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Abstract: To explore rapid anthocyanin (Anth) detection technology based on remote sensing (RS) in
tree peony leaves, we considered 30 species of tree peonies located in Shaanxi Province, China. We
used an SVC HR~1024i portable ground object spectrometer and mini-unmanned aerial vehicle (UAV)-
borne RS systems to obtain hyperspectral (HS) reflectance and images of canopy leaves. First, we
performed principal component analysis (PCA), first-order differential (FD), and continuum removal
(CR) transformations on the original ground-based spectra; commonly used spectral parameters were
implemented to estimate Anth content using multiple stepwise regression (MSR), partial least squares
(PLS), back-propagation neural network (BPNN), and random forest (RF) models. The spectral
transformation highlighted the characteristics of spectral curves and improved the relationship
between spectral reflectance and Anth, and the RF model based on the FD spectrum portrayed the
best estimation accuracy (R2

c = 0.91; R2
v = 0.51). Then, the RGB (red-green-blue) gray vegetation

index (VI) and the texture parameters were constructed using UAV images, and an Anth estimation
model was constructed using UAV parameters. Finally, the UAV image was fused with the ground
spectral data, and a multisource RS model of Anth estimation was constructed, based on PCA + UAV,
FD + UAV, and CR + UAV, using MSR, PLS, BPNN, and RF methods. The RF model based on
FD+UAV portrayed the best modeling and verification effect (R2

c = 0.93; R2
v = 0.76); compared

with the FD-RF model, R2
c increased only slightly, but R2

v increased greatly from 0.51 to 0.76,
indicating improved modeling and testing accuracy. The optimal spectral transformation for the
Anth estimation of tree peony leaves was obtained, and a high-precision Anth multisource RS model
was constructed. Our results can be used for the selection of ground-based HS transformation in
future plant Anth estimation, and as a theoretical basis for plant growth monitoring based on ground
and UAV multisource RS.

Keywords: hyperspectral; tree peony; anthocyanin (Anth); unmanned aerial vehicle (UAV); spectrum
transform; machine learning algorithm; remote sensing (RS); Shaanxi Province; China; ground-
based spectra

1. Introduction

Anthocyanin (Anth) is one of the three main pigments in plants and is responsible for
the color of plant petals and fruits [1]. It is generally found in the cytoplasm of plants and
is not a photosynthetic pigment, but can protect the plant’s photosynthetic system from
excessive light radiation, especially excessive ultraviolet radiation [2,3]. At the same time,
Anth is also a secondary metabolite in plants subjected to environmental and biological
stress (e.g., high temperature, water shortage, high salinity, diseases, insects, and pests),
and its content can be used as an index to indirectly reflect stress levels [4]. Tree peony,
one of the top ten most famous flowers in China, is reputed to be the king of flowers. Its
flowers are ornamental, its roots can be used as medicine, and its seeds can be pressed to
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produce oil; thus, it is a multifunctional plant and has a strong ornamental and economic
value. Remote sensing (RS) estimation of Anth content in leaves can not only monitor the
health status of tree peonies over time, but also indirectly evaluate their ornamental and
economic value [5].

Traditional Anth determination methods are mainly chemical methods, most of which
include the extraction of anthocyanins from organic solvents and absorbance analysis by
spectrophotometry [6,7]. These methods not only have a long detection cycle, but also
involve a complicated process, therefore, have been difficult to popularize in agricultural
production. Due to its characteristic multiple bands and narrow bandwidth, hyperspectral
(HS) technology can capture fine spectral data of plants and provide rapid, non-destructive,
and real-time monitoring of crop growth (e.g., nutrition status, water content, and pest
status) [8–11]. In recent years, scholars have devoted increasing attention to exploring the
effects of different spectral transformations on the estimation accuracy of plants’ physiolog-
ical and biochemical parameters. Shanjun et al. studied the spectral differences of different
potato varieties by using the continuous division method [12]. Fenling et al. constructed a
hyperspectral model to estimate the nitrogen content of wheat, based on spectral absorp-
tion characteristics, determined using the continuum removal method [13]. Zheng et al.
obtained the first-order differential, logarithmic, and second-order differential of bamboo
leaves, and constructed a principal component analysis-back propagation (PCA-BP) esti-
mation model of bamboo leaves’ nitrogen content, based on three transformed spectra [14].
These studies performed spectral transformation on the original spectrum, eliminated
or reduced the influence of bands unrelated to the target properties, enhanced spectral
features, expanded the difference between reflected spectral features, and improved the
spectral recognition probability, so as to reflect the growth of plants more accurately [15].

Generally, limited by monitoring platforms, the monitoring range of ground-based
RS is small, with a high requirement of human and material resources. Therefore, it is
difficult to obtain crop growth information on a large scale. Unmanned aerial vehicle
(UAV) RS has the characteristics of flexibility, portability, low cost, and wide monitoring
range, and can be used as a favorable supplement to ground-based RS. It has become an
important technical tool of precision agriculture [16]. The imaging spectrometer carried on
the UAV can not only obtain plants’ spectral information, but also their inherent textural
and structural information, which are not easily affected by the external environment and
can make up for the weakness of easy saturation in the spectral inversion of ground-based
RS [17,18]. Scholars have studied nitrogen concentration of cotton and the biomass of
wheat by combining RS spectral features with the textural features of UAV images, and
the results indicated that the accuracy of the inversion model constructed by the fusion of
spectral and texture features was better than that constructed using only texture or spectral
features [19–21]. However, studies have not yet been reported analyzing biophysical and
biochemical parameters closely related to crop growth (e.g., pigment content, nitrogen
content, water content, plant height, and leaf area index) using ground-based HS data of
different spectral transformations combined with UAV images.

