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Abstract: Interferometric radar is a hot research topic in manmade target displacement measuring
applications, as it features high precision, a large operation range, and a remote multiple point
measuring ability. Most one-dimensional interferometric radars use single-input single-output (SISO)
radar architecture to achieve a high repetition measuring rate of more than 200 Hz; however, it cannot
resolve multiple targets with the same radial range but different azimuth angles. This paper presents
a multiple-input multiple-output (MIMO) radar that adopts a limited number of antennas (usually
tens) to simultaneously improve azimuth resolution and achieve a high repetition measuring rate.
A MUSICAPES algorithm is proposed, which is cascades the multiple signal classification (MUSIC)
algorithm and the amplitude and phase estimation (APES) filter. The MUSIC algorithm is used to
further improve the angular resolution of the small array. The APES is used to precisely recover
the phases of the multiple close targets by suppressing their mutual interferences. Simulations and
experiments with a millimeter-wave radar validate the performance of the proposed method.

Keywords: interferometric MIMO radar; displacement measurement; multiple close targets; millime-
ter wave; MUSIC; APES

1. Introduction

Many manmade targets, such as bridges, tunnels, towers, tall buildings, etc., deform
slightly under external forces. These external forces are wind, traffic, hydraulic, temperature
stress, or a combination of them. The deformation may cause irreversible structural damage
if it exceeds the maximum deformation threshold; therefore, it is of great significance to
precisely monitor the tiny deformations of these targets. At present, deformation can
be measured by contact or non-contact deformation measuring sensors. Conventional
contact measurement sensors include displacement gauge, tension gauge, accelerometer,
vibration pickup, strain gauge, inclinometer, level gauge, and Beidou/GPS displacement
gauge. Non-contact sensors include total station, laser interferometry, high-definition
video, interferometric radar, etc. According to the working mode, the most widely used
deformation measuring sensors belong to the single-point measurement system; however,
they suffer several technical limitations. Interferometric radars are popular for monitoring
bridges, towers, slopes, mine pits, dams, and other civil infrastructures.

Interferometric radars receive the echo of an object’s backscattering by transmitting
microwave radio waves and measuring the displacement of the object by time difference
interferometry. They feature high precision, long working range, operational convenience,
remote multiple point measuring ability, and good environmental adaptability [1]. They
can be further divided into one-dimensional interferometric radars and two-dimensional
interferometric radars. The former kind of radars is applied to measure bridges, tall
buildings, and towers, which requires a higher repetition measurement rate [2,3], whereas
the latter kind is applied to measure slopes and dams, which features a lower repetition rate
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but a large coverage requirement [4]. Interferometric radars can be extended to different
platforms, such as satellites, airplanes, ships, and rails [5]. These radars would also work at
different frequency bands, from the X band up to the W band [6].

One-dimensional interferometric radars generally adopt the single-input signal-output
(SISO) radar architecture. The radar can only measure the deformations of objects with
different radial distances. It would hinder the radar’s application in the case of there being
two objects with the same radial distance but different azimuth angles. Most amendments
to these radars are to solve displacements with multiple directions [7]. If a one-dimensional
interferometric radar adopts multiple-input multiple-output (MIMO) radar architecture, its
multiple targets resolving capability can be improved. Traditional MIMO interferometric
radars are usually proposed to reduce the data acquisition time of rail-mounted two-
dimensional interferometric radars [8,9]. Some improvements to MIMO interferometric
radars would involve forming 3-D images and retrieving 3-D displacements [10,11]. Few
MIMO radars are capable of even measuring dynamic displacements [12], and many of
them find it hard to achieve a high repetition rate similar to that of a one-dimensional radar.

Multiple target imaging algorithms for MIMO interferometric radar include the back
projection (BP) algorithm [8], the range migration algorithm, and the far-field pseudo-
polar format algorithm (FPFA) [13]. All these algorithms are suitable when the equivalent
elements of a MIMO array are large; however, a large repetition rate requires a smaller
MIMO array. The imaging algorithm should adapt to the small array while still having a
fine multiple-target resolving ability. As the range migration of a target is not prominent
for the small array, fast Fourier transformation (FFT) can be used to resolve multiple targets.
Although improved methods such as ZOOM-FFT(ZFFT), FFT-FS, and chirp z-transform
(CZT) [14], can be used to improve the computation resolution. These FFT-based methods
still suffer from a limited angle resolution that is inversely proportional to the array length.
Direction of arrival (DOA) estimation methods can achieve a better performance when
scatters are independent. These methods include Capon beamforming [15], the amplitude
and phase estimation (APES) [16,17], the multiple signal classification (MUSIC) [18,19], and
so on. The phases of multiple targets would suffer mutual interferences if they were close.
It would cause additional requirements for the DOA methods. None of these methods can
achieve azimuth super-resolution and precise phase estimation at the same time.

