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Abstract: This paper focuses on multi-target parameter estimation of multiple-input multiple-output
(MIMO) radar with widely separated antennas on moving platforms. Aiming at the superimposed
signals caused by multi-targets, the well-known expectation maximization (EM) is used in this paper.
Target’s radar cross-section (RCS) spatial variations, different path losses and spatially-non-white
noise appear because of the widely separated antennas. These variables are collectively referred to
as signal-to-noise ratio (SNR) fluctuations. To estimate the echo delay/Doppler shift and SNR, the
Q function of EM algorithm is extended. In addition, to reduce the computational complexity of
EM algorithm, the gradient descent is used in M-step of EM algorithm. The modified EM algorithm
is called generalized adaptive EM (GAEM) algorithm. Then, a weighted iterative least squares
(WILS) algorithm is used to jointly estimate the target positions and velocities based on the results
of GAEM algorithm. This paper also derives the Cramér-Rao bound (CRB) in such a non-ideal
environment. Finally, extensive numerical simulations are carried out to validate the effectiveness of
the proposed algorithm.

Keywords: expectation maximization; parameter estimation; superimposed signals; SNR fluctuations;
multiple-input multiple-output

1. Introduction

Recent years have witnessed a rapid development in signal processing technologies
for array or multi-node radar systems, such as space-time adaptive processing radar [1,2],
distributed coherent radar [3], multiple-input multiple-output (MIMO) radar with co-
located antennas [4] and MIMO radar with widely separated antennas [5–9]. Among them,
MIMO radar with widely separated antennas simultaneously observes the target from
multiple different angles, thus reducing the probability that all antennas measure small
radar cross-section (RCS) and low Doppler shift [10]. Furthermore, putting these antennas
on moving platforms can ensure the radar system gets superior sensing opportunities. For
example, in an urban area where targets may be obscured by buildings, the moving radars
can arrive in more suitable positions to obtain the target information [11]. Hence, this
paper concerns multi-target localization of MIMO radar with widely separated antennas
on moving platforms.

In the field of target localization based on MIMO radar with widely separated antennas,
Ref. [7] analyzes the possibility of high-precision target localization through the derivation
of Cramér-Rao bound (CRB) and ambiguity function. Ref. [10] studies the optimized
system/configuration design based on CRB. Ref. [12] uses the best linear unbiased estimator
to analyze the geometric dilution of precision (GDOP) of target location for MIMO radar
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with widely separated antennas. Ref. [13] analyzes the effect of phase error on target
positioning accuracy through CRB. For the CRB derivation and parameter estimation of
these articles, the key assumptions are that the target echoes are orthogonal and the echo
signal-to-noise ratios (SNRs) in different propagation paths are the same, or the SNRs
are known. These assumptions bring simplicity to theoretical derivation and algorithm
implementation. However, in some scenarios, these assumptions are unrealistic. First of all,
in a multi-target scenario, if the observed target continues to move, it is very likely that
the two targets are close to each other [14], resulting in superimposed signals. Secondly,
because each receiver cannot be exactly the same, each receiver has a different noise
variance, which is named as spatially-non-white noise. At the same time, due to the large
distance between radar nodes, the propagation paths (transmitter to target to receiver) are
different for different radar nodes or targets, which means the path losses are different. In
addition, some targets have a rich scattering environment yielding 5∼20 dB target RCS
fluctuations [6], namely, target’s RCS spatial variations, which is easily observed in widely
separated antennas. Thus, the SNRs in the different propagation paths are different.

Aiming at superimposed signals, expectation maximization (EM) algorithm is applied
in [15]. The idea of EM algorithm is to decompose the observed data into its signal
components (E-step) and then estimate the parameters of each signal component separately
(M-step). E-step in EM algorithm is model-oriented. To estimate the target position
parameter and SNR, the E-step should be derived to obtain a Q function based on the signal
model. Refs. [16–18] improve the Q function of EM algorithm. However, Refs. [16–18] are
based on the model of half-wavelength array, which are not applied to MIMO radar with
widely separated antennas. M-step in EM algorithm is the solution of estimator, which
is algorithm-oriented. Refs. [15,19] implement the M-step based on the grid point search
method. The precision of the grid point search method is determined by the grid interval.
To ensure good estimation accuracy, dense grid partitioning is required, which brings high
computational complexity. Refs. [20–23] combine the Newton iterative algorithm and M-
step, and expand the data information matrix in the iteration to a complete data information
matrix. However, Newton method is prohibitively expensive in high-dimensional problems
as they involve the storage and handling of approximate Hessian matrix [24]. In summary,
for MIMO radar with widely separated antennas, the Q function of E-step related to the
echo delay/Doppler shift and SNR estimation needs to be derived. In addition, for the
M-step, it is necessary to further minimize the computational complexity.

This paper refers to different SNRs in different propagation paths as the SNR fluctu-
ations. SNR fluctuations mean that the reliability of target echo delay and Doppler shift
estimation is different. For example, if the delay and Doppler shift are estimated from
higher SNR echo signal, the estimated results are more reliable. Hence, for the estimation
of the target or radar location based on the echo delays and Doppler shifts, the delay
and Doppler parameters that have higher reliability need to be assigned a larger weight.
Refs. [25–29] locate the target based on the estimated echo delay. Ref. [25] uses the least
square algorithm to locate targets. Refs. [26,27] propose neural network to achieve target
location. However, Refs. [25–27] do not consider the influence of SNR fluctuations on
target localization. Refs. [28,29] propose a target localization algorithm considering the
influence of radar receiver noise. However, they do not estimate the SNRs from received
waveform because the SNRs are assumed to be known in these papers. Ref. [30] analyzes
SNR fluctuations in MIMO radar with widely separated antennas, but Ref. [30] focuses on
the field of target detection.

