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Abstract: In this paper, we propose a method for retrieving the dispersion law of a material under
test from multi-length TDR measurements in reflection mode, repeated at several frequencies. By
replacing the multi-frequency measurements with measurements using multi-length TDR probe, it
is possible to retrieve the complex equivalent permittivity of the material in a frequency band of
interest. The proposed procedure does not require a priori knowledge of the type of dispersion law
of the material, which instead can possibly be inferred from the measured data. The algorithm is
validated using numerically simulated data obtained with the commercial code CST Microstudio®.
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1. Introduction

Time domain reflectometry (TDR) probes offer a procedure for measuring the elec-
tromagnetic properties of a material under test (MUT) through the measurement of the
electromagnetic field reflected from it or also (more rarely) transmitted through it [1]. In
particular, TDR is an important tool supporting the data processing and interpretation of
ground penetrating radar (GPR) data. In fact, in these cases, obtaining information about
the characteristics of the medium embedding the buried targets requires a correct time–
depth conversion and an optical focusing of the buried objects [2,3]. Other complementary
methods exist that are based on the same GPR data and data values averaged on a large
portion of the subsoil. However, these methods rely on some assumptions that may not
always be correct and/or require expensive equipment [4].

The theory of transmission lines, and more in general, that of waveguides, is at the
basis of the measurement of material properties such as the dielectric permittivity (possibly
complex to account for losses), the electrical conductivity, and the magnetic permeability of
the MUT [5,6]. Beyond common GPR applications, the possible uses of this technology and
methodology range from biomedical applications [7] to pollution detection [8], alimentary
checks, diagnostics of electric networks, monitoring of buried subservices [9,10], and a
very common application related to the water content in soil [11–13].

In its easiest (and perhaps most common) application, TDR probes are employed to
deduce the propagation velocity of the waves in a MUT from the return time of a pulsed
or constant level wave launched along the rods of the probe. However, this intrinsically
obliterates the dependence on the frequency of the electromagnetic characteristics of the
MUT, yielding only average values. Therefore, in the early works of Nicholson and Ross
(1970) and Weir (1974)(refs. [5,6]), the dielectric characteristics of a MUT were retrieved in
the frequency domain from the measured S-parameters of a sample of the MUT inserted
in a rectangular waveguide. Subsequently, based on the same principle (but only in
reflection mode for practical reasons), the S11 parameter retrieved from a TDR probe and its
relationship with the permittivity of the medium were considered, in most cases, matching
the least square sensed data with a model, characterized by a few (frequency independent)
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parameters based on a predetermined dispersion law, for example, in [14]. This allows us to
exploit the frequency dependence in order to gain more information about the parameters
of a pre-chosen dispersion model such as the Deybe, with one or more relaxation times,
Cole–Cole, Maxwellian, or Q-constant dispersion laws [15,16].

In this paper, we will try to overcome the constraint of a predetermined dispersion
model, and will focus on the measurement of the dispersion law of a non-magnetic material.
In particular, most natural materials are indeed non-magnetic in the radiofrequency and
microwave frequency range, with few exceptions [17], and in any case, the possible presence
of magnetic properties of the MUT can be tested with preliminary measurements [18,19].
Overcoming the constraint of a pre-assumed dispersion law allows one to characterize any
new and unknown MUT (e.g., an artificial material created for a specific purpose and never
examined before, or in cases when the physico-chemical characteristics of the material are
not precisely known, or in case when the inclusions of impurities can change the dispersion
law in an unforeseen way).

This work introduces a new method for dielectric properties retrieval through “length
diversity” by means of probes with a different length of conductors along which the TDR
signal propagates. This will result in obtaining more information at any fixed frequency in
the band of interest.

Moreover, multi-length data do not change the electrical cross-section of the probe at
the considered frequency and do not introduce the possibility of higher order propagation
modes [20], which could instead happen when progressively increasing the frequency in
a probe of fixed length. On the other hand, multi-length measurements are intrinsically
more time consuming, and in particular, their execution requires either dedicated hardware
where a TDR probe can somehow be progressively prolonged, or alternatively, an array
of probes with the same cross section, same input connections, and same termination but
with different lengths. This means that a multi-length probe would be more expensive
than a common TDR probe. To the best of our knowledge, multi-length TDR probes
are not available on the market, presumably just for the said reasons. In this study, a
multi-length probe was simulated using CST Microwave Studio by means of sequential
numerical experiments with a progressively longer probe. This commercial code is based
on the method of finite difference in the time domain FDTD [21]. This software allows
for simulation of the electromagnetic fields and, consequently, the S-parameters of any
guiding structure. In particular, a coaxial cable terminated with a shunt was considered.
Data considered consisted of the reflection coefficient at the beginning of a piece of coaxial
cable filled with the MUT and terminated with a short circuit between the two conductors
of the cable. This reflection coefficient was evaluated for several lengths of the final part of
the coaxial cable (that is, filled up with the MUT) at fixed frequency, so the characteristics
of the material at that frequency were evaluated from single frequency (but multi-length)
measurements. Then, the same procedure was repeated at other frequencies (progressively
increased with a uniform frequency steps) to retrieve the dispersion law within the prefixed
frequency band of interest. This means that the comprehensive considered data are indeed
multi-length and multi-frequency, whereas the processing is based on a multi-length
inversion sequentially applied to several single-frequency data.