In this paper, a short MIMO interferometric radar is designed to extract multiple
close targets with a high repetition rate. A MUSICAPES algorithm is proposed to resolve
multiple targets beyond the angle resolution and suppress the mutual interferences of their
side lobes. The algorithm is performed by cascading the root-MUSIC algorithm and an
APES filter. The deformations of multiple targets with the same radial distance but different
azimuth angles are finally accurately estimated with time differential interferometry. The
main contributions of this paper are summarized as follows.

• A MIMO interferometric radar is proposed for a precise, high repetition rate, non-
contact, multi-point simultaneous displacement measurement. It has the advantages
of both one-dimensional and two-dimensional deformation measuring radars. It can
measure multiple close targets such as complex bridges, towers, and buildings, which
traditional one-dimensional radars fail to do.

• A MUSICAPES method is proposed to resolve multiple azimuth close targets and
precisely extract their displacements. The method first adopts the root-MUSIC al-
gorithm to estimate the azimuth angle of each target. Then, the APES algorithm
is used to precisely recover the phases of the targets using the azimuth angles es-
timated in the former step. The method can improve the displacement measuring
precision significantly.

• A millimeter-wave MIMO interferometric radar is designed for multiple target dis-
placement measuring. The radar is composed of a commercial off-the-shelf (COTS)
radar front end, an analog to digital (AD) card, and a laptop computer. Experiment
results show that the radar can resolve multiple targets beyond the angular resolution
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of the MIMO array and can precisely measure their displacements at a repetition rate
of more than 100 Hz.

Notation: We denote vectors and matrices by boldface letters. See Table 1 for the main
acronyms and symbols and their meanings.

Table 1. Meanings of main abbreviations, acronyms and symbols.

Index Term Meaning

1 SISO single-input signal-output
2 MIMO multiple-input multiple-output
3 MUSIC multiple signal classification
4 APES amplitude and phase estimation
5 CZT chirp z-transform
6 DOA direction of arrival
7 MMW millimeter-wave
8 COTS commercial off-the-shelf
9 R1 input covariance matrix for MUSIC
10 R2 input covariance matrix for APES
11 US signal space by eigen decomposition
12 UN noise space by eigen decomposition
13 Q̂ noise covariance matrix for APES
14 h optimal complex filter coefficients of APES

The rest of this paper is organized as follows. Section 2 briefly describes the architecture
of the MIMO interferometric radar and the principles of multiple target discrimination. A
MUSICAPES method is proposed in Section 3, to precisely extract the displacements of
multiple close targets. Simulations and two-target displacement measuring experiments
with an MMW MIMO radar are presented in Section 4. Finally, conclusions are drawn in
Section 5.

2. MIMO Interferometric Radar and Multiple Target Discrimination

Conventional one-dimensional interferometric radars adopt one transmitting antenna
and one receiving antenna. The azimuth resolution is restricted to the beamwidth of the
two antennas. Generally speaking, the radar cannot resolve two targets with the same
radial range but different cross-range positions, as target A and target B in Figure 1, for
example. The radar can only resolve targets with different radial ranges, as target A and
target C in Figure 1, for example.
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Azimuth or angle discrimination can be improved by using a SAR or DOA algorithm
in traditional radars. Two-dimensional interferometric radars adopt the SAR system and the
persistent scatter (PS) algorithm to estimate slow displacement. We use the DOA method to
estimate fast displacement. The radar architecture, the principles of range discrimination,
and azimuth discrimination are described in this section in detail.

2.1. Basic Architecture of an Interferometric MIMO Radar

To achieve a high repetition measuring rate, all the transmitting and receiving channels
of a MIMO radar should work simultaneously. The radar should adopt an orthogonal
waveform, multiple transmitters, and multiple receivers to achieve the best performance;
however, the overall cost of the radar would be unaffordable in most civil applications.
Moreover, we will use the MIMO radar that works in time-division mode.

The MIMO interferometric radar is composed of M transmitting antennas and N
receiving antennas, as shown in Figure 2. The space between two receiving antennas is
half the wavelength. The interval between two transmitting antennas is N times the half
wavelength. As a result, an equivalent transceiving antenna array is formed. The interval
between two equivalent antennas is a quarter of the wavelength. In a far-field assumption,
the equivalent transceiving antenna TRij is in the middle of the transmitting antenna Ti and
the receiving antenna Rj.
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xTRij =
(

xTi + xRj

)
/2 yTRij =

(
yTi + yRj

)
/2 (1)

where xTi , xRj , xTRij are positions in the x coordinate of the ith transmitting antenna, the
jth receiving antenna, and the equivalent transceiving antenna, respectively. yTi , yRj , yTRij
are positions in the y coordinate of the ith transmitting antenna, the jth receiving antenna,
and the equivalent transceiving antenna, respectively.

