
����������
�������

Citation: Zhu, Y.; Stock, M.; Lapierre,

J.; DiGangi, E. Upgrades of the Earth

Networks Total Lightning Network

in 2021. Remote Sens. 2022, 14, 2209.

https://doi.org/10.3390/rs14092209

Academic Editors: Stefano Federico,

Gaopeng Lu, Yang Zhang and

Fanchao Lyu

Received: 31 March 2022

Accepted: 3 May 2022

Published: 5 May 2022

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2022 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

remote sensing  

Technical Note

Upgrades of the Earth Networks Total Lightning Network
in 2021
Yanan Zhu 1,* , Michael Stock 2,3 , Jeff Lapierre 2 and Elizabeth DiGangi 2

1 Earth System Science Center, University of Alabama in Huntsville, Huntsville, AL 35899, USA
2 Earth Networks, Germantown, MD 20874, USA; mstock@earthnetworks.com (M.S.);

jlapierre@earthnetworks.com (J.L.); edigangi@earthnetworks.com (E.D.)
3 Cooperative Institute for Severe and High-Impact Weather Research and Operations, University of Oklahoma,

Norman, OK 73109, USA
* Correspondence: yz0022@uah.edu

Abstract: The Earth Networks Total Lightning Network (ENTLN) launched a new processor (P2021)
in December 2021. Some major upgrades were made in the new processor, including a new classifica-
tion algorithm, a new propagation model, and regional data processing architecture. Ground-truth
datasets of natural and rocket-triggered lightning acquired in Florida were used to evaluate the
performance characteristics of the new processor. Compared to the last processor launched in 2015
(P2015), the stroke classification accuracy increased from 91% to 94% for natural lightning and from
86% to 88% for rocket-triggered lightning. The location accuracy improved significantly with the
median location error decreasing from 215 m to 92 m. On a global scale, we found the number of
pulses detected by the ENLTN increased in all regions with an overall detection gain of 149%. One
can see modest gains in detection in regions with a fairly dense network of sensors and significant
gains in regions where sensor density is much lower. Each of the major upgrades as well as their
influences on the performance characteristics of the ENLTN are discussed.

Keywords: Earth Networks Total Lightning Network; lightning detection; lightning classification;
location accuracy

1. Introduction

The Earth Networks Total Lightning Network (ENTLN) consists of over 1800 sensors
deployed in over 100 countries that detect wideband electric field signals emitted by both
intracloud (IC) and cloud-to-ground (CG) lightning [1]. The electric field signals recorded
by the sensors are continuously sent back, in compressed data packets, to the central
processor, where the geolocation of lightning is implemented in real-time using the time-of-
arrival (TOA) technique. On average, the ENTLN reports about 50 lightning events per
second worldwide. For each lightning event, time of occurrence, geolocation, event type,
and peak current are reported by the ENTLN. The raw electric field waveforms from all
ENTLN sensors are archived permanently, which allows for reprocessing in the future or
use in scientific studies, e.g., [2,3].

The processor (i.e., data processing algorithms, including those for locating and
classification) of the ENTLN underwent several upgrades throughout its lifetime to improve
its detection efficiency, classification accuracy, and location accuracy. After each upgrade,
the performance of the ENTLN was evaluated using independent datasets, such as high-
speed video records [4], rocket-triggered lightning measurements [5], and satellite-based
optical lightning observations [6–8]. The performance characteristics of the processor that
was operational as of August 2015 (P2015) were evaluated using both natural and rocket-
triggered lightning recorded in Florida [4]. In this study, the flash detection efficiency
(DE), flash classification accuracy (CA), stroke DE, and stroke CA for P2015 were found
to be 99%, 97%, 96%, and 91%, respectively, for natural lightning, and 100%, 97%, 97%,
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and 86%, respectively, for triggered lightning. In addition, the median location error and
median peak current estimation error for triggered lightning were found to be 215 m and
15%, respectively. Compared with the previous processor (P2014), the most noticeable
improvement of P2015 was the stroke CA, which increased by 23% for natural lightning
and 42% for rocket-triggered lightning.

In December 2021, the ENLTN launched a new processor (P2021). The changes made
in the new processor and its performance characteristics are discussed in this paper, which
is organized as follows. In Section 2, we first show the performance characteristics of the
P2021 evaluated using the same natural and rocket-triggered lightning datasets as we used
for the performance evaluation of the older processor (P2015). The upgrades made in
P2021 that led to different performance characteristics, including a new machine-learning
classification algorithm, implementation of a new propagation model, and regional data
processing architecture, are discussed in Section 3. We also showcase the performance
characteristics of the new processor through some case studies in Section 4.