In Section 2, the mathematical model for solving the problem is provided, whereas the
results are presented in Section 3. Conclusions follow in Section 4.

2. Mathematical Model

The reference model used in this study is represented in Figure 1. The MUT fills the
last part of a coaxial cable that is terminated with a perfect electric conductor (PEC) and is
fed from the opposite end. The part that hosts the MUT extends from the abscissa –L up to
the abscissa 0, according to the reference system usually adopted for transmission lines,
where the zero occurs at the load and the generator is placed at a negative abscissa [20].



Remote Sens. 2022, 14, 2003 3 of 12

Figure 1. Schematic illustration of the coaxial probe, where the reference system is chosen with the
zero at the short, so that the MUT surface occurs at z = −L.

The datum is the reflection coefficient at z = −L, that is, a point of discontinuity for the
reflection coefficient along the line. The unknown of the problem is the relative complex
equivalent permittivity of the MUT εr = εr

′ − jεr”, where both εr
′ and εr” are real and

positive with εr
′ ≥ 1. The relative magnetic permeability of the MUT is assumed to be equal

to 1.
Starting from the well-known theory of transmission lines, with some algebra, the

reflection coefficient Γ at z = −L in Figure 1 is given by:

Γ(−L) = γ(εr; f ) =

(
Zl01√

εr
− Z12

)
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(
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where Zl01 is the intrinsic impedance of the length L of coaxial line hosting the MUT,
evaluated when empty. It is independent of the unknowns and is given by [20]:

Zl01 =
1

2π

√
µo

εo
ln
(

re

ri

)
, (2)

where ri and re are respectively the radius of the internal and the external conductors of the
coaxial cable; ε0 = 8.854 × 10−12; Fm−1 is the permittivity; and µ0 = 1.256 × 10−7 Hm−1 is
the permeability of free space.

Zl2 is the intrinsic impedance of the part of the cable before the reference plane (i.e.,
z < −L) and c0 = 1√

ε0µ0
= 2.9979× 108 ms−1 is the propagation velocity of electromagnetic

waves in free space.
Regarding the determination of the complex square root of the unknown relative

permittivity, it has to have a positive real part and negative imaginary part. In particular,
this means that the energy of the waves vanishes exponentially far from the source, being
progressively transformed into heat.

The problem amounts to retrieving the two real unknowns εr
′ and εr” from the mea-

sured reflection coefficient data by inverting Equation (1). Considering multi-length data at
fixed frequency, this can be conducted by minimizing a cost function expressed as:

F(α, β) =
M
∑

k=1
|(Γmeas(Lk)− Γ(α, β; Lk))|2

=
M
∑

k=1
|(Γmeas(Lmin + (k− 1)∆L)− Γ(α, β; Lmin + (k− 1)∆L))|2

(3)

where α = Re{√εr} and β = Im{√εr}; Γmeas(Lk) is the reflection coefficient measured
at the kth length (keeping the frequency fixed) of the coaxial line filled with the MUT,
and Γ(α, β; Lk) is the modeled reflection coefficient for L = Lk, provided by Equation (1).
The cost function is not quadratic because the link between the unknowns and the data
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is nonlinear. This means that in general, local minima are expected [22], but this is not
particularly troublesome because only two unknowns are looked for. In particular, it is
possible to make use of an exhaustive minimization algorithm to overcome the problem of
the local minima. However, in the lossless case, the cost function also exhibited a periodicity
with α, which generated several global minima. This can generate a misinterpretation of
the data, even in a low-loss case with noisy data. As shown in [18], the problem can be
overcome if the length step respects the following condition:

∆L <
c0

2R f
(4)

where f is the fixed frequency and R is the range of variability (necessarily pre-chosen)
within which we look for the value of α.