The transmitting antenna is connected to an RF switch whose input port is connected
to the transmitter. Each receiving antenna is fed to a receiver that performs bandpass filter,
low noise amplification, and dechirp demodulation. Then, the outputted echo is fed to
an analog-to-digital converter whose output is sent to a laptop computer via Ethernet. A
laptop computer controls the radar front end through a serial port, to configure the working
frequency range, the sweep duration of a linear frequency modulation (LFM) signal, the
pulse repetition frequency, the AD sampling frequency, and the sampling length. The
sampled radar echo is streamed out through an LVDS bus to a data acquisition board which
formats the echo into standard UDP socket packages. The packages are finally sent to the
laptop computer via Ethernet.
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2.2. Multiple Target Discriminator from the Range Direction

To distinguish nearby targets, the interferometric MIMO radar has to emit wideband
signals. The LFM signal is one of the most widely used waveforms. The frequency of an
LFM signal changes linearly with time. It can be formulated as

st(t) = A× rect
(

t
T

)
exp

[
jπ
(

2 f0t + K f t2
)]

0 < t < T (2)

where f0 is the start frequency, T is the sweep period, and K f is the chirp rate. A is
the amplitude, and it is often omitted for simplicity. The function rect is defined as

rect(x) =

{
1, |x| ≤ 1
0, |x| > 1

. The received signal of a point target is an attenuated -and time-

delayed replica of the transmitting signal. After a dechirp demodulation operation, the
received intermediate-frequency signal can be written as

s
(Ti ,Rj)

IF (t) = exp(j2π f0τ) exp
(

j2πK f τt
)

exp
(
−jπK f τ2

)
(3)

where the first exponential component indicates the phase delay; the second component is
a linear phase term and indicates the range of the target; the last component is the quadratic
phase error of the dechirp operation. τ =

(
rk,Ti

+ rk,Rj

)
/c is the round trip travelling

delay of the electromagnetic wave. rk,Ti
, rk,Rj

are the distances from the kth target to the
transmitting antenna Ti, and the receiving antenna Rj, respectively. c is the electromagnetic
wave velocity.

rk,Ti
=
√(

xk − xTi

)2
+
(
yk − yTi

)2 Ti = 1, · · ·M

rk,Rj
=

√(
xk − xRj

)2
+
(

yk − yRj

)2
Rj = 1, · · ·N

(4)

A one-dimensional radar image is obtained by the FFT operation and is expressed as

S
(Ti ,Rj)

RC (n) ≈ NT exp
[

j2π

(
f0τ − 1

2
K f τ2

)]
exp

[
jπ
(K f τ

fs
− n

NFFT

)
(NFFT − 1)

]
sin c

[(K f τ

fs
− n

NFFT

)
NFFT

]
(5)

where NFFT is the length of the FFT operation. fs is the sampling frequency of the AD
card. The one-dimensional radar image of the target is a peak whose index is npeak =

round
(

NFFTK f τ/ fs

)
. The complex radar response of the target is denoted as α(npeak) =

exp
[

jπ
(

2 f0τ − K f τ2
)]

. As the second term is far less than the first one, we can obtain the
phase of the target as

ϕ(Ti, Rj, npeak) = 2π f0τ (6)

The range resolution of the radar is proportional to the time duration T-τ. As T is much
larger than τ, so is the resolution ρr = 0.886c/(K f T). The coefficient 0.886 is a correction
factor that makes the range resolution accurate [20]. If we want to discriminate between

target A and target C in Figure 1, ρr should be smaller than
√
(x1 − x3)

2 + (y1 − y3)
2.

2.3. Multiple Target Discriminator from the Cross Range Direction

Each combination of Ti and Rj can output a one-dimensional radar image. The
responses of a target in all the images have similar ranges and amplitudes, but they are
different in phases. Figure 3 shows the geometry of DOA estimation with the equivalent
MIMO array. If the DOA angle of the target is θ, then the phase difference between two
adjacent antennas is π sin θ.
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At the discrete time tick ts, a target response vector can be constructed by using the
target’s peaks in all the M× N one-dimensional images.

