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Abstract: The construction of diverse dictionaries for sparse representation of hyperspectral image
(HSI) classification has been a hot topic over the past few years. However, compared with convo-
lutional neural network (CNN) models, dictionary-based models cannot extract deeper spectral
information, which will reduce their performance for HSI classification. Moreover, dictionary-based
methods have low discriminative capability, which leads to less accurate classification. To solve the
above problems, we propose a deep learning-based structure dictionary for HSI classification in this
paper. The core ideas are threefold, as follows: (1) To extract the abundant spectral information, we
incorporate deep residual neural networks in dictionary learning and represent input signals in the
deep feature domain. (2) To enhance the discriminative ability of the proposed model, we optimize
the structure of the dictionary and design sharing constraint in terms of sub-dictionaries. Thus, the
general and specific feature of HSI samples can be learned separately. (3) To further enhance classifi-
cation performance, we design two kinds of loss functions, including coding loss and discriminating
loss. The coding loss is used to realize the group sparsity of code coefficients, in which within-class
spectral samples can be represented intensively and effectively. The Fisher discriminating loss is
used to enforce the sparse representation coefficients with large between-class scatter. Extensive tests
performed on hyperspectral dataset with bright prospects prove the developed method to be effective
and outperform other existing methods.

Keywords: classification of hyperspectral images; convolutional neural networks; structure dictionary;
discriminative ability

1. Introduction

Hyperspectral images (HSI) show specific spectral data through sampling from hun-
dreds of contiguous narrow spectral bands [1]. HSI with significantly improved dimen-
sionality of the data can show discriminative spectral information in each pixel, whereas it
reveals that it is highly challenging to perform accurate analysis for various land covers in
remote sensing [2–4], which is the curse of intrinsic or extrinsic spectral variability. HSI
feature learning [5–8] aiming to extract invariable characteristics has become a crucial
step in HSI analysis and has been widely used in different applications (e.g., classification,
target detection, and image fusion). Therefore, the focus of our framework is extracting an
effective spectral feature for HSI classification.

Generally, the existing HSI feature extraction (FE) can be classified into linear and
nonlinear methods. The common linear FE models are band-clustering and merging-based
approaches [9,10], which split the high-correlation spectral bands into several groups to
acquire typical band or feature of a range of groups. In general, the above techniques have
low computation cost and can be extensively used in real applications. Kumar et al. [9]
calculated a band clustering approach based on discriminative bases by taking into account
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overall classes in the meantime. Rashwan et al. [10] used the Pearson correlation coefficient
of adjacent bands to complete band splitting.

The other linear FE models are projection models that are developed for linearly pro-
jecting or transforming the spectral information into feature space with lower dimensions.
Principal component analysis (PCA) [11] projects the samples on the eigenvectors of the
covariance matrix to capture the maximum variance, which has been widely used for
hyperspectral investigation [12]. Green et al. [13] proposed a maximum noise fraction
(MNF) model that completed projection under the maximum signal-to-noise ratio (SNR).
Despite the low complexity of the linear model, they face low representation capability and
fails to process inherently nonlinear hyperspectral data.

A nonlinear model handles hyperspectral data with a nonlinear transformation. It is
likely that such nonlinear features perform better than linear features due to the presence
of nonlinear class boundaries. One of the widely used nonlinear models is the kernel-based
method, which focuses on mapping the data into a higher-dimensional space to achieve
better separability. The kernel versions of the abovementioned algorithms, i.e., kernel PCA
(KPCA) [14] and kernel ICA (KICA) [15], were proposed and used for HSI classification [16]
and change detection [17]. The support vector machine (SVM) [18] is a representative
kernel-based approach and has shown effective performance in HSI classification [19].
Bruzzone et al. [20] proposed a hierarchical SVM to capture features in a semi-supervised
manner. Recently, a spectral-spatial SVM-based multi-layer learning algorithm was de-
signed for HSI classification [21]. However, the above methods usually have no theoretical
foundation to select kernels and may not produce satisfying results in practical applications.

Deep learning is another nonlinear model with great potential for learning features [22].
Chen et al. designed complex frameworks [23,24], including PCA, deep learning architec-
ture, and logistic regression, and used it to verify the eligibility of a stacked auto-encoder
(SAE) and a deep belief network (DBN) for HSI classification. Recurrent neural networks
(RNNs) [25,26] processed the whole spectral bands as a sequence and used a flexible net-
work configuration for classifying HSIs. Rasti et al. [27] provided a technical overview
of the existing techniques for HSI classification, in particular model for deep learning.
Although deep learning models present powerful information extraction ability, discrimi-
native ability needs to be improved by rational design of loss functions.

Dictionary-based methods have emerged in recent years for HSI feature learning.
To extract features effectively, those methods represent high-dimensional spectral data as
a complex combination of dictionary atoms, with a low reconstruction error and a high
sparsity level in the abundance matrix. Sparse representation-based classification (SRC) [28]
constructed an unsupervised dictionary that was used for HSI classification in [29], and
it acts as one vanguard to open the prologue of classification with the help of dictionary
coding. SRC operates impressively in face recognition and is robust to different noise [28];
moreover, redundant atoms and disorder structure making is unsuitable for intricate HSI
classification [29,30]. Yang et al. [31] constructed a class-specific dictionary to overcome
the shortcomings of SRC, but it does not consider the discriminative ability between dif-
ferent coefficients, resulting in low classification accuracy. Yang et al. [32] proposed a
complicated model called Fisher discriminant dictionary learning (FDDL), which used the
Fisher criterion to learn a structured dictionary, but this model is time consuming and the
reconstructive ability needs to be improved. Gu et al. [33] designed an efficient dictionary
pair learning (DPL) model that replaces the sparsity constraint with a block-diagonal con-
straint to reduces the computational cost but the linear projection of the analysis dictionary
restricts the classification performance. Akhtar et al. [34] used the Bayesian framework for
learning discriminative dictionaries for hyper-spectral classification. Tu et al. combined
a discriminative sub-dictionary with a multi-scale super-pixel strategy and achieved a
significant improvement in classification [35]. Dictionary-based methods are promising to
represent HSI features. However, the above dictionaries encounter difficulty with extracting
deeper spectral information and suffer from poor discriminative ability.
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The latest works [36,37] tried to incorporate the deep learning module into a dictionary
algorithm and achieve impressive results for target detection. Nevertheless, the code
coefficients of the above models require more powerful constraints, and the combination
form needs to be improved. To address the aforementioned issues, in this paper, we propose
a deep learning-based structure dictionary model for HSI classification. The main novelties
of this paper are threefold, as follows:

(1) We devise an effective feature learning framework that adopts convolutional neural
networks (CNNs) to capture abundant spectral information and construct a structure
dictionary to predict HSI samples.

(2) We design a novel shared constraint in terms of the sub-dictionaries. In this way,
the common and specific feature of HSI samples will be learned separately to represent
features in a more discriminative manner.

(3) We carefully design two kinds of loss functions,, i.e., coding loss and discriminating
loss, for code coefficients to enhance the classification performance.

(4) Extensive experiments conducted on several hyperspectral datasets demonstrate
the superiority of proposed method in terms of the performance and efficiency in
comparison with the state-of-the-art techniques.

The rest of the paper is organized as follows. Section 2 presents a short description for
the experimental datasets which are widely used in HSI classification applications at first.
Afterwards, the proposed methods are detailed as illustrated subsequently. Furthermore,
Sections 3 and 4 present the experimental results and the corresponding discussions to
better demonstrate the effectiveness of the proposed method. Finally, conclusions are
drawn in Section 5.

2. Materials and Methodology

In this section, we first introduce the experimental datasets and then elaborate the
framework for our deep learning-based structure dictionary method.

2.1. Experimental Datasets

Despite the research progress in designing robust algorithms in HSI classification ap-
plications, some researchers devoted themselves to constructing publicly available datasets,
which could provide the community with fair comparisons across different algorithms.
In this subsection, we give a brief review in terms of the band range, image resolution, and
classes of interests for four popular datasets, which are also employed in this article for
further compare our method with the other existing methods.

Center of Pavia [38]: This dataset is acquired by the reflective optics system imaging
spectrometer (ROSIS) with 115 spectral bands ranging from 0.43 to 0.86 µm over the urban
area in Pavia. It should be mentioned that the noisy and water absorption bands are dis-
carded by the authors in [38] and finally obtaining HSIs with dimension of 1096× 492× 102
and nine land cover classes.

Botswana [39]: This dataset was captured by the NASA earth observing one (EO-1)
with 145 bands ranging from 0.4 to 2.5 µm over the Okavango Delta, Botswana. The dataset
contains 1476× 256 pixels and 14 classes of interests.

Houston 2013 [40]: This dataset was collected by the compact airborne spectrographic
imager (CASI) with 144 bands ranging from 0.38 to 1.05 µm over the campus of the Uni-
versity of Houston and the neighboring urban area. The dataset contains 349× 1905 pixels
and 15 classes of interest.

Houston 2018 [41]: This dataset was acquired by the same CASI sensor with 48 bands
sampling the wavelength of between 0.38 and 1.05 µm over the same region as the Houston
2013. Houston 2018 contains 601× 2384 pixels and 20 classes of interest.

2.2. Methodology

Dictionary learning aims to learn a set of atoms, called visual words in the computer
vision community, in which a few atoms can be linearly combined to approximate a given
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sample well [42]. However, the role of sparse coding in classification is still an open problem
and the code coefficients of the recently models require more powerful constraints, and the
combination form needs to be improved. Therefore, we propose a deep learning-based
structure dictionary model in this paper.

Figure 1 presents the pipeline of the developed framework, with a CNN constructed
to encode the spectral information, as well as a structured dictionary established to classify
HSIs. Spectral data are first encoded by the CNN model, in which residual networks are
used to optimize the main networks. We can acquire the group sparse code using the full
connection layer. Meanwhile, two loss functions, i.e., coding loss and Fisher discriminating
loss, are calculated to optimize code coefficients. More importantly, a discriminative
dictionary is constructed by reconstruction loss to enhance the discriminative ability of the
developed model.

Figure 1. Workflow of the proposed feature extraction model.

2.2.1. Residual Networks Encoder

Compared with the common dictionary-based models using sparse constraints, the
group sparsity models have more intensive and effective code coefficients, i.e., the coeffi-
cient values converge to the diagonal of the matrix [33] and achieve more effective results
in classification applications. Therefore, we replace the sparsity constraint with a group
sparsity constraint for the dictionary model and construct an encoder to acquire the group
sparsity effect.