In this study, 30 varieties of tree peony leaves in Shaanxi Province, China, were
first determined using a ground spectrometer and UAV RS systems. Second, the three
most common spectral transformations were performed on the near-ground spectrum,
and Anth estimation models were constructed based on the transformed spectra. Finally,
the vegetation index and texture parameters of the UAV images were extracted, and the
multi-source RS model of tree peony leaf Anth was constructed, together with the ground
spectrum. The purpose of this study was to indirectly monitor tree peony growth on a
large scale and with high precision by estimating the level of anthocyanin in peony leaves,
thus providing a new idea for monitoring plant growth based on multi-source RS data.
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2. Materials and Methods
2.1. Study Area

The experiment was carried out at the tree peony garden of Northwest A&F University
in Shaanxi Province, China (34◦15′–34◦20′N, 107◦56′–108◦7′E), on 8 April 2018, when the
peonies were in full bloom. The average elevation of the garden is 460 m and the climate
is warm temperate continental monsoon. There were 32 plots in the study area, among
which 2 were mixed variety plots and the remaining 30 were single variety plots. The
single variety plots were selected for the study, covering 30 varieties of tree peonies such
as Zierqiao, Yinhongqiaopair, and Yaohuang. According to the rule of diagonal sampling,
two tree peonies representing the average growth of tree peonies in each plot were selected
for spectral and anthocyanin measurement, and a total of 60 peony samples were studied.
The location of the study area and the distribution of samples are shown in Figure 1.

Figure 1. Location of study area and distribution of samples.

2.2. Data Acquisition
2.2.1. Anth Quantification

Leaf Anth was measured with Dualex 4 (FORCE-A, Orsay, France). This measures the
leaf epidermal anthocyanin absorbance at 520 nm by means of chlorophyll fluorescence
screening, equalizing the chlorophyll fluorescence signal under 520 nm excitation, and
that under red excitation at 650 nm, as reported by Goulas et al. [22]. The method also
accurately measures the leaf chlorophyll and surface flavonoid contents and nitrogen
balance index, and is easy to use for real-time non-destructive measurement. Some scholars
have compared Anth measured by traditional chemical methods, such as the Multiplex
instrument and UV-A-PAM fluorimeter, with that measured using Dualex, which further
proved the reliability of Dualex for Anth measurement [23,24]. To obtain representative
Anth, 10 leaves were selected from the tree peony sample, and six Anth measurements were
carried out for each leaf, which were then averaged. The measured Anth was subjected to
stratified and random sampling at a ratio of 2:1, ignoring the effect of variety; 40 samples
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were selected for model construction, and the remaining 20 samples were used for model
verification. The Anth statistics of the calibration and test sets conducted in our study
are shown in Table 1; the data indicated that the Anth content of the calibration set was
0.051–0.171 µg/cm2, and that of the test set was 0.056–0.169 µg/cm2. The test set was
within the calibration set and had similar data distribution characteristics to the calibration
set. The coefficients of variance (CVs) of the calibration and test sets were 27.722% and
26.732%, respectively, with moderate spatial variation.

Table 1. Statistical analysis of calibration-set Anth and test-set Anth.

Type N Min (µg/cm2) Max (µg/cm2) Mean (µg/cm2) SD Variance CV (%)

Calibration set 40 0.051 0.171 0.101 0.028 0.001 27.722
Test set 20 0.056 0.169 0.102 0.027 0.001 26.732

Note: Coefficient of variation (CV); standard deviation (SD); number (N).

2.2.2. Hyperspectral Data Acquisition

The reflection spectra of tree peony leaves were measured under good weather con-
ditions and stable solar radiation. The instrument used was an SVC HR~1024i spec-
trometer produced by Spectra Vista Corporation (SVC) of America, with a band range of
350–2500 nm. Firstly, in the absence of any shielding, the test spear head was vertically
aligned with the reference plate in the direction of the sun for spectral measurement, and
the obtained spectrum was used as a reference for the reflection spectrum correction of the
tree peony leaves. Then, the probe connected to the optical fiber (viewing angle of 8◦) was
placed 30 cm above the tree peony leaves and measured vertically downward. Ten leaves
were selected from each tree peony sample, and six spectra were measured for each leaf.
Finally, all spectra were averaged as the final spectrum of the tree sample. The spectrometer
and tree peony samples are shown in Figure 2.
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2.3. Airborne Campaigns

The flight experiment was carried out after the spectral measurement on the ground.
The aircraft was Phantom 4 Pro-DJI UAV (DJ-Innovations, Shenzhen, China), which was
equipped with a GPS/GLONASS dual positioning module with accurate coordinate in-
formation. The weight of the fuselage was approximately 1.4 kg, and the endurance was
30 min under conditions of no wind and maximum load. The aircraft had a built-in dual
inertial measurement unit (IMU) and dual compass, which can record its geographical
position and three-axis attitude angle in real time during the flight, improving the accuracy
of data. The sensor used was the instrument’s 1 inch COM lens, with 20 million effective
pixels, 35 mm equivalent focal length, and maximum photo resolution of 19.96 million
(5472 × 3648). The flight path was designed in Altizure, with a flight altitude of 50 m, and
the flight path overlap rate and side overlap rate were both 75%. Finally, 162 effective RGB
(red–green–blue) images were obtained in the experiment.

2.4. Pretreatment and Spectral Transformation of Ground-Based Spectrum

First, the spectrum was preprocessed using Savitzky–Golay filtering in Unscrambler X
10.4 with a smoothing point of 5, while effectively removing the influence of ambient noise.
Then the spectral resolution was resampled to 1 nm. The wavelengths that are strongly
correlated with plant pigments are concentrated in the visible and infrared regions, and
the constituent wavelengths of vegetation indices commonly used for estimating plant
physiological and biochemical parameters are also in this region, therefore we studied only
the reflection spectra of tree peony leaves in the region of 400–1500 nm.