S(ts, npeak) =
[
s(1,1)

RC (npeak), s(1,2)
RC (npeak), · · · , s(1,N)

RC (npeak), · · · , s(M,N)
RC (npeak)

]T
(7)

The DOA angle θ can be estimated by the traditional FFT operation. An angle response
image of the target is famulated as

sSP(ts, k) = Aeiφ0
sin[MNπ(k/(MN) + sin θ/2)]

sin[π(k/(MN) + sin θ/2)]
(8)

The DOA angle θ coincides with the peak of the angle image. We can find that the
angular resolution ρθ of an M× N array is

ρθ = asin
(

2× 0.886
MN

)
(9)

where the coefficient 0.886 is a correction factor to make the angular resolution accurate. If
we want to discriminate between target A and target B in Figure 1, the resolution ρθ should

be smaller than asin
[
|x1 − x3|/

√
(x1 − x3)

2 + (y1 − y3)
2
]

.

3. MUSICAPES for Multiple Close Targets Deformation Estimation

Since the array length of the interferometric MIMO radar is small enough to maintain
a high repetition measuring rate, and if the traditional MIMO radar processing method is
used to estimate the displacements of multiple targets, it has to face two challenges. One
challenge is that the angular resolution of the array is limited. The other one is that the
large side lobes of the array would cause prominent phase errors. As a result, the radar
would find it difficult to precisely estimate the displacements of multiple close targets.
A MUSICAPES is proposed to solve the two problems. Firstly, the method adopts the
root-MUSIC algorithm to improve the angular resolution of the short MIMO radar. Then, it
employs the APES filter to suppress the interferences of other targets and precisely estimate
the complex coefficients, using the DOA angle obtained by the root-MUSIC algorithm.
Finally, the displacement is calculated by the traditional time differential operation.

3.1. Multiple Targets Extraction Based on MUSIC

There are many advanced array processing algorithms for DOA estimation, such as
Capon beamforming, MUSIC, ESPRIT, IAA [21], and so on. We will adopt the widely
used MUSIC algorithm to estimate DOA angles, as the algorithm is famous for its super-
resolution performance. The MUSIC algorithm can be incorporated with phase interferom-
etry to improve the performance of DOA estimation [22].

The input to the MUSIC algorithm is one snapshot of the MIMO array, as shown in (7).
The length of the observation is (M× N). Firstly, we have to estimate the covariance of the
observation. An estimation of the covariance matrix is usually obtained by (time) averaging
several independent snapshots; however, there is only one snapshot, so we have to divide
the long snapshot vector into several overlapped shorter subvectors. Supposing the length
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of the subvectors is Mmusic (Mmusic ≤ (MN)/2 generally), then an estimation of the input
covariance matrix can be formulated as follows.

R1 = ∑NTR−Mmusic
i=0 y1(i)×(y1(i))

H (10)

where ()H is the conjunction transpose operator. The subvector is y1(i) = [s(ts, npeak, i),
s(ts, npeak, i + 1), · · · s(ts, npeak, i + Mmusic − 1)]T . Then, the eigendecomposition is performed,
which can be expressed as

R1 = UΛUH = USΛSUH
S + UNΛNUH

N (11)

There are Mmusic eigenvalues, among which bigger ones are indicators of targets, and
smaller ones are indicators of noise. Supposing there are P bigger eigenvalues, the corre-
sponding eigenvectors in U span a signal space which is denoted as US. The dimensions
of US are Mmusic × P. The remaining eigenvectors in U span the noise space which is
expressed as UN . The dimensions of UN are Mmusic × (Mmusic − P).

The traditional MUSIC algorithm estimates DOA angles by finding peaks of the
pseudospectrum. The pseudospectrum estimate is defined as

PMUSIC(θ) =
1

[a1(θ)]
HUNUH

Na1(θ)
(12)

where a1(θ) = [1, e−j4π sin θd/λ, · · · , e−j4π sin θMmusicd/λ]
T

is the steering vector of DOA angle
θ. It is time-consuming to calculate the pseudo spectrum if the number of tested angles is
large. The root-MUSIC can reduce the computation load. MUSIC and root-MUSIC have the
same asymptotic performances, but the latter one has better performance in small sample
situations [23]. The DOA angle can be estimated by solving the equation below [24].

zMAPES−1 pT(z−1)UNUH
N p(z) = 0 (13)

The steering vector a1(θ) is replaced by vector p(z) = [1, z, · · · zMmusic−1]
T . Where

z = e−j4π sin θd/λ. There are 2Mmusic solutions for Equation (13). They are symmetrical with
respect to the unit circle. We choose the P solutions that are most close to the unit circle.
Suppose the solutions are θ1, θ2, · · · θP.