3. Results

A coaxial cable was modeled using the CST Microwave Studio, as shown in Figure 2.
The cable input port was excited at one end using a 50 ohm impedance port. This is
equivalent to an incident wave coming from a coaxial cable with an intrinsic impedance
of 50 ohms. The coaxial cable that hosts the MUT has an internal radius of 1.7 mm and
an external radius of 5.7 mm. This means that when no MUT is inserted in the coax, its
intrinsic impedance is equal to 72.54 ohms. The other end of the coaxial cable is shunted.
The reflection coefficient at the port is evaluated in the frequency band 500–1000 MHz (this
particular frequency range is relevant for GPR applications), spanned with a frequency
step of 25 MHz. The simulation was repeated 21 times, each time changing the length
of the coax, starting from 20 up to 40 cm with a length step of 1 cm. In particular, the
electric field was simulated at each frequency of interest, in order to obtain a more precise
evaluation of the reflection coefficient at that frequency (as well known, it is possible to
evaluate the electric field at one frequency and then extract the scattering parameters at
several frequencies from that).

Figure 2. Screen shot of the coaxial cable simulated with CST.

With these 21 numerical experiments, 21 vector data were obtained, each representing
the reflection coefficient as a function of frequency at any fixed length of the cable. Combin-
ing all these data as a column of a matrix, it is obvious that the rows of the matrix represent
the reflection coefficient as a function of the length of the cable at any fixed frequency. In
this way, we simulated multi-length data at each considered frequency.

The MUT follows a Maxwellian dispersion law, with relative dielectric permittivity
εr = 9 and electric conductivity σ = 0.02 Sm−1. Therefore, its equivalent complex relative
permittivity is equal to εrc = εr − jσ/2π f ε0, where ε0 is the absolute dielectric permittivity
of free space and f is the frequency. The multi-length data at each frequency were inverted,
looking for two parameters, namely the real and imaginary parts of the square root of the
equivalent complex dielectric permittivity εrc. In particular, in this case, the real part of
the complex relative permittivity is constant with frequency, whereas the imaginary part
vanishes hyperbolically with frequency.

The inversion algorithm is iterative and exhaustive at each step. At the first step, the
intervals of values [1, 20] and [–4, 0], both sampled with 801 uniformly spaced samples, are
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combined in a matrix of values that is spanned sequentially. After the first minimization,
the procedure is iterated on a rectangular investigation domain zoomed about the solution
found at the previous step, again discretized with 801 × 801 points. The zoom was
achieved considering one half of the extensions of the edges of the rectangle considered at
the previous step, with the further physical constraint that the real part of the dielectric
permittivity is not smaller than 1 (as for most of materials excluding plasmas) and the
imaginary part is negative (which means that the medium is passive and does not generate
electromagnetic energy). The iterations were four at most, but they stopped sooner if the
minimum value of the cost function found at the nth step was larger than the homologous
quantity found at the (n− 1)th step. If all four iterations were performed, a further check on
the discrepancy between the results achieved at the third and fourth steps was conducted.
In particular, if this discrepancy is large (5% or more), it means that the algorithm is still far
from convergence and more iterations are required. However, in the cases shown in the
study, the discrepancy was always smaller than 1%. In Figures 3 and 4, the reconstructed
real and imaginary parts (in modulus) of the reconstructed complex relative permittivity
are shown as a function of frequency, together with the actual values represented with
dashed lines. It can be seen that the real part was reconstructed very well all over the band,
apart from a slightly higher discrepancy at 775 MHz. The retrieved imaginary part was
slightly overestimated but followed quite well the frequency behavior of the actual value.

Figure 3. Real part of the equivalent complex permittivity. Solid line: retrieved value; dashed line:
actual value.

Figure 4. Imaginary part of the equivalent complex permittivity. Solid line: retrieved value; dashed
line: actual value.
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The reason for this bias is not yet fully understood, but the least square error on the
real part of the relative dielectric permittivity as a function of frequency with respect to
the actual value was equal to 1.4%, whereas the homologous error on the imaginary part
was 12%. The comprehensive error on the complex relative permittivity was 1.5%. At this
point, we can think of a further step inferring the type of dispersion law if the achieved
result allows this. In particular, we can compare the achieved dispersion curve with the
behavior of a pre-determined dispersion law, minimizing the discrepancy between the
achieved dispersion curve and a pre-chosen dispersion model (e.g., a Maxwellian, Deybe,
Cole-Cole, CRIM, etc.) at variance of the parameters characterizing the dispersion model
chosen for the comparison. In the case at hand, from the achieved dispersion curve, it was
adequate to choose a Maxwellian law for the parameter matching and such a least square
optimization provided an estimated relative permittivity equal to 8.98 (which means an
error of 0.22% with respect to the actual value) and an estimated electrical conductivity
equal to 0.022 S/m (with an error of 10% with respect to the actual value). As can be seen,
these errors were smaller than the least square errors between the achieved and actual
dispersion laws, because we exploited some extra-information about the kind of dispersion
law assumed for the MUT. In general, one might try different matching with different
dispersion models and choose one that allows for the best matching with the achieved
dispersion curve.