2. Performance Characteristics of P2021 Evaluated in Florida

The overall performance characteristics of P2021 evaluated in the North Central Florida
region are shown in this section. The ground-truth datasets and methodology used for
performance evaluation in this study are the same as those used in the evaluation study of
P2015 [4]. Because the raw waveforms from ENTLN sensors are always archived, we gen-
erated the P2021 ENTLN evaluation dataset by running the same waveforms through the
new processor, as if P2021 was operational when the ground-truth datasets were collected.

2.1. Ground-Truth Datasets

The ground-truth datasets contain two parts: natural CG lightning and rocket-triggered
lightning, both recorded in North Central Florida. The datasets are summarized in Table 1.
All the natural CG lightning flashes in the ground-truth dataset were simultaneously
recorded by electric field change meters and high-speed video cameras at the Lightning
Observatory in Gainesville (LOG) in 2014 and 2015. For return strokes in natural lightning,
their time of occurrence and polarity were determined by the electric field measurements.
All return strokes were confirmed with cloud-to-ground channels in video recordings.
However, their ground-truth locations and peak currents are unknown. The natural light-
ning dataset can be used to evaluate the detection efficiency and classification accuracy of
the ENTLN.

The rocket-triggered lightning dataset was acquired at Camp Blanding, Florida in the
summers of 2014 and 2015. With the channel-base current measurements and the known
location of the ground termination (the rocket launcher) for rocket-triggered lightning, peak
current estimation error and location error can be additionally evaluated. The first strokes
seen in natural lightning are absent in rocket-triggered lightning. Instead, rocket-triggered
lightning begins with an initial stage that is composed of an upward positive leader and
initial continuous current. Both the initial stage (in rocket-triggered lightning) and first
strokes (in natural lightning) provide the conditioned channel for the development of the
following subsequent strokes. Therefore, all return strokes in rocket-triggered lightning
are similar to subsequent return strokes in natural lightning [9,10]. The performance of the
ENTLN evaluated using rocket-triggered lightning as ground-truth data is only applicable
to negative subsequent strokes in natural lightning.

Table 1. Summary of ground-truth datasets used for the ENTLN performance evaluation.

Natural Lightning Rocket-Triggered Lightning

Number of flashes 219 36
Number of strokes 608 175
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2.2. Methodology

The criteria for searching for the ENTLN pulse that corresponds to a stroke in the
ground-truth dataset is described in the P2015 evaluation study [4]. For every return stroke
in the ground-truth datasets, we identified all the ENTLN-reported pulses (if any) in a
2 ms time window (±1 ms relative to the GPS time of the ground truth return stroke) and
within 40 km of the LOG (or Camp Blanding for rocket-triggered lightning). A stroke is
considered as a missed event if no ENTLN pulses were found meeting the criteria. If the
detected ENTLN pulse was reported as a CG, we regard it as a correctly classified event.
Otherwise, it is considered as misclassified. For rare cases of multiple pulses reported by
the ENTLN in the search window, we used the pulse that was temporally closest to that of
the ground-truth stroke.

2.3. Performance Characteristics

The performance characteristics of P2021 evaluated using the natural and rocket-
triggered lightning datasets are summarized in Tables 2 and 3, respectively. The perfor-
mance characteristics of the old processor (P2015), which were evaluated using the same
ground-truth datasets, are also given in these tables for comparison. Compared to P2015,
both the flash and stroke detection efficiencies of P2021 are similarly good. The stroke
classification accuracy increased from 91% to 94% for natural lightning and from 86% to
88% for rocket-triggered lightning. The location accuracy improved significantly, with the
median location error decreasing from 215 m to 92 m. The median peak current estimation
error slightly improved from 15% to 13%. The locations of ENTLN pulses corresponding
to return strokes in rocket-triggered lightning that are detected by P2015 and P2021 are
shown in Figure 1.

Table 2. Summary of performance characteristics of P2015 and P2021 evaluated using natural lightning.

Processor Old (P2015) New (P2021)

Number of flashes 219 219
Number of strokes 608 608

Flash DE 99% 98%
Flash CA 97% 98%
Stroke DE 96% 97%
Stroke CA 91% 94%

Table 3. Summary of performance characteristics of P2015 and P2021 evaluated using rocket-
triggered lightning.

