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Abstract: It is hard for current time series reconstruction methods to achieve the balance of high-
precision time series reconstruction and explanation of the model mechanism. The goal of this
paper is to improve the reconstruction accuracy with a well-explained time series model. Thus, we
developed a function-based model, the CCTM (Continuous Change Tracker Model) model, that can
achieve high precision in time series reconstruction by tracking the time series variation rate. The
goal of this paper is to provide a new solution for high-precision time series reconstruction and
related applications. To test the reconstruction effects, the model was applied to four types of datasets:
normalized difference vegetation index (NDVI), gross primary productivity (GPP), leaf area index
(LAI), and MODIS surface reflectance (MSR). Several new observations are as follows. First, the
CCTM model is well explained and based on the second-order derivative theorem, which divides
the yearly time series into four variation types including uniform variations, decelerated variations,
accelerated variations, and short-periodical variations, and each variation type is represented by a
designed function. Second, the CCTM model provides much better reconstruction results than the
Harmonic model on the NDVI, GPP, MSR, and LAI datasets for the seasonal segment reconstruction.
The combined use of the Savitzky–Golay filter and the CCTM model is better than the combinations
of the Savitzky–Golay filter with other models. Third, the Harmonic model has the best trend-fitting
ability on the yearly time series dataset, with the highest R-Square and the lowest RMSE among the
four function fitting models. However, with seasonal piecewise fitting, the four models all achieved
high accuracy, and the CCTM performs the best. Fourth, the CCTM model should also be applied
to time series image compression, two compression patterns with 24 coefficients and 6 coefficients
respectively are proposed. The daily MSR dataset can achieve a compression ratio of 15 by using
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the 6-coefficients method. Finally, the CCTM model also has the potential to be applied to change
detection, trend analysis, and phenology and seasonal characteristics extractions.

Keywords: CCTM model; function-based model; time series reconstruction; time series compression;
trend-fitting

1. Introduction

Remote sensing datasets provide long records of earth observation, which are es-
sential for earth sciences research. Since the 1960s, remote sensing satellite datasets
(e.g., NOAA/AVHRR, MODIS, Landsat) have been widely applied to the study of global
environmental change [1–4]. With the development of remote sensing retrieval algorithms,
a series of land surface variables products have been archived, such as the normalized
difference vegetation index (NDVI), leaf area index (LAI), gross primary productivity (GPP),
and atmospherically corrected surface reflectance [5–7].

Nonetheless, the time series land surface variables are not always evenly distributed
and continuous due to cloud, cloud shadows, snow contamination, low temporal frequency,
sun-sensor-surface viewing geometry of different seasons, different sensors and sensor
failure, etc. High-precision land cover classification, monitoring, and trend analysis all
require continuous fine-scale Remotely Sensed Land Surface Products (RSLSP) [8–13].
To obtain temporally and spatially continuous RSLSP datasets, spatial-, spectral-, and
temporal-based methods and their combinations (e.g., joint spatio-spectral methods and
joint spatio-temporal methods) for the time series reconstruction of RSLSP have been
proposed [10].

The temporal-based methods have been widely used to remove noises in the time series
reconstruction, which can be categorized into five categories [14]: (1) temporal interpolation
methods, (2) temporal filters, (3) temporal function-fitting methods, (4) temporal deep
learning methods and (5) frequency-based methods.

The temporal interpolation methods like Maximum Value Composite (MVC) [15–17],
iterative interpolation for data reconstruction (IDR) [18], data assimilation (DA) [19–21]
and the best index slope extraction (BISE) [22,23] have been commonly applied to filling
time series gaps. However, such algorithms are not suitable for the reconstruction of data
with long-term gaps. Due to no consideration of atmosphere interference, the MVC method
can lead to the loss of useful temporal information. The IDR method proves prone to
overestimating the time series values during the vegetation dormant periods [24]. The DA
method has poor performance at the onset of vegetation spring green [20], and the BISE
method is bad for long-term decline trends [25].

As for the temporal filter methods, there are the Savitzky-Golay (SG) filter, the Mean-
Value iterative (MVI) filter, the Moving Average Filter, and the Changing Weight Filter. The
famous Savitzky–Golay (SG) filter method has been widely applied to remove temporal
noises from the NDVI, GPP, and reflectance time series [26,27]. However, the processing
effect of the SG filter method is highly dependent on the size of the filtering window size.
A large window size can also lead to the existing variations being smoothed out, and a
small window size can not effectively reduce the noises in the time series [28,29]. The MVI
filter has negative effects for areas with high interannual changes, and the MA filter will
change the width and the height of the curve, for the CW method, the remaining noises in
the time series can be problematic.