2.4.1. Principal Component Analysis (PCA) of Spectra

Principal component analysis (PCA) constructs a new orthogonal feature in the K
dimension by mapping the original N-dimension feature to the K-dimension (K < N). Only
the features containing the most variance were retained, and the features containing almost
zero variance were ignored for data dimension reduction [25]. In the field of RS, PCA
can effectively remove the correlation, redundancy and collinearity between bands, and is
the most widely used method for dimensionality reduction [26]. Therefore, we used this
method to reduce the dimension of the tree peony canopy spectrum.

2.4.2. First-Order Differential (FD) Processing of Spectra

First-order differential (FD) processing of plant spectra can compress the influence
of background noise on target signals and to a certain extent enhance the contrast of the
spectral absorption characteristics of all biochemical components [27]. In this study, the
difference method was used to approximate the first-order differential spectrum of peony
leaves. The specific calculation formula can be expressed as follows:

R′(λi) =
R(λi+1)− R(λi−1)

λi+1 − λi−1
10−2 (1)

where λi refers to the wavelength of band i, R(λi) refers to the original spectral reflectance
corresponding to wavelength λi, and R′(λi) refers to the reflectance of first-order differential
spectrum corresponding to wavelength λi.

In the FD spectrum, “three-edge” parameters were the most commonly used spectral
parameters, which can accurately reflect the growth status of plants and are the intuitive
expression of plant pigment, cell structure, water content, and dry matter quality in the
reflection spectrum [28]. We calculated the “three-edge” parameters (position, amplitude,
and area) based on the red, blue, and yellow light regions of tree peony leaf reflection
spectrum respectively, and their definitions and formulas are shown in Table 2.



Remote Sens. 2022, 14, 2271 6 of 20

Table 2. “Three-edge” parameters based on first-order differential (FD) spectrum.

Parameters Defines Formulas References

λr

Wavelength corresponding to the maximum
reflectivity in the 680–760 nm region of the FD

spectral curve
λDr [29]

Dr
Maximum reflectance of FD spectral curve in

680–760 nm region Max(D680–760) [29]

SDr Area of FD spectral curve in 680–760 nm region
∫ 760

680 dR(λ) [29]

λy

Wavelength corresponding to the maximum
reflectivity of the 560–640 nm region in the FD

spectral curve
λDy [30]

Dy
Maximum reflectance of FD spectral curve in

560–640 nm region Max(D560–640) [30]

SDy Area of FD spectral curve in 560–640 nm region
∫ 640

560 dR(λ) [30]

λb
Wavelength corresponding to the maximum

reflectivity of the 490–530 nm region in the FD
spectral curve

λDb [30]

Db
Maximum reflectance of FD spectral curve in

490–530 nm region Max(D490–530) [30]

SDb Area of FD spectral curve in 490–530 nm region
∫ 530

490 dR(λ) [30]

Note: first-order differential (FD).

Vegetation indices (VIs) based on the FD spectrum have been commonly used to
analyze and detect changes in plant physiology and biochemistry [31,32]. These indices,
based on information at specific wavelengths, have been developed to reflect diverse plant
parameters, such as pigment content, water content, and leaf area. However, the quanti-
tative analysis of a specific tree peony pigment based on the commonly used vegetation
indices is not possible at present due the lack of crop species specificity within the available
indices. Therefore, to simplify the RS monitoring of tree peony Anth, we constructed differ-
ential vegetation index (DVI), ratio vegetation index (RVI), normalized vegetation index
(NDVI), and soil-regulated vegetation index (SAVI) for all possible two-band combinations
of 400–1500 nm. The coefficients of determination (R2) between Anth and VI can reflect the
predictive power of the two independent band combinations.

2.4.3. Continuum Removal Processing of Spectra

Continuum removal (CR), also known as the envelope removal method, was first
proposed by Kokaly and Clark [33]. Continuum removal reflectance is the ratio of the
original spectral reflectance to the continuum of the corresponding band. The continuum is
approximated by a straight line joining the two local reflectance maxima placed on both
shoulders (λmin and λmax) of the peak absorption wavelength (λpeak). Continuum removal,
CRλ, was thus written as a function of reflectance values R(λ) at wavelength λ, with the
constraint that its maximum value could not be above 1.0 (concavity of the reflectance
spectra at this location) [34,35].

Continuum removal can effectively remove spectral information noise, eliminate the
influence of mesophyll structural parameters, and increase the depth difference of the
absorption valley between the spectra of plants with different health statuses. Absorption
characteristic parameters based on continuum removal spectrum development can improve
the response ability of crop nitrogen and chlorophyll [36,37]. Therefore, in this paper, the
seven most commonly used absorption parameters were extracted based on the continuum
removal spectrum, and their effect on Anth estimation of tree peonies was investigated.
Absorption-band parameters, such as the position, depth, width, and asymmetry of the
feature have been used to quantitatively estimate the composition of samples from hyper-
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spectral fields and laboratory reflectance data. In this study, the total area of absorption
peak (TA), left area of absorption peak (LA), right area of absorption peak (RA), degree
of symmetry (S), normalized maximum absorption depth (NAD), maximum absorption
depth (BDmax), and absorption band wavelength (P) were extracted from the CR spectra of
tree peony leaves using ENVI 5.1. The definition and calculation formula of the absorption
parameters are shown in Table 3.

Table 3. Absorption parameters of continuum removal (CR) spectrum.

Parameters Defines Formulas References

TA Integral of the depth of the band from the
beginning to the end of a continuum

∫ λmax
λmin

dR′(λ) [38]

LA
Integral area range from the wavelength

corresponding to the maximum absorption
depth to the left absorption peak

∫ λpeak

λmin
dR′(λ) [38]

RA
Integral area range from the wavelength

corresponding to the maximum absorption
depth to the absorption peak on the right

∫ λmax
λpeak

dR′(λ) [38]

S Ratio of left area of absorption peak to right area
of absorption peak

LA
RA [38]

NMAD Ratio of maximum absorption depth to total area
of absorption peak

1−R′(λpeak)
TA

[39]

ADmax Maximum absorption depth 1− R′(λpeak) [40]

P Wavelength corresponding to the maximum
absorption depth λpeak [38]

Note: R′ indicates the continuum-removed reflectance value.