This paper focuses on practical problems of target localization in MIMO radars, such
as dense multi-target and SNR fluctuations. Firstly, to estimate the echo delay/Doppler
shift and SNR, the Q function of EM algorithm is derived. Secondly, the gradient descent
is used in M-step to reduce the computational complexity. The modified EM algorithm
proposed in this paper is called generalized adaptive EM (GAEM) algorithm. Then, a
weighted iterative least squares (WILS) algorithm is used to estimate the target positions
and velocities based on the results of the GAEM algorithm. In addition, the CRB in the
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non-ideal environment is derived. Finally, numerical simulations are conducted to verify
the proposed algorithm.

The rest of the paper is organized as follows: Section 2 firstly establishes the signal
model which exists the superimposed signal and SNR fluctuations. Then, the GAEM
algorithm is proposed, and CRB is derived. Section 3 verifies the feasibility of the algorithm
through numerical simulations. Sections 4 and 5 draw the discussion and conclusion,
respectively.

2. Materials and Methods
2.1. Signal Model

Figure 1 shows an application scenario of MIMO radar with widely separated antennas
on moving platforms. The radar system contains multiple radar nodes on moving platforms,
and the distance between radar nodes is much larger than half wavelength. As shown in
Figure 1, multiple radar nodes are mounted on the unmanned aerial vehicle (UAV) and
shuttle between buildings to approach the target, thereby completing the estimation of
target parameters. However, due to the large distance between radar nodes, the propagation
paths of the echoes received by different radar nodes are different. When the building
blocks the echo signal of a certain propagation path, the echo SNR of this propagation
path will be much lower than the echo SNR of other propagation path. As a result, the
reliability of the target information carried by the echo in this propagation path decreases.
At the same time, the targets (such as cars) in the urban scene are densely distributed. The
generated superimposed signals have an impact on the target positioning.

Radio 

Wave

Target 1

Target 2

Figure 1. System diagram of multiple-input multiple-output (MIMO) radar with widely separated
antennas on moving platforms.

Topology diagram of MIMO radar and targets is shown in Figure 2, which shows
two practical problems concerned in this paper: (1) target echo overlap, (2) different SNR
caused by different radar receiver noises and different propagation paths. Let K, L, and Q0
denote the total number of transmitting radar nodes, receiving radar nodes, and targets,
respectively. Further, τ

q
lk and f q

lk represent the delay and Doppler shift transmitted by the
kth radar node, reflected by the qth target and received by the lth radar node, respectively.
Suppose that the coordinates of the kth transmitter and lth receiver are pt

k =
[
xt

k, yt
k
]T and

pr
l =

[
xr

l , yr
l
]T , respectively, and the velocities of the kth transmitter and lth receiver are

vt
k = [vxt

k
, vyt

k
]T and vr

l = [vxr
l
, vyr

l
]T , respectively. we denote superscript T as the transpose.

Let pq =
[
rq

0sinθ
q
0, rq

0cosθ
q
0

]T
and vq =

[
vq

r sin θ
q
0 + vq

θ cos θ
q
0, vq

r cos θ
q
0 − vq

θ sin θ
q
0

]T

denote the location and velocity of the qth target, respectively. Then, the echo delay is
related only to the distance between the radar node and the target, i.e.,

τ
q
lk =

1
c

(∥∥∥pq − pr
l

∥∥∥
2
+
∥∥∥pq − pt

k

∥∥∥
2

)
, (1)
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where c denotes the speed of light in free space; ‖·‖2 represents the l2 norm.
The echo Doppler shift is related only to the projection of the velocity (radar velocity

and target velocity) in the radar-target direction, i.e.,

f q
lk =

(
vq − vr

l
)T
(

pq − pr
l

)
λ
∥∥∥pq − pr

l

∥∥∥
2

+

(
vq − vt

k
)T
(

pq − pt
k

)
λ
∥∥∥pq − pt

k

∥∥∥
2

, (2)

where λ denotes the wavelength of the carrier frequency.
Let

[
x̃r

l , ỹr
l
]T ,
[
∆xr

l , ∆yr
l
]T , [ṽxr

l
, ṽyr

l
]T and [∆vxr

l
, ∆vyr

l
]T be the nominal position, position

deviation, nominal velocity, and velocity deviation of the lth receiving radar, respectively.
Then, we define

xr
l = x̃r

l + ∆xr
l , yr

l = ỹr
l + ∆yr

l ,
vxr

l
= ṽxr

l
+ ∆vxr

l
, vyr

l
= ṽyr

l
+ ∆vyr

l
. (3)

The system deviation definition of the kth transmitting radar node is similar to that
in (3). Let the number of slow times be M. Let fs denote the sampling frequency of radar
system. Then, the received waveform at the lth receiver, time n

/
fs and mth pulse is

ylm[n] =
√

E
K

Q0
∑

q=1

K
∑

k=1
ξ

q
lksk

[
n; τ

q
lk

]
e−j2π fcτ

q
lk−j2πmPRI f q

lk+jφq
lk + wlm[n], (4)

where E is the total energy transmitted by MIMO radar; ξ
q
lk represents the target reflection

coefficient multiplied by path loss; sk[n] represents the waveform emitted by the kth
transmitter; PRI is the pulse repetition interval; φ

q
lk is the phase deviation; wlm[n] is the

complex white Gaussian noise with zero mean and variance of (σwl)
2. Suppose sk[n] is a

unit energy waveform that satisfies ∑N−1
n=0 |sk[n]|2

/
fs = 1, where N = PRI · fs.