3.2. Deformation Estimation Based on APES

APES is a maximum likelihood estimation of the complex sinusoidal signal, which is
proposed by Li and Stoica. It can obtain more precise phase and amplitude estimations
than those of the Capon filter [16]. For a target angle θk estimated by the root-MUSIC,

a steering vector is formed as aMAPES(θk) = [1, e−j4π sin θkd/λ, · · · e−j(MAPES−1)4π sin θkd/λ]
T

.
MAPES is the length of the APES filter. The complex coefficients are obtained by solving the
following problem.

min
h,α

1
L

L−1

∑
l=0

∣∣∣hHy2(l)− α(θk)ej4πl sin θkd/λ
∣∣∣2, Subject to : hHaMAPES(θk) = 1 (14)

where y2(l) = [s
(

ts, npeak, l
)

, s
(

ts, npeak, l + 1
)

, · · · s
(

ts, npeak, l + MAPES − 1
)
]
T

; h is a filter
weighting coefficient of length MAPES. L = M×N−MAPES+1. By some manipulations,
the minimization problem is converted into a linear minimization, as shown below

min
h

hHQ̂h subject to : hHaMAPES(ω) = 1 (15)
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where Q̂ = R2 − g(θk)gH(θk) and R2 = 1
L ∑L−1

l=0 y2(l)(y2(l))
H. g(θk) is the Fourier trans-

formation of y2(l). The optimal complex coefficients can be obtained by a Lagrange
multiplication [16].

h =
Q̂−1aMAPES(θk)

aH
MAPES

(θk)Q̂
−1aMAPES(θk)

(16)

α̂(θk) = aH
MAPES

(θk)h (17)

The matrix inversion operation in APES is computation intensive. It can be reduced
by using the matrix inversion lemma. Then a new formulation of Q̂−1 is

Q̂−1
= R−1

2 −
R−1

2 g(θk)gH(θk)R
−1
2

gH(θk)R
−1
2 g(θk)− 1

(18)

The computation efficiency is improved as direct matrix inversions are prevented.
By substituting Equation (18) into Equation (17), a new expression of the coefficients is
obtained as follows

α̂(θk) =
aH

MAPES
(θk)R

−1
2 g(θk)(

gH(θk)R
−1
2 g(θk)− 1

)
aH

MAPES
(θk)R

−1
2 aMAPES(θk)−

∣∣∣aH
MAPES

(θk)R
−1
2 g(θk)

∣∣∣2 (19)

The phase difference between two coefficients estimated at ts and ts+1 can be written as

∆φ(ts, θk) = phase(α̂(ts+1, θk)× α̂∗(ts, θk)) (20)

where phase() returns the phase angle in the interval [−π, π] for a complex number. The
time interval between two measurements should be small enough to avoid phase wrapping.
Then, the displacement of a target at (npeak, θk) can be obtained by summing time differential
results from the t0 to ts. The displacement can be written as

d(ts, θk) =
ts

∑
n=t0

λ

4π
∆φ(ts, θk) (21)

4. Simulation and Experiment Results

The proposed MUSICAPES algorithm is evaluated by simulations and radar experi-
ments. A MIMO interferometric radar is built with a COTS MMW radar frontend, an AD
card, and a laptop computer. Main parameters of both tests are the same, which are listed
in Table 2.

Table 2. Parameters for simulations and experiments.

Transmitting
Antennas

Receiving
Antennas Signal Type Frequency

Slope
Start

Frequency
AD

Frequency
Sampling

Length PRF

3 4 LFMCW 20 MHz/us 77 GHz 10 MHz 256 100 Hz

4.1. Simulations

One simulation is performed when there is only one target. The other three simulations
are conducted to evaluate the performance of the proposed method versus the angle interval
between two targets, the length of the MIMO array, and the input SNR.

4.1.1. Single Target Displacement Estimation

Supposing the MIMO radar is composed of three transmitting antennas and four
receiving antennas, the angular resolution of the array is 8.46◦, according to Equation (9).
If one target is located at (20 m, 0◦), all the MUSIC, CZT, and root-MUSIC algorithms can
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precisely estimate the angle of the target, as shown in Figure 4a. The real displacements of
the target are the piecewise linear curves shown in Figure 4b. We can obtain two estimated
displacement curves using the MUSICAPES and CZT algorithms. As they are nearly the
same as the real value, we further analyze the difference between the estimated curves
and the real value. The error curves of the MUSICAPES and CZT algorithms are shown
in Figure 4c. The mean errors of the MUSICAPES and CZT algorithms are −0.15 µm
and −0.22 µm, respectively. The standard deviations (STD) are 0.40 µm and 0.36 µm for
MUSICAPES and CZT, respectively. These errors are far less than 0.1 mm which is a widely
used error threshold. The results indicate that the MUSICAPES and CZT algorithms both
work well in one-target situations.
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4.1.2. Measurement Performance of Two Targets vs. Azimuth Intervals