Processor Old (P2015) New (P2021)

Number of flashes 36 36
Number of strokes 175 175

Number of detected flashes 36 36
Number of correctly classified flashes 35 34

Number of detected strokes 169 170
Number of correctly classified strokes 145 150

Flash DE 100% 100%
Flash CA 97% 94%
Stroke DE 97% 97%
Stroke CA 86% 88%

Median absolute current estimation error 15% 13%
Median location error (m) 215 92
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Figure 1. Locations of ENTLN pulses corresponding to return strokes in rocket-triggered lightning
that are reported by P2015 (left) and P2021 (right). The ground-truth location (the position of the
rocket launcher) is at the origin.

3. Upgrades
3.1. Location

Figure 1 and Table 3 show that the median location error of P2021 is less than half that of
P2015. The improvement in location accuracy comes from (1) the correction of arrival time
delays due to propagation effects, and (2) locating lightning in oblate spheroidal coordinates.

It is known that electromagnetic waves produced by lightning propagate over ground
with finite conductivity are distorted. The lossy ground acts as a low-pass filter and the
higher frequency component of the electromagnetic waves attenuates more. As a result, a
lightning-produced field pulse has a longer rise time (become less sharp) after propagating
a longer distance over finitely conducting ground, e.g., [11,12]. For a lightning locating
system that uses the peak-finding and time-of-arrival techniques, the elongation of the rise
time of field pulses causes delayed arrival times at sensors, which contributes to location
errors, e.g., [13]. An empirical arrival time correction has been implemented in P2021 using
the rocket-triggered lightning data. To do this, the delayed arrival time of the signal from a
triggered return-stroke was modeled as

tarrival = tRS + D/c + κD (1)

where the return-stroke time, tRS, and the distance from lightning to ENTLN sensors, D,
are both precisely known for triggered lightning. The correction factor, κ is then found
by comparing the measured (tarrival) and expected (tRS + D/c) sferic arrival times at all
detected ENTLN sensors.

In P2015, the lightning location was implemented in Cartesian coordinates, in which
electromagnetic waves follow line-of-sight propagation. This is a reasonably good ap-
proximation when lightning is within a few hundred kilometers of a sensor. In truth,
the low-frequency ground waves propagate along the earth’s curvature because the long
wavelengths allow them to be diffracted around obstacles. The influence of the curved
path becomes more obvious as the distance between lightning and a sensor becomes larger.
In P2021, the lightning location is directly implemented in oblate spheroidal coordinates, in
which the distance between two points was treated as a curved path instead of a straight
line. This change also contributes to the improved location accuracy for P2021, and such
improvement is more noticeable for regions with sparse ENTLN sensors.



Remote Sens. 2022, 14, 2209 5 of 11

3.2. Classification

The classification algorithm for P2021 is completely different from that of P2015. In
the algorithm of P2015, lightning classification was done using a decision tree based on
a number of different waveform parameters (e.g., risetime, half peak width). While the
classification accuracy of P2015 validated in Florida is reasonably good, sharp artifacts
occurred when the parameter crossed from one side of the decision boundary to the other.
This effect is particularly noticeable in peak current, and can be seen in the IC/CG peak
current distributions shown in Figure 2a. For example, there are no pulses with peak
current amplitude greater than 30 kA identified as ICs by P2015. In addition, there are no
pulses with peak currents less than 15 kA identified as +CGs by P2015.

The new algorithm classifies lightning based on similar waveform parameters, but
instead of a decision tree, P2021 uses a machine-learning algorithm based on a modified
logistic regression. Logistic regression is an easily interpretable classification technique that
predicts a binary classification and also probability for the classification. This method was
chosen because it is not susceptible to the abrupt classification artifacts of the decision tree.
It provides a confidence of the resulting classification, and the internals of the algorithm are
transparent enough that is possible to ensure classification continues to behave properly in
all edge cases. The details regarding developing this algorithm will be a subject of a future
study, and only its validation will be covered here. To train the classification algorithm, a
vastly expanded ground-truth dataset was laboriously compiled by manually classifying
waveforms. While the new algorithm has a slightly improved stroke classification accuracy
compared to that of P2015 (see Tables 2 and 3), more importantly, the artifacts of the P2015
algorithm have been completely removed. As a result, the peak current distributions
(Figure 2b) of P2021 are much more realistic compared to those reported in the literature,
e.g., [14,15]. In addition, the new classification algorithm provides a probabilistic certainty
that the classification is correct, which is a valuable metric for prediction uncertainty.