2.5. Unmanned Aerial Vehicles (UAV) Image Mosaic
2.5.1. RGB (Red-Green-Blue) Gray Vegetation Index Extraction

The UAV images were first aligned using the Structure from Motion (SFM) algorithm
in the Agisoft PhotoScan professional software (Agisoft, Saint Petersburg, Russia); then, we
generated dense point clouds based on the dense multi-view stereo matching algorithm,
followed by mesh and texture generation. Finally, an orthomosaic of the study area with
real coordinates and detailed texture information was obtained. The mosaic process of the
UAV images is shown in Figure 3.

The orthomosaic contained the gray information of the R, G, and B bands, and its pixel
size was 0.027 m2 (0.18 m × 0.15 m). Region of interest (ROI) was plotted in ENVI 5.1 to
extract the average gray values of the R, G, and B bands of the tree peony sample leaves,
and the RGB gray VIs were constructed based on the VI construction principle. Although
the gray value was different from the reflectivity of the corresponding wavelength, it was
also a quantified expression of the reflected light intensity. Vegetation index is currently
extensively used in the field of RS, but most VIs are based on the visible and near infrared
bands. However, the sensors in our study were only able to obtain spectral information
in the R, G and B bands; therefore, we chose the VIs based on visible light to estimate
Anth of tree peony leaves. Among them, the visible atmospherically resistant index (VARI)
can highlight the spectral reflection in the visible band, and can reduce the influence of
light and atmosphere. The red–green ratio Index (RGRI) was calculated using the ratio
of the reflectance of green band and red band. The value of RGRI is closely related to the
nutritional status of plants, and has achieved good results in the monitoring of pasture
quality and soybean biomass. The normalized green index (NGI), normalized blue index
(NBI), and normalized red index (NRI) normalized the reflectance of red, green, and blue
bands to a unified standard, and had a good effect on crop recognition. The normalized
green–red difference index (NGRDI) was constructed based on the principle of NDVI,
making full use of the strong reflection of the green band and strong absorption of red light;
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it can be used as an alternative to NDVI and has a good relationship with plant growth.
The dark green color index (DGCI) was constructed based on the color space of HSV (hue,
saturation, value) and represented the greening rate of the plant canopy [41]. Therefore,
we constructed the VIs based on gray information from the UAV images, as presented in
Table 4.
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Table 4. RGB (red–green–blue) vegetation index.

Parameters Formulas References

Visible atmospherically resistant index VARI = G−R
G+R−B [42]

Red–green ratio index RGRI = R
G [43]

Green–red vegetation index GRVI = G−R
G+R [44]

Normalized green–red difference index NGRDI = G2−R2

G2+R2 [44]
Normalized green index NGI = G

R+G+B [45]
Normalized blue index NBI = B

R+G+B [45]
Normalized red index NRI = R

R+G+B [45]
Dark green color index DGCI = H−60

180 + (1−S)+(1−V)
3

[46]

Note: R, G, and B represent the gray values of red, green, and blue bands respectively.

2.5.2. Texture Parameter Extraction of Unmanned Aerial Vehicle (UAV) Images

In addition to the spectral parameters, the texture characteristics of the image were not
easily affected by the color and brightness of the ground objects, and thus, well reflected the
growth of plants. Image texture is represented by the gray distribution of the pixel and its
surrounding spatial neighborhood. Extraction methods can be divided into structure-based
and statistics-based methods. The latter approach was used in this study; statistics-based
methods can directly and quantitatively describe the statistical properties of texture features
and are increasingly used in plant growth monitoring. The orthographic image of the study
area was extracted using texture information based on probability and statistical filtering,
and the processing window was 3 × 3. Five texture parameters for the R, G, and B channels
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were extracted individually, including data range, mean, variance, entropy, and skewness. The
UAV image processing flow is shown in Figure 3.

2.6. Regression Model Construction

To explore the influence of modeling methods on model accuracy, multiple stepwise
regression (MSR), partial least squares (PLS), back-propagation neural network (BPNN),
and random forest (RF) were used to construct Anth estimation models of the tree peony
leaves using different transformed spectra. In this study, the predicted residual sum of
squares (PRESS) and lowest root mean square error of prediction from cross validation
(RMSEPCV) were used to determine the optimal number of LVs and to prevent overfitting.
The PRESS statistic determines the number of LVs required to achieve minimum root mean
square error (RMSE) between modelled and observed leaf traits. The BPNN used in this
study was composed of input, hidden, and output layers. The number of hidden layers of
the BPNN model was 1. The number of hidden layer neurons was based on (l: hidden layer
neuron, m: input layer neuron, n: output layer neuron, a: constant between 0 and 10), which
can constantly adjust the neuron number of the hidden layer to find the model with the
highest accuracy. The neuron numbers of both input and output layers were determined by
the number of independent and dependent variables. Meanwhile, 10-fold cross verification
was used to ensure the stability of the model. The MSR, PLS, and BPNN models were
constructed in MATLAB R2016a, and the RF model was constructed in R X64 3.3.3.

2.7. Evaluation Index

The coefficient of determination (R2), root mean square error (RMSE), and relative error
of prediction (REP) obtained by unitary linear regression of predicted Anth to measured
Anth, were selected as the evaluation index of model accuracy. The closer R2 was to 1, the
smaller were the RMSE and REP, indicating the higher accuracy of the model. R2, RMSE,
and REP were determined using the following equations:

R2 =
n

∑
i=1

(ŷi − y)2/
n

∑
i=1

(yi − y)2 (2)

RMSE =

√
n

∑
i=1

(yi − ŷi)
2/n (3)

REP =
100RMSE

y
(4)

where yi represents the measured values, y is the average of the measured value, ŷi is the
predicted value, and n is the number of samples.