Suppose Γ = [Γ1, . . . , Γi, . . . , ΓC] ∈ R((NA ·C)×N) is coding coefficients of discriminative
dictionary D = [D1, . . . , Di, . . . , DC] ∈ RL×(NA ·C) for spectral samples X = [X1, . . . , Xi, . . . ,
XC] ∈ RL×N . We want to construct an encoder P = [P1, . . . , Pj, . . . , PC] ∈ R((NA ·C)×N),
and apply Pj, to project the spectral samples Xi into to a nearly null space, i.e.,

Γij = PjXi ≈ 0, ∀j 6= i. (1)

Considering the poor performance of linear projection, a CNN encoder is designed
to complete the transformation. Thus, the performance for dictionary learning will be
enhanced greatly. He et al. [43] suggested that deeper networks encounter difficulties in
the following degradation problem: as the network depth increases, accuracy becomes
saturated and then degrades rapidly. Therefore, residual networks are used to address
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the degradation problem and increase the convergence rate. As depicted in Figure 2,
the building block of residual networks (Figure 2a) contains two convolutional layers
(Conv), two batch normalization layers (BN), and two leaky ReLU layers. The output
X(k+1)

i of residual networks is calculated as follows:

X(k+1)
i = X(k)

i +F
(

X(k)
i

)
. (2)

We explicitly let the stacked nonlinear layers fit the residual function F
(

X(k)
i

)
and

original mapping is recast into X(k)
i + F

(
X(k)

i

)
. The formulation of Equation (2) can be

realized by feedforward neural networks with “shortcut connections” (Figure 2a). Shortcut
connections [43,44] are those skipping one or more layers. The entire network can still be
trained end-to-end by stochastic gradient descent (SGD) with backpropagation.

Based on the above block of residual networks, we construct a 15-layer encoder (in
terms of convolutional layers) as presented in Figure 2b. We first employ a 1× 5 convo-
lutional layer to capture large receptive field [45] and max pooling is used to select the
remarkable values. Then, we design 7 pieces of residual block, in which a 1× 3 convolu-
tional layer is used to acquire effective receptive field. More importantly, feature maps
corresponding to various convolutional kernel increase from 16 to 128 to acquire abun-
dant spectral information. Finally, we adopt an average pooling to compress the spectral
information and employ a fully connected (FC) layer to connect the coding coefficients.
The output number of FC depends on the product of spectral band and sub-dictionary
atom numbers. For backpropagation, we use SGD with a batch size of 8. The learning rate
starts from 0.1 and epoch number is 500.

Figure 2. Network architectures for our encoder: (a) a block of residual networks, (b) main structure
of CNNs.

We apply the encoder P to extract spectral information from HSI and enforce the code
coefficients Γ to be group sparsity. To enhance the discriminative ability of our model, we
build a structured dictionary, where each sub-dictionary can be directly used to represent
the specific-class samples, i.e., the dictionaries are interpretable. The structure dictionary
can be calculated as follows:

{Γ, D} = arg min
D,Γ

C

∑
i=1
‖Xi − DiΓi‖2

F +
C

∑
j=1,j 6=i

∥∥Γij
∥∥2

F. (3)
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The first term of Equation (3) is the reconstruction loss which is used to construct
the structure dictionary. Each sub-dictionary Di is established and learned from ith class
samples. The second term ∑C

i=1 ∑C
j=1,j 6=i λ‖Γij‖2

F for Equation (3) is the coding loss. How-
ever, the structure of existing dictionary needs optimization to learn common and specific
features of HSI samples. As depicted in Figure 3, the test samples contain the common
characteristics, i.e., the features they shared. To solve this problem, we design the shared
constraint for sub-dictionaries. Our shared constraint (the com sub-dictionary) is built to
describe duplicated information (common characteristics in Figure 3). Then, the discrimi-
native characteristics will be “amplified” relative to the original characteristics.

Figure 3. Overview of the built dictionary of the developed model. Shared constraints are used to
describe the common features of all classes of HSI samples.

2.2.2. Dictionary Learning

Here, we design a sub-dictionary Dcom to calculate the class-shared characters as follows:

D = {D1, D2, . . . , DC, Dcom}, (4)

where Dcom denotes the shared (common) sub-dictionary. Each sub-dictionary (both spe-
cific and common ones) Di ∈ RL×NA contains NA atoms, and each atom is L× 1 column
vector.The matrix of specific and common sub-dictionaries is randomly initialized, and cor-
responding atoms are constantly updated according to the objective function. The corre-
sponding objective function is modified as follows:

{Γ, D} = arg min
D,Γ

C

∑
i=1
‖Xi − DiΓi − DcomΓcom‖2

F +
C

∑
j=1,j 6=i

∥∥Γij
∥∥2

F, (5)

where Γcom is the coding coefficient for common sub-dictionary. With the calculation of
term DcomΓcom, the results of term ∑C

i=1 ∑C
j=1,j 6=i

∥∥Γij
∥∥2

F tend to be closer to zero, and the
corresponding reconstructive ability of the structured dictionary will be improved. Mean-
while, the coding loss and discriminating loss will facilitate the construction of shared
(common) sub-dictionaries.

In our framework, the dictionary is calculated by the single convolutional layer,
and the convolutional weights serve as dictionary coefficients. Therefore, the dictionary is
updated by the back-propagation (BP) algorithm. We design additional channels for shared
(common) sub-dictionaries that will also be updated during BP processing. The main
difference from the CNN model (end-to-end) is that we design a dictionary module, which
contains various sub-dictionaries, to optimize the discriminative ability. Moreover, we
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design coding and discriminating loss for the middle variable (code coefficients Γ), which
is a very different algorithm structure.

2.2.3. Loss Functions

To enhance the discriminative ability of the developed model, we design two kinds of
loss functions for the proposed model. First, we design the coding loss ∑C

i=1 ∑C
j=1,j 6=i

∥∥Γij
∥∥2

F
to realize a fast and effective spectral data encoding.

Then, Fisher discriminative loss (tr(SW(Γ))− tr(SB(Γ))) is designed to enhance the
discriminative ability of our model. Meanwhile, a reconstruction loss ∑C

i=1 ||Xi − DiΓi −
DcomΓcom||2F is also used to build the structure dictionary. Overall, we apply three loss
functions to optimize the classification performance.