In order to simplify the solution process of the gradient descent algorithm, the echo
signal can be transformed to the frequency domain. This means that the envelope move-
ment among the radar nodes is converted to a phase shift in the frequency domain. The
Fourier transform of (4) is

Ylm[u] =
√

E
K

Q0
∑

q=1

K
∑

k=1
η

q
lkSk[u]e−j2πu/N fsτ

q
lk−j2πmPRI f q

lk + ςlm[u], (5)

where Sk[u] denotes the Fourier transform of sk[n]; η
q
lk denotes ξ

q
lke−j2π fcτ

q
lk+jφq

lk ; ςlm[u] is
the Fourier transform of wlm[n]. Because of the linear transformation properties of the
Fourier transform, wlm[n] conforms to a Gaussian distribution with a mean of 0, ςlm[u] also
conforms to a Gaussian distribution with a mean of 0. Because wlm[n] at different times is
uncorrelated and the basis vectors of the Fourier transform are orthogonal, the variance of
ςlm[u] is Nσ2

wl . We define (σl)
2 = N(σwl)

2.
Based on the definition of wlm[n], ςlm[u] is a Gaussian noise with a mean of 0 and a

variance of (σl)
2. Decomposing Ylm[u] into its signal components:

Yq
lm[u] =

√
E
K

K
∑

k=1
η

q
lkSk[u]e−j2πu/N fsτ

q
lk−j2πmPRI f q

lk + ς
q
lm[u], (6)

where ς
q
lm[u] is the Gaussian noise with zero mean and variance of

(
σ

q
l

)2
. ς

q
lm[u] satisfies

ςlm[u]=
Q0

∑
q=1

ς
q
lm[u]. (7)
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For convenience, an alternative parameter vector is defined as

ψ =
[
γ; η; σ2

]
, (8)

where
γ =

[
τ1; · · · ; τQ0 ; f 1; · · · ; f Q0

]
∈ R2LKQ0×1,

η =
[
η1

11, . . . , ηQ0
LK

]T
∈ RLKQ0×1,

σ2 =

[(
σ1

1

)2
, . . . ,

(
σQ0

L

)2
]T
∈ RLQ0×1.

(9)

The subvectors of γ in (9) are

τq=
[
τ

q
11, τ

q
21, · · · τq

L1, · · · , τ
q
LK

]T
∈ RLK×1,

f q=
[

f q
11, f q

21, · · · f q
L1, · · · , f q

LK

]T
∈ RLK×1.

(10)

Every radar node is assumed to be a transceiver, which means L equals K. Collect the
parameter of interest in

α = [β1; · · · ; βQ0 ; ∆x; ∆y; ∆vx; ∆vy] ∈ R(4Q0+4L−4)×1, (11)

where βq is a subvector composed of the qth target position and velocity; other subvectors
in (11) represent radar position deviations and radar velocity deviations.

Denote Y = [Y11[1], · · · , YLM[N]]T ∈ RLMN×1, then the log-likelihood of Y is

ln p(Y ; ψ) =const−MN
L

∑
l=1

ln (σl)
2 − 1

(σl)
2

·
L

∑
l=1

M−1

∑
m=0

N−1

∑
u=0

∣∣∣∣∣Ylm[u]−
√

E
K

Q0

∑
q=1

K

∑
k=1

η
q
lkSk[u]e−j2πu/N fsτ

q
lk−j2πmPRI f q

lk

∣∣∣∣∣
2

.

(12)

In this study, echo delays, Doppler shifts, η, and σ2 (represented by vector ψ) are
estimated first. Then based on these estimates, the target locations, velocities and radar
system deviations (represented by vector α) are estimated.

x

y

O

radar position

target position

q

rv

qv

0

qr

0

q

superimposed targets

different SNR of different 

propagation path

Figure 2. Topology diagram of MIMO radar and targets, which shows two practical problems
concerned in this paper: (1) target echo overlap, (2) different signal-to-noise ratios (SNRs) in different
propagation paths.

2.2. Stage 1: Delay-Doppler-SNR Estimation

In this section, a fast EM algorithm is proposed to estimate ψ. The proposed GAEM
algorithm is illustrated in Figure 3.
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SQUAREM 

acceleration

Echo signal of 

multi-target

Decomposition
Complete 

data

Gradient 

descent 

method Echo delay

and Doppler 

shift

Maximum 

likelihood 

derivation Noise variances 

and echo 

amplitudes

Figure 3. The generalized adaptive expectation maximization (GAEM) algorithm, which is accelerated
by squared iterative methods (SQUAREM) algorithm.

2.2.1. Q function and Derivation of Complete Data

The log-likelihood of Yq
lm[u] is

ln p
(

Yq
lm[u]

)
=− ln π − ln σ

q2
l −

1

σ
q2
l

·
∣∣∣∣∣Yq

lm[u]−
√

E
K

K

∑
k=1

η
q
lkSk[u]e−j2πu/N fsτ

q
lk−j2πmPRI f q

lk

∣∣∣∣∣
2

.

(13)

Let X =
[
Y1

11[1], · · · , YQ0
LM[N]

]T
∈ CQ0LMN×1, which denotes the complete data se-

lected by the EM algorithm in this study, and we obtain

ln p(X) =
L

∑
l=1

Q0

∑
q=1

M−1

∑
m=0

N−1

∑
u=0

ln p
(

Yq
lm[u]

)

=const−MN
L

∑
l=1

Q0

∑
q=1

ln σ
q2
l −

L

∑
l=1

Q0

∑
q=1

M−1

∑
m=0

N−1

∑
u=0

1

σ
q2
l

·
∣∣∣∣∣Yq

lm[u]−
√

E
K

K

∑
k=1

η
q
lkSk[u]e−j2πu/N fsτ

q
lk−j2πmPRI f q

lk

∣∣∣∣∣
2

.