3. Results
3.1. Characteristics of Spectrum

Based on the three spectra of tree peony leaves in Figure 4, it is evident that the CR
method projects the original spectral reflectance in the range of 400–1500 nm to 0–1, such
that the spectral reflectance in the ranges of 400–747 nm, 932–1056 nm, 1109–1267 nm,
and 1324–1500 nm shows more obvious variance. Hence, it can be concluded that the CR
spectrum is sensitive to the variation in spectral reflectance. The FD spectral conversion
method not only removes the baseline but also avoids excessive signal-to-noise ratio
reduction in the corrected spectrum. In this study, the maximum FD spectral reflectance
of tree peony leaves appeared at 723 nm, indicating that the original spectral reflectance
increased most rapidly in this band. This is a unique spectral characteristic of green
plants. The minimum value of FD spectral reflectance appeared at 1405 nm, showing that
the original spectral reflectance decreased most rapidly in this band. Noticeably, the FD
spectrum was sensitive to the rate of change of the original spectral reflectance.
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Figure 4. Characteristics of original spectrum, first-order differential (FD) spectrum and continuum
removal (CR) spectrum of tree peony leaves.

3.2. Principal Components of PCA Spectrum

According to the principle of initial eigenvalue greater than 1, a total of nine principal
component variables were screened out and labeled F1 to F9, respectively; their cumulative
variance contribution rate was 99.8 %. The PCA results of tree peony leaves spectra are
shown in Figure 5.
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Figure 5. Principal component analysis (PCA) results of tree peony leaves spectra.

3.3. Vegetation Index of Any Two Bands of FD Spectrum

As shown in the contour map of R2 shown in Figure 6, the R2 distribution of DVI
and SAVI had obvious similarity, and the distribution of the high value area of R2 was
wider than that of RVI and NDVI. The optimal band combinations of RVI, DVI, NDVI
and SAVI were (D661 nm, D1475 nm), (D666 nm, D1082 nm), (D664 nm, D720 nm) and
(D666 nm, D1082 nm), respectively, and the corresponding maximum R2 was 0.57, 0.48,
0.51 and 0.48, respectively.
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3.4. Correlation Analysis between Spectral Parameters and Anth

Table 5 shows the correlation coefficient between Anth of tree peony leaves and the
principal components of the PCA spectrum, “three-edge” parameters of the FD spectrum,
and absorption parameters of the CR spectrum. It is evident that principal components
F1, F2, and F8 were significantly positively correlated with Anth (p < 0.05) while F4 and F5
were significantly negatively correlated with Anth (p < 0.05). The highest correlation was
with F8, with the correlation coefficient being 0.37. Meanwhile, F7 and F9 had the worst
correlation with Anth. Among the “three-edge” parameters, λr had the best correlation
with Anth, the correlation coefficient reaching −0.5, followed by SDb and λy. Overall,
position-based parameters (λr and λy) had a higher correlation with Anth than those based
on area (Dr and Dy) and amplitude (SDr and SDb).

Taking as the boundary the reflection peaks observed at 550 nm of the green light, CR
transformation was carried out at 400–550 nm, 550–788 nm and 400–788 nm. The correlation
coefficient between absorption parameters and Anth shows that the correlation between
Anth and the absorption parameters at 550–788 nm and 400–788 nm was higher than that at
400–550 nm, and most of the absorption parameters were significantly correlated with Anth
(p < 0.05). P at 400–550 nm, NAD at 550–788 nm and RA at 400–788 nm were the absorption
parameters with the best correlation with Anth in the corresponding band range.
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Table 5. Correlation between principal components, “three-edge” parameters, spectral absorption
parameters and Anth of tree peony leaves.

Principal
Components

Pearson
Correlations

“Three-Edge”
Parameters

Pearson
Correlations

Absorption
Parameters

Pearson Correlations

400–550 nm 550–788 nm 400–788 nm

F1 0.28 * λr −0.50 ** TA 0.02 −0.50 ** −0.38 **
F2 0.28 * Dr 0.31 * LA 0.06 −0.46 ** −0.33 *
F3 −0.15 SDr 0.19 RA −0.13 −0.54 ** −0.54 **
F4 −0.35 ** λy −0.35 ** S 0.17 0.54 ** 0.47 **
F5 −0.35 ** Dy 0.08 NAD −0.03 0.63 ** 0.37 **
F6 −0.15 SDy 0.13 BDmax −0.01 −0.10 −0.12
F7 0.02 λb −0.21 P −0.48 ** −0.01 0.15
F8 0.37 ** Db 0.31 * - - - -
F9 0.01 SDb 0.39 ** - - - -

Note: F1–F9 were the principal components extracted by PCA spectra; λr, Dr, SDr, λy, Dy, SDy, λb, Db and SDb are
parameters based on position, amplitude and area of R, G, B bands; TA, LA, RA, S, NAD, BDmax and P are the
absorption parameters extracted by the CR spectrum. ** p < 0.01, * p < 0.05.

3.5. Correlation Analysis between Unmanned Aerial Vehicle (UAV) Parameters and Anth

Table 6 shows the correlation between the RGB gray vegetation index, texture param-
eters and Anth. Only NRI was positively correlated with Anth, and VARI, RGRI, GRVI,
NGRDI, and DGCI were all significantly negatively correlated with Anth, with DGCI por-
traying the highest correlation; the correlation coefficient was −0.6. The mean of the R
band had the greatest correlation with Anth, with a correlation coefficient of 0.52, while the
mean of the B band had the lowest correlation. Overall, the correlation between the texture
parameters and Anth was low.

Table 6. Correlation between RGB VIs, texture parameters, and Anth of tree peony leaves.