There are two targets in this simulation case; the ‘Target1’ is located at (20 m, 0◦) and
the ‘Target2’ is located at (20 m, −8.46◦). The angle interval between the two targets equals
the angular resolution of the MIMO radar. The SNR of the input signal is 20 dB. Multiple-
target resolving results of the MUSIC, CZT, and root-MUSIC algorithms are shown in
Figure 5a. Then, the ‘Target2’ is moved to (20 m, −4.23◦), which means the angle interval is
half the angular resolution. The multiple-target resolving results are shown in Figure 5b.
We can see that the CZT algorithm fails to resolve the two targets when the angle interval
is smaller than the angular resolution. Though the CZT algorithm can resolve the two
targets when the angle interval is larger than the angular resolution, the estimated angles
of the two targets are not precise. This is due to the fact that the side lobes of one target
would interfere with the main lobe of the other target. On the contrary, the MUSIC and
root-MUSIC algorithms can resolve the two targets and precisely estimate their angles even
when the angle interval is smaller than the angular resolution.

The next step is to evaluate the displacement estimation performance in the two-target
situation. The angle interval is half the angular resolution of the MIMO radar, namely, 4.23◦.
This is the same as that of Figure 5b. The real displacement values of the two targets are
plotted in Figure 6a. As the CZT algorithm cannot obtain a precise azimuth angle estimation,
we use the real angle value for the latter processing. Then, we extract the responses of
the CZT and the MUSICAPES and calculate the displacement. The displacement curves
are shown in Figure 6b. The blue solid and blue dash curves are the displacements of the
‘Target1’ estimated by the MUSICAPES and CZT algorithms, respectively. The red solid and
red dash curves are the displacements of the ‘Target2’ estimated by the MUSICAPES and
CZT algorithms, respectively. The comparison indicates that the traditional CZT method
fails to recover the displacements, but the proposed MUSICAPES can obtain precise results.
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The maximum displacement error of the CZT algorithm is 0.42 mm for the ‘Target1’. The
error is generally unacceptable for normal applications.
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The performances are further analyzed at different angle intervals between the two
targets. ‘Target1’ is fixed at (20 m, 0◦) and the azimuth angle of ‘Target2’ is variable. The
angle interval between them varies exponentially from 10−1.5 ρθ to 100.5 ρθ . The angular
resolution ρθ is 8.46◦ in this case. The SNR of the input signal is 20 dB. We use the real
angle value to estimate the complex coefficients of the two targets. The displacements
of the two targets are subsequently estimated by the MUSICAPES and CZT algorithms.
Then, differences between the estimated displacements and the real values (as shown in
Figure 6a) are calculated. Finally, the mean and the STD of the differences are measured.

Figure 7 shows the mean error of the difference. The comparison of the curves indicates
that the displacement error of the CZT algorithm is much larger than that of the proposed
MUSICAPES algorithm. The maximum mean error of the CZT algorithm exceeds 0.2 mm
for both targets. On the other hand, the proposed MUSICAPES performs steadily and
well, even when the angle interval is a tenth of the angular resolution. If the angle interval
further decreases, the performance of MUSICAPES would also deteriorate.
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Figure 8 shows the STD of the difference. The STD result is similar to the mean error.
The CZT algorithm has much larger STD errors. On the other hand, the MUSICAPES works
well when the angle interval is larger than a tenth of the angular resolution.
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4.1.3. Measurement Performance of Two Targets vs. Array Length

We will test the displacement estimation performance versus the number of antennas.
In this simulation case, the number of transmitting antennas is set to be 1; the number of
receiving antennas varies from 8 to 64 with an incremental step of 2. There are also two
targets. ‘Target1’ is still fixed at (20 m, 0◦). ‘Target2’ is on the right side, 20 m from the
radar. The angle interval between the two targets is equal to half the angular resolution
of the used array. It is known that the angular resolution is inversely proportional to the
number of antenna arrays. As a result, the larger the number of antennas, the smaller the
angle interval.

Figure 9 shows the means of the displacement measuring errors of the two targets.
Figure 10 shows the STD of the displacement measuring errors of the two targets The
proposed MUSICAPES algorithm performs much better than the traditional CZT algorithm.
The mean error and STD curve of the MUSICAPES are much smaller than 0.1 mm; however,
the STD of the MUSICAPES algorithm would increase as the array gets larger. The reason
for this phenomenon is that the input covariance matrix cannot be accurately estimated
when the dimensions of the matrix are large, and the input samples are limited.
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4.1.4. Measurement Performance of Two Targets vs. SNR

In this simulation case, the number of transmitting receiving antennas are set as three
and four, respectively. There are also two targets. ‘Target1’ is fixed at (20 m, 0◦) and ‘Target2’
is fixed at (20 m, 4.23◦). The angle interval between them is half the angular resolution of
the MIMO array. The real displacement curves of the two targets are illustrated in Figure 6a.
We will analyze the measuring performance as the input SNR varies from −40 dB to 50 dB
with a stride of 3 dB.