(14)

According to the definition of the Q function in the EM algorithm, the Q function of
the (i + 1)th iteration is

Q
(

ψ, ψ(i)
)
= EX

[
ln p(X)|Y , ψ(i)

]
, (15)

where EX [·] represents the expectation of the formula with respect to the random vector X.
ψ(i) in (15) denotes the estimated result of the ith iteration, which is known in the (i + 1)th
iteration. The parameters to be estimated in the Q function here are echo delay/Doppler
shift γ, echo amplitude η and noise variance σ2.

Substituting (14) into (15), we can get

Q
(

ψ, ψ(i)
)
=const−MN

L

∑
l=1

Q0

∑
q=1

ln σ
q2
l

−
L

∑
l=1

Q0

∑
q=1

M−1

∑
m=0

N−1

∑
u=0

1

σ
q2
l

{
EX

[ ∣∣∣Yq
lm[u]

∣∣∣2∣∣∣∣Ylm[u], ψ(i)
]

−2Re
{(

Aq
lm[u]

)∗
EX

[
Yq

lm[u]
∣∣∣Ylm[u], ψ(i)

]}
+
∣∣∣Aq

lm[u]
∣∣∣2},

(16)
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where

Aq
lm[u] =

√
E
K

K

∑
k=1

η
q
lkSk[u]e−j2πu/N fsτ

q
lk−j2πmPRI f q

lk , (17)

EX

[ ∣∣∣Yq
lm[u]

∣∣∣2∣∣∣∣Ylm[u], ψ(i)
]
=σ

q2(i)
l −

(
σ

q2(i)
l

)2

σ
2(i)
l

+
(

EX

[
Yq

lm[u]
∣∣∣Ylm[u], ψ(i)

])∗
· EX

[
Yq

lm[u]
∣∣∣Ylm[u], ψ(i)

]
,

(18)

EX

[
Yq

lm[u]
∣∣∣Ylm[u], ψ(i)

]
=

√
E
K

K

∑
k=1

η
q(i)
lk Sk[u]e−j2πu/N fsτ

q(i)
lk −j2πmPRI f q(i)

lk +
σ

q2(i)
l

σ
2(i)
l

·
(

Ylm[u]−
√

E
K

Q0

∑
q=1

K

∑
k=1

η
q(i)
lk Sk[u]e−j2πu/N fsτ

q(i)
lk −j2πmPRI f q(i)

lk

)
.

(19)

(·)∗ in (16) and (18) means complex conjugate. σ
2(i)
l in (18) and (19) satisfies σ

2(i)
l =

∑Q0
q=1 σ

q2(i)
l . For simplicity, EX

[
Yq

lm[u]
∣∣∣Ylm[u], ψ(i)

]
is denoted by Ỹq

lm[u]. We define X̃ =[
Ỹ1

11[1], · · · , ỸQ0
LM[N]

]T
∈ CQ0LMN×1. By substituting (18) into (16), the Q function can be

reformulated as

Q
(

ψ, ψ(i)
)
=const−MN

L

∑
l=1

Q0

∑
q=1

ln σ
q2
l −

L

∑
l=1

Q0

∑
q=1

M−1

∑
m=0

N−1

∑
u=0

1

σ
q2
l

σ
q2(i)
l −

(
σ

q2(i)
l

)2

σ
2(i)
l

+

∣∣∣∣∣Ỹq
lm[u]−

√
E
K

K

∑
k=1

η
q
lkSk[u]e−j2πu/N fsτ

q
lk−j2πmPRI f q

lk

∣∣∣∣∣
2
.

(20)

Unlike the use of the EM algorithm to estimate the parameters of the superimposed
targets in [15], this study extends the parameters to be estimated of the Q function in the
EM algorithm, where the echo amplitude η and noise variance σ2 are estimated in each
iteration of EM algorithm. The estimations of echo amplitude η and noise variance σ2

conform to the actual scenario of SNR fluctuations in different propagation paths of the
MIMO radar, which ensures the accuracy of multi-target parameter estimation results.

2.2.2. Estimation of Parameters in SNR

Since the signals transmitted from different radar nodes are assumed to be orthogonal,
we obtain

N−1

∑
u=0

∣∣∣∣∣
√

E
K

K

∑
k=1

η
q
lkSk[u]e−j2πu/N fsτ

q
lk−j2πmPRI f q

lk

∣∣∣∣∣
2

=
K

∑
k=1

E
K

∣∣∣ηq
lk

∣∣∣2 N−1

∑
u=0
|Sk[u]|2 =

E
K

N fs

K

∑
k=1

∣∣∣ηq
lk

∣∣∣2.

(21)

Based on (20) and (21), the maximum likelihood (ML) estimator of η
q
lk is given as

η̂
q
lk = arg max

η
q
lk

{
L

∑
l=1

Q0

∑
q=1

M−1

∑
m=0

N−1

∑
u=0

1

σ
q2
l

2Re

{(
Ỹq

lm[u]
)∗√ E

K

K

∑
k=1

η
q
lk

· Sk[u]e−j2πu/N fsτ
q
lk−j2πmPRI f q

lk

}
− E

K
MN fs

L

∑
l=1

Q0

∑
q=1

K

∑
k=1

1

σ
q2
l

∣∣∣ηq
lk

∣∣∣2}.