Two kinds of discriminative loss functions can be implemented by programming.
One is Fisher discriminative loss (tr(SW(Γ))− tr(SB(Γ))) and the other is cross-entropy
loss so f tmax(Γ). Both loss functions have been implemented in the program, and we will
provide two versions of the final program for researchers. In this paper, all of the results are
calculated with cross-entropy loss. Figure 4 shows the variation trend of three loss function
values and classification accuracy with increasing epoch. All loss functions are convergent,
and our approach achieves excellent classification accuracy. Therefore, the final objective
function is as follows:

{Γ, D} = arg min
D,Γ

λ1

C

∑
i=1
‖Xi − DiΓi − DcomΓcom‖2

F + λ2

C

∑
j=1,j 6=i

∥∥Γij
∥∥2

F + so f tmax(Γ), (6)

where λ1 = 100 and λ2 = 1 are the scalar constants and they will be discussed in experiments.

Figure 4. The loss function value of training samples and classification accuracy of the developed
model versus the number of epochs.

3. Experimental Results and Analysis

In this section, we quantitatively and qualitatively evaluate the classification perfor-
mance of the proposed model on four public datasets, namely Pavia [38], Botswana [39],
Houston 2013 [40], and Houston 2018 [41]. We compare the performance of the pro-
posed method with other existing algorithms, including SVM [18,21], FDDL [32], DPL [33],
ResNet [33], AE [27], RNN [27], CNN [27], and CRNN [27], for HSI classification. We
report the overall accuracy (OA), average accuracy (AA) and kappa coefficient [46] of
different datasets and present corresponding classification maps. Furthermore, we analyze
the classification performance in detail, following each experimental dataset.
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3.1. Sample Selection

We randomly choose 10% of the labeled samples in the dataset as the training data.
To overcome the imbalance issue, we adopt a weighted sample generation strategy and
make all trained samples per class equal to others as follows:

xnew = αx1 + (1− α)x2, (7)

where xnew is the new sample generated by combining of samples x1 and x2, and α is a
random constant between 0 and 1. Samples x1 and x2 are randomly selected from the same
class of training data. All the methods in comparison are implemented on the balanced
dataset in this strategy.

3.2. Parameter Setting

In the proposed model, two groups of free parameters need to be adjusted: (1) the
number of dictionary atoms and (2) regularization parameters λ1 and λ2. The above
parameter settings are a critical factor to ensure the performance of the model and will
be analyzed.

3.2.1. Number of Dictionary Atoms

We set all the subdictionaries Di ∈ {D1, D2, . . . , DC, Dcom} to have the same number
atoms. The number of atoms is adaptively estimated with Houston 2013 datasets, as de-
picted in Figure 5. The classification OA increases with the number of atoms for each
sub-dictionary (atom number under 8), while the changes in OA are not enormous along
with the variation in atom number beyond 10. We set the number of atoms to 8 for each
dataset to efficiently train the developed model.

Figure 5. The classification OA under different numbers of atoms for each sub-dictionary.

3.2.2. Constraint Coefficients λ1 and λ2

λ1 and λ2 mainly balance reconstruction and coding loss in Equation (6). We test the
proposed model with regularization parameters λ1 and λ2 ranging from 0 to 103, and select
the value of parameter with the highest accuracy. Figure 6 presents the visualized result
on Houston 2013 datasets. The OA values will decrease greatly with the increasing of λ2
(beyond 10). This result demonstrates that our model is sensitive for coding loss. We set
λ1 = 100 and λ2 = 1 for the classification of Houston 2013 dataset.
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Figure 6. The classification OA under different regularization parameters λ1 and λ2.

3.3. Classification Performance Analysis for Different Datasets
3.3.1. Center of Pavia

Table 1 shows the classification results of the compared algorithms. According to the
presented score, our method outperforms other algorithms, especially on Water, Tiles, and
Bare Soil surface regions. Benefiting from the designed deep and sub-dictionary framework,
the proposed method is more outstanding than other dictionary learning-based method
(i.e., FDDL). Compared with other CNN-based models, by involving dictionary structure,
our method shows better deep feature extraction ability and achieves higher OA, AA, and
kappa coefficients with 98.75%, 96.55% and 97.85%, respectively. In addition, Figure 7
presents the confusion matrix of the developed model, which also indicates an effective
discrimination ability for surface regions.

Table 1. Classification Accuracy for Center of Pavia Dataset. The red bold fonts and blue italic fonts
indicate the best and the second best performance.

Class SVM FDDL DPL ResNet AE RNN CNN CRNN Ours

1 0.9866 0.9882 0.9856 0.9845 0.9997 0.9836 0.9966 0.9999 1.0000
2 0.6302 0.2319 0.3743 0.6641 0.9752 0.4118 0.7496 0.9861 0.9662
3 0.9708 0.9851 0.9682 0.9644 0.8884 0.9902 0.9669 0.8994 0.9579
4 0.5055 0.3760 0.2568 0.4877 0.8675 0.4646 0.5256 0.8500 0.8619
5 0.9969 0.9848 0.9729 0.9835 0.9680 0.9924 0.9905 0.9809 0.9785
6 0.6659 0.6944 0.8576 0.7035 0.9597 0.8335 0.9331 0.9696 0.9776
7 0.9163 0.8811 0.9143 0.9363 0.9443 0.9465 0.9503 0.9604 0.9556
8 0.9416 0.9595 0.9711 0.9504 0.9812 0.9794 0.9904 0.9961 0.9925
9 0.9965 0.9643 0.9825 0.9895 0.9980 0.9930 0.9874 0.9980 0.9995

OA 0.9234 0.9057 0.9244 0.9289 0.9828 0.9331 0.9663 0.9864 0.9875
AA 0.8456 0.7850 0.8093 0.8515 0.9535 0.8439 0.8989 0.9600 0.9655

kappa 0.8927 0.8677 0.8937 0.9004 0.9704 0.9060 0.9524 0.9767 0.9785

Figure 8 presents the classification maps acquired by various methods on the Cen-
ter of Pavia data set. Figure 8a,h are the pseudo-color image and ground truth map,
and Figure 8b–g depicts the corresponding classification maps of FDDL, DPL, ResNet,
RNN, CNN, and the proposed model, respectively. It can be seen that our method shows
better visual performance than the dictionary and CNN-based algorithms in both the
smoothness in same material region and sharpness on the edges between different material
one. For better comparison, we highlight river bank and building regions with red and
yellow rectangles in Figure 8. In terms of the classification results in the red rectangle,
all of the methods, except the CNN model and our method, incorrectly classify some
water samples into Bare Soil class. As for the yellow rectangle region, our model achieved
smoothest classification results on Bara Soil class in which CNN method confuses some
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samples into Bitumen class, which leads to a inferior score when comparing with our
proposed algorithm.