An example of the improvements provided by the new classification algorithm can be
seen in how it performs on compact intracloud discharges (CIDs, also known as narrow
bipolar events (NBEs)). It is a known issue that powerful CIDs are highly likely to be
misclassified by lightning locating systems. For 1022 CIDs reported by Leal et al. [16], the
misclassification rates were 78% and 56% for the National Lightning Detection Network
(NLDN) and the ENTLN, respectively. They also found the percentage of misclassified
CIDs becomes even higher for higher intensity events. To test if the new classification
algorithm of P2021 has resolved this issue, we manually identified 1000 CIDs for each
polarity based on the distinctive features of their waveforms. We found that only 5% out of
a total of 2000 CIDs were misclassified by the P2021 as CGs.

Figure 2. IC/CG peak current distributions for pulses (detected between 3 December 2021 and
14 April 2022) that are classified by the (a) old (P2015) and (b) new (P2021) processors.

3.3. Detection

Several upgrades were made in the P2021 to improve the number of flashes/pulses
detected. As shown in Table 4, the P2021 outperforms the P2015 in detection in all regions.
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Note the detection gains shown here are gains for only ENTLN-detected pulses and con-
tributions from the World Wide Lightning Location Network (WWLLN) were excluded
in the comparison. The detection gains in some regions are better than others with Africa
experiencing the largest gains and Australia the smallest. The gains in detection for the
world are shown in Figure 3. The overall trend is that P2021 sees modest detection gains in
regions of the world with a fairly dense network of sensors (e.g., the Contiguous United
States and Australia). The detection gains are significantly larger in regions where sensor
density is much lower, such as off the coasts. For even more remote regions of the world,
Earth Networks leverages its partnership with the WWLLN to supplement the data. These
contributions are particularly important in regions where it is impossible to deploy sensors,
such as the Pacific Ocean.

Table 4. Detection gains of P2021 compared to P2015 in different regions (calculated using lightning
pulses detected between 3 December 2021 and 14 April 2022).

Region Pulse Detection Gain

Africa 163%
Asia 142%

Australia 131%
Europe 152%

N. America 145%
S. America 151%

World 149%

Figure 3. Comparison of the total number of ENTLN pulses detected by P2021 and P2015 between
December 3rd, 2021 and April 14th, 2022. Pixels with less than 1000 events detected by P2015 and
P2021 are not shown. Note the detection gains shown here are gains for only ENTLN-detected pulses
and contributions from the World Wide Lightning Location Network (WWLLN) were excluded in
the comparison.

The first major change made in P2021 that led to the improved detection was imple-
menting the regional processing architecture. In P2021, the world was split into a number
of regions. Each region has the waveform data from all sensors all over the world to be
used as inputs but only looks for lightning within the bounds of the region. A grid-based
location approach is implemented in an iterative manner for every second of data arriving
at the processor. First, the region is split into relatively large cells, and each one of those
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cells searches for lightning within its bounds through an approximate (and thus quick) TOA
location calculation. If a cell contains lightning, that cell is split up into smaller cells, and
each smaller cell performs the same search again with stricter constraints. This continues for
a set number of iterations until initial lightning location guesses in the region are accurate
enough and achieve an appropriate spatial resolution for the TOA optimizer. A better
initial guess reduces the likelihood that the optimizer fails to converge to a solution.

The improved calculation of the ground wave propagation path (discussed in
Section 3.1) also contributes to the improved detections, especially when detecting lightning
that is distant from the network. Improving the distance calculation results in improved
agreements in the arrival times of the electric field waveform peaks for the sensors in-
volved in the location, thereby reducing the chance that real lightning gets rejected due to
inadequate quality criteria.