(22)
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By taking the partial differentiation of the formula in arg max{·} with respect to η
q
lk

and setting the derivative equal to zero, the explicit expression of the ML estimate η̂
q
lk can

be written as

η̂
q
lk =

1
MN fs

M−1
∑

m=0

N−1
∑

u=0
Ỹq

lm[u]
√

K
E S∗k [u]e

j2πu/N fsτ
q
lk+j2πmPRI f q

lk . (23)

Equation (20) can be simplified based on (21). Next, by substituting (23) into simplified
(20), it can be seen from (8) that we can change ψ in (20) into

[
γ; σ2], thus obtaining a new

Q function, which is named as Q1 in this paper, as shown below:

Q1

([
γ; σ2

]
, ψ(i)

)
=const−MN

L

∑
l=1

Q0

∑
q=1

ln σ
q2
l −

L

∑
l=1

Q0

∑
q=1

M−1

∑
m=0

N−1

∑
u=0

1

σ
q2
l

·

σ
q2(i)
l −

(
σ

q2(i)
l

)2

σ
2(i)
l

+
∣∣∣Ỹq

lm[u]
∣∣∣2
+

L

∑
l=1

Q0

∑
q=1

K

∑
k=1

1

σ
q2
l

1
MN fs

·
∣∣∣∣∣N−1

∑
u=0

M−1

∑
m=0

(
Ỹq

lm[u]
)∗

Sk[u]e−j2πu/N fsτ
q
lk−j2πmPRI f q

lk

∣∣∣∣∣
2

.

(24)

Since the derivation of (24) involves the estimation of η
q
lk, and the parameter estimation

accuracy is affected by the SNR, (24) is an approximation of (20). By taking the partial
derivative of (24) with respect to σ

q2
l and setting the derivative equal to zero, the explicit

expression for the ML estimate σ̂
q2
l is obtained as

σ̂
q2
l =

1
MN

{
M−1

∑
m=0

N−1

∑
u=0

{
σ

q2(i)
l −

(
σ

q2(i)
l

)2
/

σ
2(i)
l +

∣∣∣Ỹq
lm[u]

∣∣∣2}

−
K

∑
k=1

1
MN fs

∣∣∣∣∣N−1

∑
u=0

M−1

∑
m=0

(
Ỹq

lm[u]
)∗

Sk[u]e−j2πu/N fsτ
q
lk−j2πmPRI f q

lk

∣∣∣∣∣
2
.

(25)

Now, the explicit expression for the ML estimate η̂
q
lk and σ̂

q2
l are derived.

2.2.3. Echo Delay and Doppler Shift Estimation

Substituting (25) into (24), we simplify
[
γ; σ2] in (24) to γ, and Q1 is updated and

named as Q2:

Q2

(
γ, ψ(i)

)
=const2 −MN

L

∑
l=1

Q0

∑
q=1

ln

{
1

MN

{
M−1

∑
m=0

N−1

∑
u=0{

σ
q2(i)
l −

(
σ

q2(i)
l

)2
/

σ
2(i)
l +

∣∣∣Ỹq
lm[u]

∣∣∣2}− K

∑
k=1

1
MN fs

·
∣∣∣∣∣N−1

∑
u=0

M−1

∑
m=0

(
Ỹq

lm[u]
)∗

Sk[u]e−j2πu/N fsτ
q
lk−j2πmPRI f q

lk

∣∣∣∣∣
2

.

(26)

Similar to the derivation of Q1, compared with (24), the derivation process of (26)
includes the estimation of σ

q2
l . The parameter estimation accuracy will be affected by the

SNR, so (26) is an approximation of (24). Since σ
q2(i)
l , σ

2(i)
l , and Ỹq

lm[u] in (26) are composed
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of the estimation results of the ith iteration or echo data, the echo delay and Doppler
parameter vector γ can be estimated by the following optimization criterion:

γ̂ = arg max
γ

(
Q2

(
γ, ψ(i)

))

= arg max
γ


∣∣∣∣∣N−1

∑
u=0

M−1

∑
m=0

(
Ỹq

lm[u]
)∗

Sk[u]e−j2πu/N fsτ
q
lk−j2πmPRI f q

lk

∣∣∣∣∣
2
.

(27)

For one kqlth propagation path, the dimension of γ can be reduced to 2. Then, we can
draw an objective function of (27) as below:

From Figure 4, we can find the objective function is convex when the distance varies
from 3970 m to 4030 m and the speed varies from 0 m/s to 10 m/s. Hence, different from
the traditional grid point search method, this study employs the gradient descent algorithm
to solve the echo delay and Doppler shift. That is, instead of computing the maximizer of
Q2

(
·, ψ(i)

)
, we can find a vector γ(i+1) that satisfies Q2

(
γ(i+1), ψ(i)

)
≥ Q2

(
γ(i), ψ(i)

)
(i.e.,

an improvement). This is conducive for reducing the computational complexity of each
M-step in EM algorithm.

Figure 4. Objective function of echo delay and Doppler shift.

To achieve Q2

(
γ(i+1), ψ(i)

)
≥ Q2

(
γ(i), ψ(i)

)
, one iterative gradient algorithm can be

formulated as

γ(i+1) = γ(i) + µ

[
∇γQ2

(
γ, ψ(i)

)∣∣∣
γ=γ(i)

]
, (28)

where µ is the step size that depends on ∇γQ2

(
γ, ψ(i)

)∣∣∣
γ=γ(i)

.

So far, the delay, Doppler and parameters related to SNR are estimated. In addi-
tion, we provide a computational complexity analysis in terms of complex multiplica-
tions here. In the traditional EM algorithm, the computational time of the algorithm is
mainly spent in solving (27). For the grid point search method, it requires approximately
O(LKQ0MNM1N1) operations, where M1 and N1 denote the search points of the Doppler
and echo delay, respectively. Moreover, the estimation precision of the delay and Doppler is
restricted by the grid interval. That is, for the grid point search method, the computational
complexity must be increased to improve the estimation accuracy. For the GAEM algorithm
in this study, since the gradient descent algorithm is used to solve (27), each iteration
requires approximately O(LKQ0MN) operations. In addition, the convergence of GAEM
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algorithm can be achieved in a finite number of iterations. Therefore, compared with the
traditional EM algorithm, the GAEM algorithm proposed in this study is faster.