RGB VIs Pearson Correlations Texture Parameters
Pearson Correlations

R G B

VARI −0.46 ** Range 0.23 0.28 * 0.31 *
RGRI 0.45 ** Mean 0.53 ** 0.29 * −0.02
GRVI −0.44 ** Variance −0.25 * 0.25 * −0.28 *

NGRDI −0.44 ** Entropy 0.22 0.19 0.23
NGI −0.11 Skewness 0.11 0.18 0.33 **
NBI −0.20 - - - -
NRI 0.53 ** - - - -

DGCI −0.60 ** - - - -
Note: ** indicates p < 0.01, * indicates p < 0.05.

3.6. Anth Estimation Based on Hyperspectral (HS) of Different Spectral Transformations

The results of the model’s calibration and test sets are shown in Table 7. The R2
c of the

model based on the PCA spectrum was between 0.45 and 0.91, and the R2
v was between

0.21 and 0.58. The R2
c of the model based on the FD spectrum ranged from 0.53 to 0.91,

and the R2
v ranged from 0.51 to 0.59. The model based on the CR spectrum had an R2

c
range from 0.57 to 0.87, and an R2

v range from 0.25 to 0.34. Obviously, there was a large
difference in the modeling accuracy with respect to different modeling methods, with a
small difference in the test accuracy. Meanwhile, considering R2

c and R2
v, the accuracy

of the FD spectral model was better than that of the PCA and CR spectral models. In
the PCA and FD spectral models, compared with MSR and PLS, BPNN and RF were the
better modeling methods. The PCA-RF and FD-RF models had the highest R2

c, and the
PCA-BPNN and FD-BPNN models had the highest R2

v. However, both the PCA-RF and
FD-RF models experienced over-fitting; this was because the amount of training data was
small in this experiment, and the model overfitted the training data without considering
the generalization ability. The PLS model portrayed moderate accuracy, while the MSR
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model portrayed good performance only in the calibration set of the PCA model (R2
c = 0.45,

R2
v = 0.21). This was because both MSR and PLS are linear models, and stable and effective

regression can be performed in the presence of multicollinearity of independent variables.
However, PLS combines the characteristics of multiple linear regression (MLR), canonical
correlation analysis (CCA), and principal component analysis (PCA), and the final model
contains the information of all the original independent variables, while the MSR model
contains only the information of several important variables [47]. Among the CR spectral
models, the accuracy of the test set was low, and overfitting occurred in all of them, which
may be because the parameters used in the CR models were extracted based only on the
measurements acquired at 400–550, 550–778, and 400–778 nm, and the spectra in these
band regions were mainly affected by Chl and less affected by Anth. In general, the FD-RF
model had the best calibration accuracy (R2

c = 0.91, RMSEc = 0.01, REPc = 10.45%), and the
FD-BPNN model had the best test accuracy (R2

c = 0.59, RMSEc = 0.04, REPc = 31.23%).

Table 7. Anth estimation models based on principal component analysis (PCA), first-order differential
(FD), and continuum removal (CR) spectra.

Transform Processing Models Variables
Calibration Set Test Set

R2
c RMSEc REPc (%) R2

v RMSEv REPv (%)

PCA

MSR 8 0.45 0.03 23.41 0.21 0.04 31.72
PLS 9 0.52 0.02 21.81 0.44 0.029 25.63

BPNN - 0.69 0.02 15.53 0.58 0.04 39.27
RF 7 0.91 0.01 13.53 0.46 0.03 27.07

FD

MSR 12 0.59 0.02 20.05 0.56 0.03 22.76
PLS 11 0.53 0.02 21.71 0.56 0.02 22.31

BPNN - 0.72 0.02 18.05 0.59 0.04 31.23
RF 11 0.91 0.01 10.45 0.51 0.03 25.19

CR

MSR 13 0.63 0.02 19.22 0.34 0.03 28.32
PLS 15 0.57 0.02 20.62 0.34 0.03 27.94

BPNN - 0.59 0.02 21.07 0.27 0.03 29.47
RF 12 0.87 0.01 13.02 0.25 0.03 29.85

3.7. Anth Estimation Based on Unmanned Aerial Vehicle (UAV) Images

Tree peony Anth estimation models based on UAV VIs and texture parameters were
structured in Table 8. The R2

c ranged from 0.49 to 0.71, and the R2
v ranged from 0.25 to

0.45; the R2
c of each model was obviously higher than its R2

v. Among them, the UAV-
RF model had the highest calibration and test accuracy, R2

c and R2
v were 0.71 and 0.45,

respectively. The UAV-BPNN and UAV-MSR models followed, and the UAV-PLS model
had the worst accuracy. This was because the RF model performed regression through
repeated binary data, and its sampling method and the generation of decision tree features
were random; therefore, the prediction accuracy of the model could be improved without
significantly increasing the amount of computation [48]. Compared with the ground-based
FD-RF model, the accuracy of the UAV-RF model was low in the calibration and test sets;
this is mainly because the ground spectrum had higher spatial resolution and rich band
information, and the spectral reflectance obtained of ground objects was more precise than
that obtained by the UAV sensor.

3.8. Anth Estimation Based on Multi-Source Remote Sensing (RS) Data

To make full use of the rich band of HS, as well as the flexible, fast, and wide mon-
itoring range of UAVs, the multi-source RS model was constructed by combining the
parameters extracted from different ground-based spectra and UAV images (Table 9). The
R2

c ranges of the models based on PCA + UAV, FD + UAV, and CR + UAV were 0.73–0.92,
0.75–0.93, and 0.61–0.91, and the R2

v ranges were 0.34–0.58, 0.65–0.76, and 0.35–0.56, re-
spectively. Obviously, the model based on FD + UAV had the highest accuracy in both the
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calibration and test sets, and the RF model had the highest accuracy (R2
c = 0.93, R2

v = 0.76),
followed by the BPNN model (R2

c = 0.85, R2
v = 0.69), whereas the MSR and PLS models

had relatively poor accuracy. Among the models based on PCA + UAV and CR + UAV,
the modeling accuracy of the RF model was the highest in both the calibration and test
sets (R2

c = 0.92 and 0.91, respectively), and the verification accuracy of the BPNN model
was the highest in both the calibration and test sets (R2

v = 0.58 and 0.56, respectively). The
accuracies of the MSR and PLS models were obviously lower.