Figures 3 and 4 refer to noiseless data. In order to test the robustness of the algorithm in
the presence of noise, Gaussian white noise was added separately to the real and imaginary
part of the data at each frequency. The signal to noise ratio was 10 dB in all cases. The
results are represented in Figures 5 and 6.

Figure 5. Real part of the equivalent complex permittivity. Solid line: retrieved value; dashed line:
actual value. Noisy data with SNR = 10 dB.

Figure 6. Imaginary part of the equivalent complex permittivity. Solid line: retrieved value; dashed
line: actual value. Noisy data with SNR = 10 dB.
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The least square error on the real part of the relative dielectric permittivity was 1.33%,
the homologous quantity that referred to the imaginary part was 10.4%, and the error on
the complex equivalent relative permittivity was 1.45%. Imposing a Maxwellian law, the
best matching parameters were a relative permittivity equal to 9.01 and a conductivity
equal to 0.021 S/m. As can be seen, the results were essentially the same achieved with
noiseless data.

Let us now consider an example where the MUT follows a Deybe dispersion law [15],
whose basic mathematical law (with a single relaxation time) is given by

εr = ε′r − jε′′ r = εinf +
ε l f − εinf

1 + 2π f τ
(5)

where ε l f is the limit value of the relative permittivity at low frequency; εinf is the limit
value at very high frequency; and τ is the relaxation time of the material under test. ε l f ,
εinf, and τ are real, positive parameters, and for the case at hand, we chose the values of
ε l f = 5, εinf = 2, and τ = 2.122× 10−10 s.

The coaxial cable was the same used for the previous example, and the exploited
lengths were identical. The dispersion law was also investigated in the band 500–1000 MHz.
Figures 7 and 8 present the real and imaginary parts of the relative permittivity.

Figure 7. Real part of the equivalent complex permittivity for a Deybe dispersion law. Solid line:
retrieved value; dashed line: actual value.

Figure 8. Imaginary part of the equivalent complex permittivity for a Debye dispersion law. Solid
line: retrieved value; dashed line: actual value.

If a piece of prior information about the type of dispersion law is available, or if
the type of dispersion law is deducible from the achieved results, then the least square
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matching between the achieved results and the assumed dispersion law at a variance of
the three parameters ε l f , εinf, and τ can be performed. In this case, the minimum of a cost
function given by Equation (6) was considered,

G
(

ε l f , εinf, τ
)
=

N

∑
n=1

∣∣∣M(ε l f , εinf, τ; fn

)
− εret( fn)

∣∣∣ (6)

where M is the assumed model for the relative permittivity, considered at the nth test
frequency (in the case of an assumed Debye model, M is given by Equation (5)) and
εret is the retrieved relative permittivity at the same frequency. In order to perform the
minimization of the cost functional G, an exhaustive minimization was used, making the
trial value of ε l f range from 3 to 6, the trial values of εinf range from 1 to 4, and the trial
value of τ range from 0.1 to 0.3 ns. Regarding the choice of ranges, the values reached
by the low and high frequency side by the real part of the retrieved relative permittivity
can help with regard to ε l f and εinf. With regard to τ, it is an easy exercise (starting from
Equation (5)) to show that the imaginary part of the relative permittivity should reach its
maximum value at the frequency fmax = 1

2πτ , which immediately provides a first estimate
of the relaxation time given by τ = 1

2π fmax
. In our case, the maximum of the imaginary

part of the retrieved relative permittivity was reached at fmax = 775 MHz, which provides
the first estimation τ = 2.05× 10−10 s. Therefore, it was natural to adopt a range centered
on this value for the minimization. Each range was discretized with 501 points, so the
comprehensive minimization was performed on 5013 = 125,751,501 points. The least square
minimization provided the results ε l f = 5.44, εinf = 2.09, and τ = 2.39× 10−10 s, with a
percentage error of 8.8% on ε l f , 4.5% on εinf, and 12.74% on τ. The agreement with the
actual simulated values was not perfect, but the dispersion law was observed on a relatively
narrow frequency band. In particular, the dispersion law observed on a wider band would
immediately provide a more precise idea about ε l f and εinf, these values being the limits of
the real part for low and high frequencies. The results of Figures 6 and 7, and consequently
the least square matching of the dispersion parameters, were achieved with noiseless data.
Figures 9 and 10 represent the results obtained by adding white Gaussian noise to the data,
as was conducted for the case of the Maxwellian dispersion law. A good robustness of the
algorithm could be observed. The least square matching on the dispersion parameters in
this case resulted in ε l f = 5.41, εinf = 2.13, and τ = 2.43× 10−10 s, with an error of 8.2% on
ε l f , 6.5% on εinf, and 14.6% on τ.