Figures 11 and 12 show the results of the two algorithms. We can see that the CZT
algorithm performs better than MUSICAPES when the SNR is lower than −30 dB; however,
both algorithms cannot give reasonable results in that situation. If the SNR is larger than
−25 dB, both algorithms work well. In general, the CZT algorithm is more robust than the
MUSICAPES algorithm.
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Figure 11. Mean error of displacement difference vs. SNR. (a) The mean error of ‘Target1’; (b) the
mean error of ‘Target2’.
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4.2. Experiments

An MMW MIMO radar is designed to measure the displacements of multiple close
targets. The MMW MIMO radar is composed of the TI AWR2243BOOST radar front end,
the TI DCA1000EVM card, a USB 3.0 hub, and a laptop computer. The experiment is
conducted on a table with two trihedral reflectors; one is fixed on the left and the other
one is mounted on a sliding platform on the right, as shown in Figure 13. Both ranges
of the two trihedral reflectors to the radar are 2.9 m. In the two experiments, the sliding
platform stays at 0 mm for several seconds; then it is turned to 1 mm and stays for a
while; then it is turned to 2 mm and stays for a moment; finally, it is turned back to 0 mm.
The sliding platform operator has to hide beneath the table to eliminate his interference
with the trihedral reflectors. The TI AWR2243BOOST has three transmitting antennas and
four receiving antennas. The interval between two adjacent receiving antennas is half
the wavelength; however, the interval between two adjacent transmitting antennas is one
wavelength. So, only the first and the third transmitting antennas can be used to form
the required MIMO radar. The angle resolution of the MMW MIMO radar is 12.69◦. The
maximum repetition rate of the radar can be set to 1 kHz which can satisfy the dynamic
displacement measuring requirement.
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Figure 13. Multiple close targets displacement measuring experiment with an MMW MIMO radar. 
The radar is mounted on a tripod and connected to a laptop computer via a USB3.0 hub. (a) Two 
trihedral reflectors are placed at the end of a table. The left one is still and the right one can be moved 
on a sliding platform. The azimuth distance between them is 1.2 m; (b) the TI AWR2243BOOST is 
mounted on the TI DAC1000 EVM. (c) The right reflector is on the sliding platform which can be 

Figure 13. Multiple close targets displacement measuring experiment with an MMW MIMO radar.
The radar is mounted on a tripod and connected to a laptop computer via a USB3.0 hub. (a) Two
trihedral reflectors are placed at the end of a table. The left one is still and the right one can be moved
on a sliding platform. The azimuth distance between them is 1.2 m; (b) the TI AWR2243BOOST
is mounted on the TI DAC1000 EVM. (c) The right reflector is on the sliding platform which can
be measured by a micrometer. The platform is stuck onto the desktop to suppress additional
displacements caused by manual operations.

4.2.1. Displacement Measurement of Two Targets Separated beyond the Resolution

In the first experiment, the azimuth distance between them is 1.2 m (or 20.1◦ in angle),
which is larger than the angular resolution of AWR2243BOOST. Though a traditional SISO
radar cannot resolve the two reflectors, the proposed MIMO radar can successfully resolve
them, even with the traditional CZT method. All three methods can resolve the two targets
and output the same angle estimations, as shown in Figure 14.
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Figure 14. One-dimensional image and DOA results of the first experiment. (a) High resolution
one-dimensional radar image. The first peak is the responses of the two trihedral reflectors separated
1.2 m in azimuth; (b) MUSIC, CZT and root-MUSIC can discriminate between the two reflectors.

The estimated displacement curves of the MUSICAPES and CZT methods are shown
in Figure 15. When multiple targets present in the same radial range, their side lobes
would interfere with the other’s main lobe. As a result, even if multiple targets can be
resolved, their displacements cannot be precisely estimated by the CZT methods. The
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displacement curve of the still reflector fluctuates while the other one moves. The maximum
displacement measuring error is about 0.1 mm. The displacement of the moving reflectors
is also not precise. As the absolute displacement is large, the relative measuring error is
not prominent. On the other hand, the proposed MUSICAPES algorithm can precisely
recover the displacements of both reflectors. The mean error and STD error of the still
reflector are 0.002 mm and 0.003 mm, respectively. The displacement curve of the moving
reflector estimated by MUSICAPES is consistent with the real value. The errors between
the measurement and the real value are 0.023 mm and 0.01 mm when the moving reflector
stays at 1 mm and 2 mm, respectively. The error is small enough for most applications.

Remote Sens. 2022, 14, x FOR PEER REVIEW 16 of 18 
 

 

 

Figure 15. Displacement curves of the two trihedral reflectors estimated by the MUSICAPES and 

the CZT method. Target 1 is the still reflector and Target 2 is the moving one mounted on the sliding 

platform. 