Figure 7. The confusion matrix of the developed model on the Center of Pavia dataset.

Figure 8. Classification maps of the Center of Pavia dataset with methods in comparison: (a) pseudo-
color image; (b) FDDL; (c) DPL; (d) ResNet; (e) RNN; (f) CNN; (g) Ours; (h) ground truth. The yellow
and red rectangles correspond to building and water areas.
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3.3.2. Botswana

Table 2 presents the class-specific classification accuracy in terms of the Botswana data
set, where our algorithm achieves the highest classification accuracy in over 50 percent
of the classes (8 out of total 14 classes). In particular, our method performs better than
other comparison methods in classes Reeds, Acacia Woodlands, and Exposed Soils. To be
more specific, for the Reeds class our method is almost 6% higher than the others, and 9%
higher than comparison methods for the Exposed Soils class. In addition, according to
the corresponding confusion matrix in Figure 9, our algorithm outperforms other methods
in terms of OA, AA ,and kappa coefficients with 92.2%, 92.71%, and 91.56%, respectively.
Such performance could further demonstrate the superior discrimination classification
capability for our model.

Table 2. Classification Accuracy for Botswana Dataset. The red bold fonts and blue italic fonts
indicate the best and the second best performance.

Class SVM FDDL DPL ResNet AE RNN CNN CRNN Ours

1 0.9465 0.9712 0.9794 0.9835 0.8934 0.9346 0.9492 0.9529 1.0000
2 1.0000 0.8571 0.9341 0.9890 0.7126 0.9189 0.8333 0.9048 0.9136
3 0.8451 0.7920 0.8496 0.8274 0.9426 0.8366 0.9264 0.9770 0.9701
4 0.8918 0.7887 0.9175 0.8918 0.6111 0.7846 0.9323 0.9479 0.9709
5 0.7037 0.6831 0.7284 0.7572 0.7880 0.7704 0.8219 0.8200 0.8935
6 0.6831 0.6461 0.6379 0.6214 0.6552 0.6250 0.7861 0.7471 0.7222
7 0.9615 0.7479 0.9316 0.9017 0.9462 0.9234 0.9607 0.9735 0.9808
8 0.8852 0.9126 0.9836 0.9781 0.7784 0.8214 0.9005 0.9394 0.9816
9 0.7279 0.7032 0.6784 0.7739 0.7877 0.7651 0.7651 0.8750 0.9405

10 0.7321 0.4777 0.8348 0.8527 0.7919 0.7704 0.8071 0.8768 0.8543
11 0.7418 0.7564 0.8945 0.8836 0.7233 0.8404 0.8517 0.8897 0.9221
12 0.9080 0.8037 0.8834 0.9816 0.7353 0.7746 0.8580 0.7927 0.9379
13 0.5785 0.7810 0.8554 0.7397 0.8522 0.7371 0.8966 0.8899 0.8930
14 0.9070 0.6628 0.7907 0.7907 0.7468 0.7404 0.8901 0.7900 1.0000

OA 0.8017 0.7515 0.8420 0.8444 0.7884 0.8017 0.8676 0.8846 0.9220
AA 0.8223 0.7560 0.8500 0.8552 0.7832 0.8031 0.8699 0.8840 0.9271

kappa 0.7854 0.7311 0.8289 0.8316 0.7706 0.7850 0.8566 0.8751 0.9156

Figure 9. Confusion matrix of the developed model on the Botswana dataset.

Figure 10 shows the classification maps for the Botswana dataset, where Figure 10a,h
are the pseudo-color image and ground truth map, and Figure 10b–g are the corresponding



Remote Sens. 2022, 14, 2266 12 of 20

classification results of FDDL, DPL, ResNet, RNN, CNN, and the proposed model. We mark
the most misplaced regions with yellow and red rectangles for more obvious comparison.
As shown in yellow rectangle region, Acacia Woodlands and Acacia Shrublands are wrongly
classified into Exposed Soils or the Floodplain Grasses 1 class by other methods. As for
the rectangles colored red, other methods almost lose the ability to distinguish between
different land covers, i.e., the CNN method misclassified the Island Interior class into
the Acacia Shrublands class. In contrast, our approach removed noisy scattered points
and led to smoother classification results without blurring the boundaries. The superior
performance could be owing to the effectiveness of the proposed structured dictionary
learning model.

Figure 10. Classification map for the Botswana dataset with methods in comparison: (a) pseudo-color
image; (b) FDDL; (c) DPL; (d) ResNet; (e) RNN; (f) CNN; (g) ours; (h) ground truth. Rectangles
colored as red and yellow represent mountain and grassland areas.
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3.3.3. Houston 2013

The classification results achieved by the methods in comparison on the Houston 2013
dataset are presented in Table 3, and Figure 11 presents the confusion matrix relative to the
developed model. As depicted in Table 3, the classification results is more than 5% higher
than other methods on classes Commercial, Road, Highway and Parking Lot 1, while it
performs competitively with other methods for other classes. Specifically, for Stressed Grass
class, our method only is 0.4% lower than AE method and 0.1% lower than CNN method,
but almost two percent in average higher than the other methods. It is noteworthy that the
developed algorithm outperforms other operators in feature extraction generally for OA,
AA and kappa with 95.39%, 94.99%, and 95.02%, respectively. Furthermore, the confusion
matrix in Figure 11 also reveals that the algorithm here can be effective to distinguish a
surface region.