Table 8. Anth estimation model based on unmanned aerial vehicle (UAV) parameters.

Models Variables
Calibration Set Test Set

R2
c RMSEc REPc (%) R2

v RMSEv REPv (%)

UAV-MSR 15 0.60 0.02 19.87 0.27 0.03 28.73
UAV-PLS 18 0.49 0.02 22.44 0.25 0.03 28.77

UAV-BPNN - 0.62 0.02 20.05 0.29 0.03 28.54
UAV-RF 13 0.71 0.02 19.17 0.45 0.03 27.07

Table 9. Multisource remote sensing (RS) Anth estimation models.

Multisource Spectrum Models Variables
Calibration Set Test Set

R2
c RMSEc REPc (%) R2

v RMSEv REPv (%)

PCA + UAV

MSR 22 0.73 0.02 16.35 0.34 0.04 38.64
PLS 21 0.75 0.02 16.35 0.37 0.04 41.47

BPNN - 0.73 0.02 16.53 0.58 0.03 23.09
RF 16 0.92 0.01 12.64 0.56 0.03 27.30

FD + UAV

MSR 23 0.83 0.01 11.02 0.65 0.02 21.48
PLS 21 0.75 0.01 16.56 0.71 0.02 17.65

BPNN - 0.85 0.01 11.48 0.69 0.02 19.43
RF 17 0.93 0.01 8.25 0.76 0.02 16.37

CR + UAV

MSR 24 0.87 0.01 11.57 0.35 0.03 28.99
PLS 25 0.61 0.03 31.58 0.37 0.03 31.59

BPNN - 0.73 0.02 17.44 0.56 0.03 24.48
RF 15 0.91 0.01 12.64 0.52 0.03 26.91

Compared with the PCA, FD, and CR ground-based models, the accuracy of the
multi-source RS model improved in both the calibration set and the test set, and the most
obvious improvement was in the model based on FD + UAV. With the addition of UAV
information, the R2

c of the optimal ground-based model increased from 0.91 to 0.93, and
R2

v increased from 0.51 to 0.76; thus, the RF model of FD + UAV was the best multi-source
RS model for tree peony leaves Anth estimation. Compared with the optimal UAV model
(UAV-RF), R2

c improved from 0.71 to 0.93 and R2
v improved from 0.45 to 0.76, and the

accuracy of the calibration and test sets improved by 30.99 % and 68.89 %, respectively.
In multisource RS models, the RF model showed an obvious superiority over the

BPNN, PLS and MSR methods; the optimal models based on PCA + UAV, FD + UAV,
and CR + UAV were all constructed by the RF model. Figure 7 shows the fitting effect of
predicted Anth on measured Anth for the RF models; the predicted value of the calibration
set had a good fitting effect (R2

c is all over 0.9), and the Anth content was evenly distributed
on both sides of the 1:1 line, without obvious aggregation. The predicted values of the test
set had a slightly poor fitting effect; when the Anth value was near 0.10, the predicted Anth
was close to the measured Anth, whereas when the Anth value was far from 0.10, the Anth
prediction portrayed a large deviation from the measured Anth. Among all the models,
the RF model of FD + UAV had the best fitting relationship between the predicted and
measured Anth values in the calibration and test sets.
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Figure 7. Distribution of measured Anth and predicted Anth in the random forest (RF) models:
(a,b) are the calibration set and test set of the RF model based on principal component analysis using
an unmanned aerial vehicle (PCA + UAV); (c,d) are the calibration set and test set of the RF model
based on first-order differential using an unmanned aerial vehicle (FD + UAV); (e,f) are the calibration
set and test set of the RF model based on continuum removal using an unmanned aerial vehicle
(CR + UAV).

4. Discussion
4.1. Application of Spectral Information Extraction from Hyperspectral (HS) Data

HS sensors collect information over a very large number of wavelengths, equivalent
to dozens or hundreds of wavebands. However, due to the large amount of HS data, not all
acquired bands are highly correlated with target features. HS data compression methods
can be divided into lossless compression and lossy compression. Lossless compression
methods are based on statistical redundancy of suppressed data, whereas a lossy algorithm
minimizes the data by discarding irrelevant parts of the information. These methods all de-
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correlated the HS data to represent the inherent information content in a low-dimensional
domain [49]. However, from the perspective of coding gain, PCA was considered to be
the optimal transformation of gaussian sources. In this study, PCA was used to compress
the 400–1500 nm band region into nine principal component variables, which maximized
the information of the original spectrum, while greatly reducing the spectral dimension.
Notably, the cumulative variance contribution rate of all principal components was as
high as 99.8%, which almost entirely represented the spectral information of tree peony
leaves in the whole band region, and effectively extracted the reflection spectrum of tree
peony leaves.

Among the techniques developed in spectroscopy, derivative analysis has been partic-
ularly promising in the application of RS data [50]. The derivative of the spectrum, its rate
of change with respect to the wave length, overcame many of the problems of quantitative
analysis in a more elegant and efficient manner by comparing ratios and differences [51].
In the field of RS, FD spectroscopy has mainly been used to help locate critical wavelengths.
Guo et al. constructed a high-precision estimation model of chlorophyll content in tobacco
leaves by constructing a normalized variable (SDr − SDy)/(SDr + SDy) based on the FD
spectrum [52]. In this study, “three-edge” parameters and VI extracted from the FD spec-
trum portrayed a good correlation with Anth, and the model accuracy based on FD and FD
+ UAV was better than that based on PCA and the CR spectrum, which fully reflected the
superiority of the FD method in spectral transformation research.