4.2.2. Displacement Measurement of Two Close Targets  

In the second experiment, the azimuth distance between the two reflectors is reduced 

to 0.7 m (or 11.3° in angle), which is smaller than the angular resolution of 

AWR2243BOOST. In this situation, both the CZT method and the MUSIC algorithm fail 

to resolve the two reflectors, but the root-MUSIC works well, as shown in Figure 16. This 

is due to the fact that the covariance matrix is not accurately estimated from only one 

snapshot, but root-MUSIC generally has better performance in limited snapshot situations 

[22]. 

  

(a) (b) 

Figure 16. One-dimensional image and DOA results of the second experiment. (a) High resolution 

one-dimensional radar image. The first peak is the responses of two trihedral reflectors separated 

by 0.7 m in azimuth; (b) the angle between the two trihedral reflectors is smaller than the angular 

resolution, root-MUSIC can discriminate between them, but MUSIC and CZT fail. 

If we use the angle estimated by root-MUSIC and then estimate the phase by the CZT 

method, we can obtain the displacement curves of the two reflectors. The estimated dis-

placement curves of the MUSICAPES and CZT methods are shown in Figure 17. We can 

see that the CZT method fails to estimate the displacements of the reflectors. The maxi-

mum displacement error of the moving one is larger than 2 mm. The displacement error 

Figure 15. Displacement curves of the two trihedral reflectors estimated by the MUSICAPES and
the CZT method. Target 1 is the still reflector and Target 2 is the moving one mounted on the
sliding platform.

4.2.2. Displacement Measurement of Two Close Targets

In the second experiment, the azimuth distance between the two reflectors is reduced
to 0.7 m (or 11.3◦ in angle), which is smaller than the angular resolution of AWR2243BOOST.
In this situation, both the CZT method and the MUSIC algorithm fail to resolve the two
reflectors, but the root-MUSIC works well, as shown in Figure 16. This is due to the fact that
the covariance matrix is not accurately estimated from only one snapshot, but root-MUSIC
generally has better performance in limited snapshot situations [22].

If we use the angle estimated by root-MUSIC and then estimate the phase by the
CZT method, we can obtain the displacement curves of the two reflectors. The estimated
displacement curves of the MUSICAPES and CZT methods are shown in Figure 17. We can
see that the CZT method fails to estimate the displacements of the reflectors. The maximum
displacement error of the moving one is larger than 2 mm. The displacement error of the
still one is not prominent, because the interference of the moving one is small. Only the
proposed MUSICAPES successfully recovers the displacements of the two close trihedral
reflectors. The mean error and STD error of the still trihedral reflector are 0.002 mm
and 0.003 mm, respectively. The displacement curve of the moving one estimated by
MUSICAPES fits the real value well. The error between the measurement and the real value
is 0.042 mm and 0.051 mm when the moving reflector stays at 1mm and 2 mm, respectively.
The error is also small enough for most applications.
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Figure 16. One-dimensional image and DOA results of the second experiment. (a) High resolution
one-dimensional radar image. The first peak is the responses of two trihedral reflectors separated
by 0.7 m in azimuth; (b) the angle between the two trihedral reflectors is smaller than the angular
resolution, root-MUSIC can discriminate between them, but MUSIC and CZT fail.
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Figure 17. Displacement curves of the two trihedral reflectors estimated by the MUSICAPES and
the CZT method. Target 1 is the still reflector and Target 2 is the moving one mounted on the
sliding platform.

5. Conclusions

An interferometric MIMO radar and a MUSICAPES algorithm are proposed to pre-
cisely estimate the dynamic displacements of multiple close targets. The array length of
the MIMO radar is small enough to maintain a high repetition measuring rate; however,
the short MIMO radar would face two challenges, which are limited angular resolution
and large side lobe interferences. The MUSICAPES method is proposed to resolve the
multiple azimuth close targets and precisely extract their displacements. The method
firstly adopts the root-MUSIC algorithm to estimate the azimuth angle of each target. Then,
the APES algorithm is used to recover the phases of the targets using the azimuth angles
estimated in the previous step. The method can improve the displacement measuring
precision significantly.
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A millimeter-wave MIMO interferometric radar is designed for multiple target dis-
placement measuring. Simulations and experiments with the MMW radar validate the
performance of the proposed method.

The proposed radar can be applied to measure dynamic displacements of bridges,
towers, and buildings. It is especially useful to solve multiple close-target displacement
measuring requirements that traditional one-dimensional interferometric radars fail to
do. The proposed method can also be applied to other MIMO radars if both the fine
angular resolution and precise phase estimation are the pursuits, such as monitoring the
displacements of dams and radar tomography of complex scenes.
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