Table 3. Classification Accuracy for Houston 2013 Dataset. The red bold fonts and blue italic fonts
indicate the best and the second best performance.

Class SVM FDDL DPL ResNet AE RNN CNN CRNN Ours

1 0.8890 0.9076 0.9831 0.9387 0.9166 0.9538 0.9224 0.9659 0.9920
2 0.9353 0.9477 0.9814 0.9752 0.9856 0.9628 0.9824 0.9443 0.9811
3 0.9586 0.9984 0.9825 0.9904 1.0000 0.9857 0.9888 0.9952 0.9892
4 0.8875 0.9446 0.8634 0.9598 0.9480 0.9714 0.9435 0.9962 0.9980
5 0.9284 0.9776 0.9902 0.9723 0.9563 0.9785 0.9663 0.9779 0.9930
6 0.8703 0.9829 0.9693 0.9590 0.9288 0.9249 0.9691 0.9898 0.9846
7 0.6261 0.7881 0.6996 0.7977 0.8341 0.7820 0.8567 0.9389 0.9369
8 0.7250 0.5188 0.6571 0.5634 0.7907 0.4223 0.7945 0.8488 0.9578
9 0.5510 0.6557 0.7329 0.7063 0.7158 0.7045 0.7269 0.8580 0.9152

10 0.6389 0.4244 0.8462 0.7747 0.7982 0.7738 0.7808 0.8489 0.9460
11 0.5117 0.4317 0.5926 0.7752 0.7840 0.8354 0.7889 0.8781 0.9008
12 0.5396 0.5315 0.6595 0.6036 0.7023 0.7450 0.7348 0.8550 0.9422
13 0.2766 0.5414 0.2884 0.6430 0.7911 0.5745 0.4879 0.6250 0.7313
14 0.9689 0.9948 0.9896 0.9896 0.9450 0.9908 0.9721 0.9807 0.9854
15 0.9545 0.9882 0.9848 0.9562 0.9966 0.9781 0.9351 0.9866 0.9943

OA 0.7409 0.7476 0.8103 0.8255 0.8600 0.8280 0.8549 0.9127 0.9539
AA 0.7508 0.7756 0.8147 0.8404 0.8729 0.8381 0.8579 0.9126 0.9499

kappa 0.7199 0.7271 0.7949 0.8114 0.8485 0.8142 0.8431 0.9056 0.9502

Figure 11. Confusion matrix of the developed model on the Houston 2013 dataset.
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Figure 12 depicts the classification map generated by the approaches in comparison
on Houston 2013 dataset. Figure 12a,h shows the pseudo-color image and ground truth
map, and Figure 12b–g shows the corresponding classification results thereof. We label
the misclassified regions which contain buildings and cars with yellow and red rectangles,
respectively. According to the ground truth in yellow regions, there exists a small Parking
Lot 1 class but this is misplaced by most of the methods. Specifically, the classification of
DPL, RNN, and CNN contain many misclassified points which lead to an unsatisfactory
classification effect. For the red one, the other algorithms show significant misclassification
of the Parking Lot 2 class, FDDL, DPL and ResNet are unable to distinguish between Park-
ing Lot 2 and Parking Lot 1 classes. In contrast, as impacted by the robust property within
the spectra’s local variation, our method showed more complete and correct classification
results. Besides that, our method also achieved an effective removal of salt-and-pepper
noise effects from the classification map. Moreover, it maintains the significant objects or
structures. The developed model acquires a classification map with higher accuracy around
and in the parking lot due to the robust property in the spectra’s local variation.

Figure 12. Classification map generated by Houston 2013 dataset with approaches in comparison:
(a) pseudo-color image; (b) FDDL; (c) DPL; (d) ResNet; (e) RNN; (f) CNN; (g) ours; (h) ground truth.
The rectangles with the colors of red and yellow represent the parking lot space and building area.
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3.3.4. Houston 2018

Table 4 and Figure 13 present the classification results and confusion matrix on Hous-
ton 2018 datasets in comparison with other algorithms, respectively. According to the
results, one can see that the classification accuracy decreases for each method when com-
pared to the one in the Houston 2013 dataset. This phenomenon is more obvious for
sidewalk and crosswalk classes, where the highest scores are only 56.11% and 76.33%,
respectively. We believe that the decrease could be attributed to the increase of land cover
types and the reduction of spectral information (only 46 spectral bands). In addition,
our method ranks first in 9 out of 20 total classes of land covers and our method also
outperforms other algorithms at least two points in terms of OA, AA, and kappa indicators.
Furthermore, our model also shows significant discriminative ability between 20 classes
according to the confusion matrix as illustrated in Figure 13.

Table 4. Classification Accuracy for Houston 2018 Dataset. The red bold fonts and blue italic fonts
indicate the best and the second best performance.