Figure 9. Real part of the equivalent complex permittivity for a Debye dispersion law. Solid line:
retrieved value; dashed line: actual value. Noisy data with SNR = 20 dB.
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Figure 10. Imaginary part of the equivalent complex permittivity for a Debye dispersion law. Solid
line: retrieved value; dashed line: actual value. Noisy data with SNR = 20 dB.

As a further step to assess the robustness of the proposed method, we tested the
sensitivity of the results vs. an error in the lengths of the multi-length probe. The numerical
experiment was the same as that depicted in Figures 9 and 10. However, the present
evaluation involves white noise with SNR = 20 dB and a stochastic error on the length of
the rods. This error is Gaussian with a standard deviation of 0.2 mm.

In Figure 11, the real part of the relative permittivity is shown, whereas Figure 12
shows the imaginary part.

Figure 11. Real part of the equivalent complex permittivity for a Debye dispersion law. Solid line:
retrieved value; dashed line: actual value. Noisy data with SNR = 20 dB. Random parametric error
on the length of the probe, Gaussian with standard deviation 0.2 mm.

As can be seen, there was no significant worsening of the results from those of Figures 9
and 10. The least square matching for the dispersion parameters in this case resulted in
ε l f = 5.43, εinf = 2.15, and τ = 2.47× 10−10 s, with an error of 8.6% on ε l f , 7.5% on εinf,
and 16.4% on τ.
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Figure 12. Imaginary part of the equivalent complex permittivity for a Debye dispersion law. Solid
line: retrieved value; dashed line: actual value. Noisy data with SNR = 20 dB. Random parametric
error on the length of the probe, Gaussian with standard deviation 0.2 mm.

4. Conclusions

In this paper we proposed an algorithm to retrieve the dispersion law of a material
under test within a prefixed range of frequencies, making use of TDR multi-length data.
We focused on the case of a coaxial cable shunted at the end but other cases can also be
considered such as changing the termination (open or matched coaxial cables), type of
line (bifilar or trifilar TDR probes), or even the type of measurement device (waveguide).
From the applicative point of view, a shunted coaxial cable can be particularly suitable
in some biomedical applications, where the material to be investigated is liquid, semi-
solid, or in powder form. The multi-length data can be acquired by sequentially setting
pieces of probes of different lengths filled up with the MUT and attaching them to the
same “generator” or making use of an array of different length probes with the same
characteristics (in particular, also making use of an equivalent array of “generators”).
With respect to waveguide measurements, a coaxial cable does not insert its own modal
dispersion on the data if operated below the cut-off frequency of the first higher order
propagation mode. The proposed model, exploiting only data gathered in reflection mode,
is theoretically easily extendable to the case of bifilar or trifilar TDR probes. However, the
latter configurations are not expected to be well described by a transmission line model
because of the stronger effects of higher order modes. Nevertheless, calibration techniques
could be devised, but these were beyond the scope of this introductory work.

The multilength approach is based, of course, on the assumption that the different
probed samples of MUT are homogeneous and similar with respect to their dielectric
properties. This hypothesis is reasonable in many cases, and in almost any case tested. In
particular, different samples of powdered soil (gathered from the same region) should show
a visibly different color and/or granularity if they are chemically or physically different
from each other.

A last consideration is deserved about the effect of geometrical imprecisions in the
coaxial cable. In particular, these are expected to be partially amortized by the logarithmic
behavior of the intrinsic impedance of the line (see Equation (2)). In particular, if, for
example, the size of the inner radius of the cable in the reported examples was 0.5 mm
larger than its nominal value of 1.7 mm (which would mean a geometrical imprecision of
7%), then the intrinsic impedance of the line would change from 72.54 to 70.80 ohms (with
an error of 2.4%).

The potential applications of the multilength approach are several because the dis-
persion law can constitute a sort of signature of the probed material that might reveal, for
instance, the presence of some polluting substances in geophysical applications as well
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as the presence of toxic substances (in agricultural soils and natural underground water
catchments) that are not easily identifiable with other methods.

Future works will also focus on an investigation of the “degrees of freedom” of the
problem, looking for an optimal number of multilength measurements.
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