The entire flow of the GAEM algorithm is summarized as Algorithm 1. Steps 4∼8
are set in Algorithm 1 as an iteration of the GAEM algorithm. Based on [24], the squared
iterative methods (SQUAREM) algorithm is adopted in this study to minimize the number
of iterations of the GAEM algorithm.

Algorithm 1 GAEM algorithm
Input: Y
Output: ψ̂

1: Initialize ψ(1);
2: i = 1;
3: repeat
4: Decompose the echo data Y into complete data X̃ according to (19) and ψ(i);
5: Calculate γ(i+1) according to (28) and X̃;
6: Compute σ2(i+1) according to (25), (9), X̃, ψ(i), and γ(i+1);
7: Compute η(i+1) according to (23), (9), X̃, and γ(i+1);
8: Collect γ(i+1), σ2(i+1), and η(i+1) in ψ(i+1) according to (8);
9: Substitute ψ(i+1) into (20) to determine convergence;

10: i = i + 1;
11: until convergence
12: ψ̂ = ψ(i);

The entire flow of the combination of GAEM algorithm and SQUAREM is summarized
as Algorithm 2, which is shown at top of next page. The GAEMupdate(·) in Algorithm 2 is
an iteration of the GAEM algorithm. According to Algorithm 2, the computational com-
plexity of the GAEM algorithm accelerated by SQUAREM is O(3LKQ0MN + 5LKQ0) ≈
O(LKQ0MN). That is, the computational complexity of the algorithm does not increase
significantly after combining with SQUAREM.

Algorithm 2 GAEM+SQUAREM algorithm
Input: Y
Output: ψ̂

1: Initialize ψ(1);
2: i = 1;
3: repeat
4: ψ(i+1) = GAEMupdate

(
ψ(i)

)
;

5: ψ(i+2) = GAEMupdate
(

ψ(i+1)
)

;

6: r = ψ(i+1) −ψ(i)

7: v =
(

ψ(i+2) −ψ(i+1)
)
− r

8: ρ = − ‖r‖2
‖v‖2

9: ψ(i+3) = ψ(i) − 2ρr + ρ2v;
10: ψ(i+4) = GAEMupdate

(
ψ(i+3)

)
;

11: Substitute ψ(i+4) into (20) to determine convergence;
12: i = i + 4;
13: until convergence
14: ψ̂ = ψ(i);

2.3. Stage 2: Target Parameters and System Deviations Estimation

The estimated echo delay and Doppler in Section 2.2 is denoted by the vector γ̂.
Since the GAEM algorithm proposed in this paper is essentially an ML algorithm, the
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ML estimate γ̂ is asymptotically distributed according to N
(

γ, J−1
γ

)
. Jγ represents the

Fisher information matrix (FIM) of γ̂. Section 2.4 derives the expression of Jγ and the SNR
required to calculate Jγ are estimated in Section 2.2.2.

Let γ = g(α). Due to the asymptotic statistical property of γ̂, the estimator of tar-
get parameters and system deviations is arg min

α
(γ̂− g(α))TJγ(γ̂− g(α)), which can be

reformulated as
arg min

α

∥∥√Jγγ̂−
√

Jγg(α)
∥∥2

2. (29)

Equation (29) can be solved as follows. Let
√

Jγγi =
√

Jγg(αi) and
√

Jγγ̂ =
√

Jγg(αi+1),
where αi is the result of the ith iteration. Then, a Taylor series expansion of

√
Jγg(αi+1) around

αi is given as √
Jγγ̂ =

√
Jγγi+1

≈
√

Jγg(αi) +
√

Jγ
∂g(α)

∂α

∣∣∣∣
α=αi

(αi+1 − αi).
(30)

Set ∂g(α)
∂α

∣∣∣
α=αi

= Pi. Then, we have

αi+1 =
(

PT
i JγPi

)−1
PT

i Jγ[γ̂− g(αi)] + αi. (31)

Based on (29), a rough estimation result of the target position/velocity can be calcu-
lated when the radar system deviation is set to 0. The rough estimation result of the target
position/velocity and the zero system deviation are integrated into the initial value α0
of (31).

At this point, a robust and fast self-calibration algorithm is realized. Robustness
implies that the algorithm can be applied to non-ideal scenarios such as superimposed
signals and SNR fluctuations. Quickness implies that we reduce not only the computational
complexity within each iteration of the EM algorithm, but also the overall number of
iterations of the EM algorithm.

2.4. Cramér-Rao Bound in the Non-Ideal Environment

From the definition of CRB [31], we can get

CRB(ϑ) = J(ϑ)−1 = −Ey

[
∂2 ln p(y; ϑ)

∂ϑ∂ϑT

]
. (32)

Using the chain rule,

J(ϑ) =
[

PT

I2LKQ0+LQ0

]
J(ψ)

[
P

I2LKQ0+LQ0

]
, (33)

[P]ij =
∂[γ]i
∂[α]j

, J(ψ) = −Ey

[
∂2 ln p(y; ψ)

∂ψ∂ψT

]
. (34)

From the derivation of [32],

[J(ψ)]ij = tr

[
G−1(ψ)

∂G(ψ)

∂[ψ]i
G−1(ψ)

∂G(ψ)

∂[ψ]j

]
+ 2Re

[
∂µH(ψ)

∂[ψ]i
G−1(ψ)

∂µ(ψ)

∂[ψ]j

]
, (35)

G(ψ) =

 (σw1)
2INM

. . .
(σwL)

2INM

 ∈ RLNM×LNM, (36)
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µ(ψ) =

√
E
K

[
Q0

∑
q=1

K

∑
k=1

η
q
1ksk

(
0; τ

q
1k

)
, . . .