Class SVM FDDL DPL ResNet AE RNN CNN CRNN Ours

1 0.9922 0.9295 0.9813 0.9486 0.8319 0.7925 0.6037 0.8157 0.9399
2 0.9371 0.8008 0.9064 0.7504 0.9275 0.9277 0.9305 0.8898 0.9288
3 0.9821 1.0000 1.0000 1.0000 0.9968 0.9951 0.9968 0.9952 0.9984
4 0.9717 0.8972 0.9647 0.9367 0.9028 0.8421 0.8520 0.8738 0.9653
5 0.8774 0.8387 0.8902 0.7701 0.7485 0.5942 0.4048 0.7697 0.8604
6 0.9670 0.8305 0.9784 0.9754 0.9143 0.9493 0.8131 0.9073 0.9847
7 0.9208 0.9958 0.9958 0.9625 0.8885 0.9424 0.8131 0.9795 0.9625
8 0.7535 0.6829 0.7247 0.8043 0.6741 0.7473 0.6975 0.8328 0.8802
9 0.6341 0.4107 0.6423 0.8066 0.9432 0.9380 0.9835 0.9262 0.9277
10 0.4501 0.2693 0.3757 0.4452 0.6765 0.6803 0.6394 0.6583 0.7109
11 0.4591 0.3753 0.4358 0.4852 0.6809 0.6073 0.4301 0.6844 0.6975
12 0.5091 0.4499 0.5611 0.3416 0.2762 0.2680 0.1945 0.2513 0.3738
13 0.4700 0.2544 0.4235 0.4389 0.7362 0.7378 0.6273 0.7633 0.7184
14 0.8117 0.7870 0.8380 0.7528 0.7166 0.7144 0.6478 0.6986 0.8308
15 0.9643 0.7154 0.9387 0.9366 0.9409 0.9223 0.8968 0.9090 0.9819
16 0.8934 0.8179 0.8843 0.8129 0.8468 0.7942 0.7226 0.8878 0.9080
17 0.9621 0.8939 0.9848 0.9924 0.8618 0.9754 0.9034 0.9470 1.0000
18 0.8203 0.6360 0.7125 0.7161 0.5774 0.5450 0.4096 0.6660 0.8003
19 0.8912 0.6545 0.8899 0.6725 0.7739 0.7704 0.3747 0.8632 0.9185
20 0.9531 0.9438 0.9424 0.8110 0.9205 0.8817 0.6037 0.8902 0.9824

OA 0.6646 0.4938 0.6498 0.7193 0.8352 0.8298 0.7433 0.8451 0.8667
AA 0.8110 0.7092 0.8035 0.7679 0.7918 0.7813 0.6773 0.8105 0.8685

kappa 0.5988 0.4277 0.5825 0.6478 0.7874 0.7798 0.6849 0.7979 0.8281

Figure 14 highlights the superiority of the proposed method by means of classification
maps on Houston 2018 dataset. Figure 14a,h shows the pseudo-color image and ground
truth map, and Figure 14b–g shows the corresponding classification results of FDDL, DPL,
ResNet, RNN, CNN, and the proposed model. For better visualization, we marked the
Commercial, Road, Major Thoroughfares, and Stressed grass with yellow and red rectangles.
According to the yellow rectangles, FDDL and DPL classify the Commercial into the Seats
class, and they fail to identify the Road class owing to their poor ability to extract deeper
spectral information. For the region of the red rectangle, RNN and CNN misclassified
small Road into Cars. Moreover, there also exist some noisy points in the Commercial class.
In contrast, our models showed more smooth and complete classification results.
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Figure 13. The confusion matrix of our model on the Houston 2018 dataset.

Figure 14. Classification maps of the Houston 2018 dataset with compared methods: (a) pseudo-color
image; (b) FDDL; (c) DPL; (d) ResNet; (e) RNN; (f) CNN; (g) Ours; (h) ground truth. The yellow and
red rectangles are corresponding to grassland andbuilding areas.
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According to the experimental results above, our approach achieved the highest OA,
AA, and kappa coefficient on four benchmark datasets which were collected by different
sensors with various land covers. Compared with other dictionary-based and CNN-based
models, our model generally achieves smoother and more accurate classification results,
especially for the large area of homogeneous land cover and the irregular small area types.
The aforementioned experiments verified that benefiting from the rationally designed
structure classification layer (dictionary) and loss functions, our model has the capability
to extract the intrinsic invariant spectral feature representation from the HSI and achieves
more effective feature extraction.

4. Discussion

In the last section, we presented the result and analysis of experiments on each dataset.
In this section, we analyze and discuss the key factors, which affect the performance of the
algorithm and need to be considered in practical HSI classification applications.

4.1. Influence of Imbalanced Samples

Chang et al. [47] suggested that imbalanced data will be of great significance to the
HSI classification. To explore the effect arising from imbalanced data on classification
performance, we randomly choose 10% of the labeled sample of each class and performed
an experiment on Houston 2013 dataset with imbalanced data, as listed in Table 5. The im-
balanced data will reduce the classification performance, leading to a decrease of about
3∼4% in classification accuracy. Our model still achieves the best performance when the
training data are imbalanced. The classification results confirm the powerful classification
ability of our model.

Table 5. Classification Results for Imbalanced Data on Houston 2013. The red bold fonts and blue
italic fonts indicate the best and the second best performance.

Class No. AE RNN CNN CRNN Ours

1 0.9449 0.9059 0.9230 0.9654 0.9654
2 0.9610 0.9442 0.9521 0.9731 0.9734
3 0.9777 0.9984 0.9823 0.9952 1.0000
4 0.9893 0.9571 0.9502 0.9595 0.9866
5 0.9776 0.9857 0.9338 0.9879 0.9839
6 0.8805 0.9795 0.9727 0.9861 0.9966
7 0.7539 0.8914 0.7038 0.9203 0.9247
8 0.6223 0.5955 0.7475 0.7830 0.9125
9 0.7232 0.7143 0.6891 0.7823 0.8784

10 0.8389 0.6769 0.7188 0.7935 0.9258
11 0.8156 0.5414 0.7443 0.7694 0.8687
12 0.7622 0.5595 0.6189 0.7658 0.8991
13 0.2931 0.4090 0.5517 0.6459 0.3191
14 0.9508 0.7332 0.8843 0.9343 0.9793
15 0.9832 0.9916 0.9848 0.9609 0.9916

