wide range of research conducted by scientific centers worldwide.
The growing season analyses performed with the use of various techniques, in different
climatic zones, and in different-length time-series were based on a variety of source data.

The analysis of the available literature allows for an attempt to define the trends in
phenological research. At the beginning of this century, the investigations were based
primarily on low-resolution data presented in long time-series. In recent years, there has
been a significant change in terms of spatial resolution. At present, the commonly available
satellite imagery offers an adequate resolution for the analysis of phenological parameters
not only on a regional scale, but also on a single-field scale. A valuable supplement to
satellite data could be data obtained using sensors mounted on mobile ground platforms,
unmanned aerial systems, or airplanes. One should expect an increasing number of papers
based on high-resolution data.

Currently, the intensive development of specialized analytical tools combined with
the availability of spatial analysis software and high-resolution data facilitates advanced
large-scale analyses. The observation of the present research trends allows for conclusions
regarding the further development of remote techniques of observation of vegetation (i.e.,
an increase in the spatial and temporal resolution) and automation of data processing based
on artificial intelligence. Relatively often, it is also used to combine data from different
sources in order to improve their spatial accuracy. It seems that in the future, the methods
of autonomous data acquisition and immediate analysis will be used in order to react
quickly to the consequences of particular phases of plant development, especially in the
case of cultivated crops.

The research differs in terms of its location. Europe, the United States, and China dom-
inate in this respect, as areas where phenological investigations are applied in agricultural
practice due to the need to intensify agricultural production. This type of research in other
world regions is less extensive, hence the clear gap, which is worth filling in.

There is an apparent trend of a shift in the authors’ interest from wide-spectrum
research covering basic remote sensing issues (e.g., plant indices or spatial resolution)
to smaller-scale problems and issues (e.g., the application of UAVs or the phenology of
specific plants).

Due to the different nomenclature of individual parameters of the growing season and
different definitions in the metadata of papers, it would be advisable to standardize the
nomenclature, particularly including the season metrics. Given the significant increase in
the availability of large amounts of spatial data with various parameters obtained with the
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use of various devices, the fusion of data from individual sources and compilation of a ho-
mogeneous multiyear series of phenological data will be a future challenge for researchers.
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