,
Q0

∑
q=1

K

∑
k=1

η
q
Lksk

(
N − 1; τ

q
Lk

)
e−j2π(M−1)PRI f q

Lk

]T

∈ RLNM×1.

(37)

The elements of J(ψ) are calculated in Appendix A. (σwl)
2 in (36) is the variance

of Gaussian noise wlm[n]. Based on the definition of Section 2.1, ςlm[u] is the Fourier
transform of wlm[n], and (σl)

2 is the variance of Gaussian noise ςlm[u]. From (7), the
variances mentioned above have the following functional relationship:

(σwl)
2 =

1
N
(σl)

2 =
1
N

Q0

∑
q=1

(
σ

q
l

)2
. (38)

For clarity, J(ψ) is expressed as

J(ψ) =


Jττ Jτ f JτηR JτηI 0
JT

τ f J f f J f ηR J f ηI 0
JT

τηR
JT

f ηR
JηRηR JηRηI 0

JT
τηI

JT
f ηI

JT
ηRηI

JηI ηI 0
0 0 0 0 Jσσ

 =

[
A B
BT C

]
. (39)

From the definition of Schur complement [33], Jγ proposed in Section 2.3 can be
expressed as Jγ = A− BC−1BT .

3. Results

In this section, the effectiveness of the proposed GAEM and WILS algorithm is verified
by numerical simulations. In order to show the performance of the algorithm briefly, we
define four radar nodes, and the distance between two radar nodes is 500 m. The angles of
the four targets are −45◦, 60◦, 30◦ and 35◦, respectively, and the distances between the four
targets and first radar node is 2000 m, 2010 m, 2020 m and 2030 m, respectively. Both radar
nodes and targets are moving.

3.1. Estimation of Time Delay and Doppler

In this subsection, the SNR is 20 dB. The bandwidth of radar signal is 10 MHz, so the
3 dB width of the sinc function in the time domain is 15 m. However, the closest distance
between targets is 10 m, which generates the superimposed signal. The simulation of the
superimposed signal is shown in Figure 5.

Figure 5 shows the signal envelope in time domain after pulse compression. The
dotted curve is the echo signal reflected from the first target. The dashed curve is the echo
signal reflected from the second target. The solid curve is the superimposed signal of two
targets. As can be seen from Figure 5a, when the distance between two targets is 60 m,
the target distance corresponding to the superimposed signal peak is shifted from the real
target distance. According to Figure 5b, when the distance between two targets is 30 m,
the number of superimposed signal peaks becomes 1. The distance corresponding to the
superimposed signal peak is still offset compared to the real target distance. Therefore, if
the traditional ML algorithm is used to estimate the echo delay, the superimposed signals
will affect the target parameter estimation.

The proposed GAEM is used to solve this problem. We compare GAEM algorithm with
a gradient descent method based on traditional ML [34], and SQUAREM algorithm [24]
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is added to make GAEM converge faster. The root mean square error (RMSE) is used to
evaluate the algorithm performance, as shown below

RMSE =

√√√√ 1
MC

MC

∑
m=1

(
p(m)

esti − preal

)2
, (40)

where MC represents the number of Monte Carlo simulations; p(m)
esti represents the estimated

value; preal represents the real value.
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Figure 5. Simulation of the superimposed signal. (a) The distance between two targets is 60 m.
(b) The distance between two targets is 30 m.

Due to page limitations, only the delay and Doppler estimation results of the first
target are shown. Figure 6 shows the RMSE of the estimation results against the number
of iterations.
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(b)

Figure 6. Estimation results for proposed GAEM and gradient descent method based on traditional
maximum likelihood (ML) [34] in the presence of target echo superimposed. (a) Root mean square
error (RMSE) for the echo delay estimation, (b) RMSE for the echo Doppler estimation.

The line with square markers represents the echo delay estimate only using gradient
descent algorithm. The line with diamond markers represents the echo delay estimate using
GAEM algorithm proposed in this paper. It can be seen from the Figure 6a that GAEM
algorithm is more robust than traditional “hill climbing” algorithm when the target echoes
are superimposed. This is because compared with gradient descent, GAEM algorithm has
E-step, that is, the adaptive decomposition of multi-target echoes based on the estimation
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results of the previous M-step. The line with square markers represents the estimation
results after combining the proposed GAEM algorithm with SQUAREM algorithm. The
simulation results indicate that the SQUAREM algorithm can further reduce the number of
iterations of the GAEM algorithm. Figure 6b shows the estimation results of Doppler shift.
The curve definition and conclusions in Figure 6b are consistent with those in Figure 6a.

The computational complexity curves versus the grid resolutions are depicted in
Figure 7. According to Figure 7, the GAEM algorithm is much more efficient than the
existing EM method.
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Figure 7. Computational complexity versus grid resolution for the GAEM and traditional EM.

3.2. Target Parameters and System Deviations Estimation

This subsection simulates the WILS algorithm proposed in Section 2.3. Since MIMO
radar with widely separated antennas uses different radar nodes as receivers and has
a large baseline, the noise variance and the echo coefficient in different propagation
paths are considered to be different. In other words, the SNRs of signal echo in dif-
ferent propagation paths are different. In the simulation of this section, the SNRs of
the three transmitting and three receiving radar nodes with the same target are set as
SNR0[0.01, 0.6, 1, 0.8, 0.02, 1, 0.4, 0.06, 1]. The SNR mentioned in the simulation figures refers
to the largest item (i.e., SNR0) in the above vector. When the SNR is 20 dB, the estimation
results of target parameters and radar system deviations by GAEM and WILS algorithm
are shown in Figure 8. Figure 8 is also the deployment of radar nodes and targets.