CR analysis removes the uninteresting absorption features by dividing the reflectance
value of each point using the reflectance of the continuum line (convex lobe) at the cor-
responding wavelength, thus, standardizing and enhancing the specific absorption char-
acteristics of foliar biochemical components [53]. Among the absorption characteristic
parameters extracted based on the CR spectrum, the NAD of 550–788 nm had the strongest
correlation with Anth, and the correlation coefficient reached 0.63. However, the models
built based on CR and CR + UAV experienced over-fitting, which was related to the nar-
row band range of extracting absorption characteristic parameters and the fact that the
spectrum of these regions was mainly affected by the Chl content and less affected by the
Anth content.

4.2. Advantages of Ground-Based Spectrum and Unmanned Aerial Vehicle (UAV) Data

With the rapid development of UAV and lightweight hyperspectral imaging (HSI)
sensors, mini-UAV-borne hyperspectral remote sensing systems have been developed,
and demonstrate great value and application potential. In this study, UAV multi-spectral
information, texture information, and ground HS data were combined to estimate accurately
the Anth content of tree peony leaves, by overcoming the saturation problem related to VI
in scenarios of dense canopies [54]; variable structural characteristics of the canopy can also
be effectively detected using this method [55]. Notably, this method is superior to Anth
estimation using ground HS data and UAV images individually. This is consistent with
the results of a study conducted by Zheng et al. [56] in which rice nitrogen content was
estimated by vegetation index and texture parameters, based on near-ground and UAV
platform spectra.

4.3. Machine Learning and Plant Growth Monitoring

Compared with physical radiative transfer models, empirical statistical models have
been widely used in the study of plant growth due to their stable, easy-input parameters,
and simple modeling methods. Among these, machine learning algorithms can deal
with regression problems arising from the complex relationships between independent
and dependent variables, while achieving reliable estimations of plant pigment content,
nitrogen content, LAI, and biomass [57–60]. Among the MSR, PLS, BPNN, and RF models
constructed in this study, the BPNN and RF models demonstrated obvious superiority,
which was consistent with the findings of previous researchers that the RF and BPNN
methods had obvious advantages for cotton LAI estimation, citrus pest identification,
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wetland plant total nitrogen inversion, and winter wheat growth monitoring [61–63]. This
was because the BPNN model is generally a multilayer feedforward neural network, with
signal forward propagation and error back propagation. In this model, the input signals are
processed step by step, from the input layer to the output layer, through multiple hidden
layers. When the output layer is inconsistent with the desired output, it turns to back
propagation, apportioning the error to all the cells in each layer. Error signals are used to
correct the weights of each unit, so that the predicted output of BPNN is consistently close
to the expected output [64]. The BPNN models in this study all set the hidden layer number
to 1, according to newff function, and thus we could develop an optimal training model
by constantly changing the hidden layer node number. Finally, the hidden layer nodes of
the PCA-BPNN, FD-BPNN, and CR-BPNN optimal models were 6, 8, and 10, respectively,
and the hidden layer nodes of the BPNN models based on PCA + UAV, FD + UAV, and
CR + UAV were 10, 8, and 9, respectively. With the addition of UAV information, the
accuracy of the BPNN model based on multi-source RS data greatly improved compared
with the model constructed from single-source RS data. The most obvious improvement
was in the model based on CR + UAV, where R2

c increased from 0.59 to 0.73 and R2
v

increased from 0.27 to 0.56. This is consistent with previous findings that the BPNN model
has a positive effect on net primary productivity estimation, as shown by Yan et al., and for
soil pH study, as reported by Huang et al. [37,65]. The RF model applied an integration
algorithm, with high accuracy and generalization ability. It performed regressions through
repeated dichotomous data, and the generation of sampling method and decision tree
features was random; therefore, we could increase the prediction accuracy significantly,
without significantly increasing the amount of computation [66]. In the PCA-RF, FD-RF,
and CR-RF models constructed in this study, R2

c was greater than 0.85, which was higher
than the accuracy of other models constructed on the same spectrum, but its R2

v was
slightly less than that of other models. Thus, we could deduce that the addition of UAV
information improves the R2

c and R2
v of RF models based on PCA + UAV, FD + UAV, and

CR + UAV, and to some extent overcomes the over-fitting difficulties of models based on
ground spectrum data.

5. Conclusions

The key to effective Anth estimation based on spectral reflectance is to find the band
or spectral parameters closely related to the pigment. In this study, we first analyzed the
characteristics of PCA, FD and CR ground-based hyperspectral data of tree peony leaves.
Then, the Anth of tree peony leaves was estimated using multiple methods (MSR, PLS,
BPNN and RF) based on the common spectral parameters extracted from three kinds of
transformed spectra, and the best spectral transformation method and the best precision
model were obtained. However, the ground-based hyperspectral model was not sufficient
to estimate Anth. Therefore, to improve the Anth estimation accuracy, we added 8 RGB
gray vegetation index and texture parameters closely related to Anth based on UAV spectral
extraction, in combination with ground hyperspectral to build a multi-source estimation
model. In addition, to compare the Anth estimation ability of spectral information using
different platforms and the advantage of multi-source remote sensing data compared with
single remote sensing data, we also built an Anth estimation model based solely on UAV
images. The main conclusions were as follows:

1. In the HS Anth estimation models constructed based on the three transformed spectra,
the RF model based on “three-edge” parameters and VI of any two bands had the
highest fitting accuracy, which can provide a reference for the selection of the spectral
transformation method and regression model in crop growth monitoring in the future.

2. Compared with the ground hyperspectral model and the visible UAV model, the
accuracy of the multi-source RS models greatly improved. The addition of UAV data
enriched the RS information used for near-surface estimation, which improved the
accuracy of the model.
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3. Among the multi-source RS models, the RF model based on FD + UAV had the highest
modeling and testing accuracy. It can thus be used for high-precision estimation of
Anth in tree peony leaves.
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