OA 0.8387 0.7892 0.8155 0.9754 0.9213
AA 0.8316 0.7922 0.8238 0.8815 0.9070

kappa 0.8255 0.7720 0.8002 0.8653 0.9148

4.2. Influence of Small Training Samples

To confirm the effectiveness of our framework in practical scenario with the absence of
samples, we reduce the number of training samples into 10, 20, and 30 per class. As listed
in Table 6, we observed that the models generally suffer from unstable classification
performance for different classes. Overall, the proposed model can achieve the best results
in most of the indices with an increase of at least 4% accuracy compared with CNN-based
models. We will obtain a better classification result with the increasing training data which
corresponds with the results.
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Table 6. Classification Results for a Small Number of Training Samples on Houston 2013. The red
bold fonts and blue italic fonts indicate the best and the second best performance.

Class No.
10 Samples per Class 20 Samples per Class 30 Samples per Class

AE RNN CNN CRNN Ours AE RNN CNN CRNN Ours AE RNN CNN CRNN Ours

1 0.33 0.57 0.77 0.82 0.84 0.73 0.92 0.77 0.93 0.96 0.89 0.72 0.86 0.94 0.99
2 0.39 0.46 0.92 0.95 0.96 0.59 0.74 0.81 0.81 0.94 0.87 0.86 0.98 0.84 0.93
3 0.56 0.26 0.52 0.99 0.99 0.93 0.90 0.98 0.94 0.99 0.99 0.84 0.99 0.95 0.99
4 0.75 0.84 0.88 0.96 0.91 0.77 0.85 0.97 0.92 0.86 0.97 0.91 0.97 0.97 0.86
5 0.86 0.74 0.90 0.95 0.96 0.96 0.89 0.97 0.99 0.98 0.96 0.88 0.98 0.98 0.97
6 0.69 0.41 0.92 0.87 0.97 0.83 0.80 0.76 0.75 0.97 0.97 0.96 0.89 0.90 0.98
7 0.49 0.35 0.60 0.81 0.80 0.50 0.52 0.49 0.80 0.75 0.56 0.40 0.71 0.78 0.74
8 0.23 0.24 0.55 0.49 0.66 0.45 0.32 0.41 0.65 0.67 0.66 0.60 0.81 0.75 0.75
9 0.46 0.35 0.41 0.48 0.63 0.61 0.61 0.65 0.68 0.78 0.64 0.53 0.66 0.68 0.76

10 0.18 0.00 0.61 0.57 0.61 0.41 0.26 0.48 0.66 0.85 0.61 0.45 0.71 0.72 0.83
11 0.51 0.30 0.52 0.67 0.69 0.48 0.65 0.53 0.75 0.74 0.62 0.54 0.60 0.75 0.79
12 0.38 0.26 0.31 0.45 0.38 0.19 0.34 0.63 0.64 0.65 0.58 0.50 0.61 0.67 0.80
13 0.15 0.57 0.15 0.26 0.46 0.18 0.12 0.22 0.36 0.52 0.19 0.10 0.43 0.39 0.51
14 0.72 0.89 0.85 0.86 0.93 0.90 0.66 0.95 0.93 0.96 0.83 0.83 0.90 0.85 0.95
15 0.96 0.66 0.96 0.97 0.99 0.96 0.66 0.96 0.95 0.99 0.93 0.92 0.98 0.93 0.99

OA 0.53 0.45 0.63 0.72 0.77 0.62 0.63 0.68 0.79 0.83 0.74 0.64 0.80 0.81 0.85
AA 0.51 0.46 0.66 0.74 0.79 0.63 0.62 0.70 0.78 0.84 0.75 0.67 0.80 0.81 0.86

kappa 0.49 0.41 0.61 0.70 0.75 0.61 0.61 0.66 0.77 0.82 0.72 0.61 0.78 0.79 0.84

4.3. Computational Cost

Another factor that affects the practical application of the HSI classification model is
the efficiency of the algorithm. Therefore, we present the computational time-consuming
for the comparison algorithms.

All the tests here are performed on an Intel Core i7-8700 CPU 3.20 GHz desktop
with 16 GB memory and carried out by employing Python on the Windows 10 operating
system. In Table 7, we can see that the developed model has a slower running speed
than DPL, which applies linear projection to extract spectral features. However, the de-
veloped model achieves faster testing speed than CNN-based models due to its simpler
convolutional structure.

Table 7. Computational Costs for Different Classification Methods (In Seconds).

Class SVM FDDL DPL ResNet AE RNN CNN CRNN Ours

Pavia center 6.8 346.1 3.4 × 10−3 16.1 3.5 67.2 8.7 52.8 3.6
Botswana 1.8 40.2 2.9 × 10−4 0.8 0.3 3.5 0.4 3.5 0.2

Houston 2013 2.1 69.1 4.5 × 10−4 2.5 0.8 13.8 1.6 13.8 0.5
Houston 2018 16.3 3310.8 1.3 × 10−2 79.1 32.2 155.2 51.6 137.7 10.9

5. Conclusions

In this paper, we propose a novel deep learning-based structure dictionary model
to extract spectral features from HSIs. Specifically, a residual network is used with a
dictionary learning framework to strengthen the feature representation for the original data.
Afterwards, sub-dictionaries with shared constraints are introduced to extract the common
feature for samples with different class label. Moreover, three kinds of loss functions are
combined to enhance the discriminative ability for the overall model. Numerous tests were
carried out on HSI datasets, and qualitatively and quantitatively results showed that the
proposed feature learning model requires much less computation time when comparing
with other SVM and CNN-based models, demonstrating its potential and superiority in
HSI classification tasks.
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