We compare the proposed WILS algorithm with the traditional LS algorithm [25],
and add CRB simulation to show the performance of the proposed WILS algorithm. The
simulation results of target parameter estimation are shown in Figure 9. The RMSE curves
of WLIS algorithm are close to CRB curves. In contrast, the RMSE of the ILS algorithm lies
above the CRB and the RMSE of the WILS algorithm. This is because the WILS algorithm
adds the use of the SNR in different propagation paths, which ensures WILS has a more
robust performance than ILS for non-ideal environment such as different noise variances of
radar nodes and anisotropic targets. The noise variances and echo amplitudes are estimated
in GAEM algorithm, which ensures the use of SNR in WILS algorithm.

The simulation results of radar system deviation estimation are shown in Figure 10.
The conclusions of Figure 10 are identical to those in Figure 9a.

In summary, the proposed technique enables efficient and robust multi-target parame-
ter estimation for MIMO radar with widely separated antennas on moving platforms.
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Figure 8. Deployment of radar nodes and targets.
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Figure 9. Estimation results for different methods in the presence of different SNRs in different prop-
agation paths (a) RMSE for the DOA estimation, (b) RMSE for the target range estimation, (c) RMSE
for the target tangential velocity estimation, (d) RMSE for the target radial velocity estimation.
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Figure 10. Estimation results for different methods in the presence of different SNRs in different
propagation paths (a) RMSE for the radar position deviations estimation, (b) RMSE for the radar
velocity deviations estimation.

4. Discussion

This paper deals with the problems of dense multi-target, SNR fluctuations of differ-
ent propagation paths and high computational complexity of MIMO radar with widely
separated antennas on moving platforms. In order to reduce the computational complexity,
the gradient descent method is used to optimize the M-step in the EM algorithm. The
simulation results indicate that the combination of the gradient descent and EM algorithm
is feasible. Further, the echo amplitudes and noise variances are estimated and the WILS
algorithm is used to ensure the robustness of the target parameter estimation algorithm.
Moreover, the asymptotic property of the ML estimator ensures the realization of the notion
that an echo with a high SNR should be assigned a large weight.

This study focuses on solving the practical problems encountered in the parameter
estimation of MIMO radar with widely separated antennas on moving platforms. However,
the work in this paper still has potential for further development. Firstly, inspired by
Ref. [9], co-located MIMO antennas can be deployed in each platform. For this novel
radar system, the advantages of both MIMO radar with widely separated antennas and
co-located MIMO radar can be exploited, and waveform optimization can be used to further
improve the performance of target parameter estimation. Secondly, for MIMO radar with
widely separated antennas, target localization accuracy is affected by the topology of MIMO
radar and targets [12]. MIMO radar with widely separated antennas on moving platforms
naturally has the advantage of changing the radar topology in real time. How to optimize
the radar topology configuration based on the estimated multi-target positions in this paper
to further improve the target positioning accuracy is the area that needs to be studied in the
future. Finally, it can be seen from [35] that when the number of parameters to be estimated
is determined, adding more information will improve the estimation accuracy. Ref. [26]
combines the target echo delay and direct wave delay to complete the estimation of radar
system deviations. In the future, we can model the fast-time and slow-time of target echo
and direct wave, and further improve the parameter estimation accuracy based on the
increased direct wave information.

5. Conclusions

In this paper, a robust parameter estimation algorithm is proposed to achieve target
localization in scenarios such as superimposed signals and SNR fluctuations of different
propagation paths. Firstly, in order to estimate the echo delay/Doppler and SNR, this paper
derives the Q function of EM algorithm. Secondly, in order to reduce the computational
complexity of M-step in EM algorithm, the iterative gradient algorithm is used to realize
the idea of the generalized EM algorithm. Furthermore, based on the estimation results
of the previous method, the WILS algorithm is used to estimate the target positions and
velocities. In addition, this paper deduces the CRB in the non-ideal environment. Finally,
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the simulation results verify the effectiveness of the algorithm proposed in this paper.
Possible future works include the combination of MIMO radar with widely separated
antennas and co-located MIMO radar, optimization of radar topology, and use of direct
wave signals.
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Appendix A. Derivation of the Fisher Information Matrix

Based on (35)–(37), the elements of J(ψ) can be calculated as follows.
(1) For l 6= l′, because the non-zero elements of ∂G(ψ)
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and ∂G(ψ)
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positions, and the non-zero elements of ∂µH(ψ)
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are in different positions, the

second derivatives of ln p(y; ψ) are equal to 0.
(2) For k 6= k′, because of the orthogonality of the waveforms transmitted by different

transmitters, the second derivatives of ln p(y; ψ) are equal to 0.
(3) For q 6= q′,
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respectively. βk in (A12) is the effective bandwidth, which satisfies

βk =

√∫
B

f 2|Sk( f )|2d f
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B
|Sk( f )|2d f , (A19)

where B is the signal bandwidth; Sk( f ) denotes the Fourier transform of sk(t). In this paper,
the SNR relative to the kqlth propagation path is defined as

SNRq
lk =

E
∣∣∣ηq

lk
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KN0l

, (A20)

where N0l is the noise power spectral density, which equals σ2
wl
/

fs. In the scenario of MIMO
radar with widely separated antennas, the target reflection coefficients and path losses
of different propagation paths are different. At the same time, the noise power spectral
densities of different radar receivers are different. Therefore, it can be seen from (A20) that
the SNRs of different propagation paths are different.
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