Regional processing also allows each region to have its own processing configuration,
which provides the ENTLN the flexibility to have customized parameters in the processing
algorithms for each different region. First, the P2021 implemented a sophisticated proba-
bilistic model involving a set of quality metrics to calculate the confidence of a solution,
which better discerns if a solution is real lightning or noise. This probabilistic model is
trained for each region individually and allows for maximal performance for each set
of unique parameters (e.g., sensor density and environmental factors). Furthermore, the
threshold criteria for deciding between real and false detections is also regional dependent.
This threshold directly relates to the balance between detection efficiency and false alarm
rate. For example, for a region with high sensor density, where the detection efficiency is
high, stricter source/noise discrimination criteria by raising the threshold for confidence
score of a solution are used in the configuration to achieve a very low false alarm rate
(by reducing noise contamination in solutions). For a region where sensor density is low,
the configuration will be set to achieve higher detection efficiency while allowing slightly
higher false alarm rate. This regional processing also allows future possibilities for differ-
ent regions covered by the ENTLN to have different IC/CG classifiers trained with local
lightning data and also finer propagation correction models that better fit the local terrain
and ground conductivity.

4. Case Studies

In the following section, we present some case studies to compare the performance
of P2015 versus P2021. We present two case studies, the first in Africa and the other in
Hawaii. Both are regions of moderate-to-low sensor density and experience the most
dramatic performance gains. In these regions, P2015 relied heavily on the WWLLN to
provide lightning locations, with the WWLLN frequently outperforming the ENTLN at
very long ranges from the network.

Lightning pulses located by the ENTLN and WWLLN using P2015 and P2021 in the
African region near South Sudan are shown in Figure 4. The overall counts (i.e., ENTLN
+ WWLLN) are similar for both P2021 and P2015. However, the ENTLN detections of
P2021 are more than eight times higher than that of P2015 (see counts in Figure 4). Note
that the WWLLN counts for P2021 are much lower than that for P2015. This is due to the
ENTLN detecting more of the same pulses that WWLLN detects, and doing so with better
location accuracy. Therefore, the WWLLN pulses are rejected so as not to duplicate data
for P2021. This improved location accuracy is illustrated in the data since the lightning
locations reported by P2021 (ENTLN: purple circles, WWLLN: red circles) are substantially
less scattered than those reported by P2015 (ENTLN: grey circles, WWLLN: green circles).
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Figure 4. Locations of lightning in South Sudan for one case study. (a) ENTLN (black circles) and
WWLLN (green circles) locations from P2015; (b) ENTLN (purple circles) and WWLLN (red circles)
locations from P2021.

Another good example of remote performance gains is near Hawaii (Figure 5), where
there are no landmasses for thousands of kilometers to deploy sensors. The ENTLN sensor
network here is small and compact, resulting in subpar sensor geometry. Even in these
challenging cases, we see massive performance gains (see counts in Figure 5) of the new
processor when compared to the old one, similar to what is observed in the African case
study described above.

The new processor is also better at incorporating the WWLLN solutions into the final
lightning product and eliminating WWLLN pulses that may have been located with large
errors. This can be seen in both case studies as a dramatic reduction in the scatter of
WWLLN points around storms (compare green circles with red circles).
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Figure 5. Locations of lightning in Hawaii for one case study. (a) ENTLN (black circles) and WWLLN
(green circles) locations from P2015; (b) ENTLN (purple circles) and WWLLN (red circles) locations
from P2021.

5. Summary

The upgraded processor of the ENTLN was deployed in December 2021. The per-
formance characteristics of the new processor (P2021) were evaluated using the same
ground-truth natural and rocket-triggered data acquired in Florida that was used in an ear-
lier P2015 evaluation study [4]. The detection efficiencies of P2021 and P2015 are similarly
good with the stroke detection efficiency being 97%. The stroke classification accuracies
of P2021 are 94% and 88% for natural and rocket-triggered lightning, respectively, which
shows slight improvement over P2015 (see Tables 2 and 3). The location accuracy of P2021
(92 m) improved significantly compared with that of P2015 (215 m). The improved location
accuracy is due to the new propagation model, which corrects the delays in arrival time
due to propagation effects, as well as improves the distance calculation of the ground wave
propagation path.

The classification algorithm in P2015, which was based on a decision tree, was re-
placed by a machine-learning classification algorithm in P2021. The artifacts in the P2015
classification distribution, which were due to sharp decision boundaries set for certain
input parameters, have been removed in the new algorithm’s distribution. The IC/CG
peak current distributions for P2021 (see Figure 2b) more accurately represent what has
been reported in the literature.
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The number of ENTLN pulses reported by P2021 all over the world is about 50%
higher than that of P2015. The detection gains are modest in regions of the world with a
fairly dense network of sensors, while the gains increase significantly in regions where
sensor density is lower. The new regional processing architecture, new propagation model,
and a sophisticated probabilistic source/noise discrimination model of P2021 contribute to
these detection gains.
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