The temporal function fitting method reconstructs the time series by stimulating the
time-series variation with parameterized functions. The asymmetric Gaussian (AG) model
can extract the phonological parameters during the smoothing process. However, it will
lead to a loss of details about vegetation changes if there is a lot of noise in the original time
series [30,31]. The double logistic (DL) technique is effective for revealing the trend of the
NDVI time series, but it remains problematic with NDVI in winter [32].
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Among frequency-based techniques, the Fourier transform is very effective in pro-
cessing periodic time-series signals, as it can decompose them into amplitude and phase
information, but it has poor performance for irregular time series due to the strict sym-
metry of the formula [33,34]. The wavelet transform (WT) method also easily ignores the
reasonable high values when there are frequent variations in the time series [35].

The harmonic analysis of time series (HANTS) method was later proposed by Ver-
hoef [36] and has been widely used to reconstruct time-series datasets of the NDVI, LAI,
and land surface temperatures (LSTs) [37–39]. The method has also been successfully used
to predict Landsat values at any given time and has achieved relatively high accuracy in
Landsat data reconstruction [9]. However, the HANTS may result in a large deviation from
the original time series if there are long-term data gaps [40].

In this paper, a hybrid time series reconstruction method has been proposed. Several
time series outlier recognition and gap-filling methods have been applied to fill the long-
term gaps. A high-precision model continuous change rate tracking model (CCTM) has
been developed for the reconstruction of time series RSLSP. The CCTM model divides the
yearly time series into four seasons and reconstructs each seasonal time series with a least-
squares solver. The CCTM model decomposes the land surface variations into four parts by
the variation types: uniform variation part, accelerated variation part, decelerated variation
part, and short-term periodic variation part. Every part is represented by a designed func-
tion. In addition, the SG filter is adapted for LAI, GPP, and surface reflectance time series
data to effectively control the degree of smoothing and retain the original characteristics by
setting limited iteration times or adding smoothing controlling parameters.

Current time series reconstruction methods do have their advantages, but the long-
term gaps, over-fitting, and remaining noise issues are still disturbing [41]. More im-
portantly, none of the methods above can precisely predict the time series values on a
daily scale. The objectives of this paper are: (1) to provide solutions to the time series
deficiencies of long-term gaps, over-fitting, and remaining noise issues; and (2) to develop
a comprehensive continuous time series reconstruction method that can precisely predict
time series values.

2. Materials and Methods
2.1. Data

A series of land surface variable datasets were chosen to evaluate the reconstruction
performance of the new model. The NDVI (produced by MOD09Q1), LAI (MCD15A3H),
GPP (MOD17A2H), and MSR (MOD09Q1) datasets from 2001 to 2005 in the global region
are selected. 183 NDVI images, 183 GPP images, 183 MSR images, and 228 LAI images are
collected in the global region. The detailed information is shown in Table 1. Among them,
the NDVI and MSR datasets have temporal and spatial resolutions of 8 days and 250 m, the
LAI dataset has temporal and spatial resolutions of 4 days and 500 m, and the GPP dataset
has temporal and spatial resolutions of 8 days and 500 m.

2.2. Time Series Reconstruction Flow

The data processing consists of three parts (Figure 1). (1) Preprocessing includes setting
a mask for the dataset according to the quality control information, outlier recognition,
gap-filling, and enhanced SG filtering, which is only necessary for time series datasets that
contain noise. If >50% of the points in the yearly time series are invalid, the invalid points
are filled with zeros, and gap-filling and enhanced SG filtering are not needed. (2) The
reconstruction results are compared in seasonal time series patterns and yearly time-series
patterns. In the yearly time series pattern, four models are applied to reconstruct the yearly
segment time series, but in the seasonal segment time series, four models are separately
used to reconstruct every seasonal segment time series.
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Table 1. Detailed information about the dataset used in the study.

Dataset Date URL Description

MCD15A3H (MODIS Leaf
Area Index/FPAR 4-Day

Global 500 m)
2001–2005

https://developers.google.com/
earth-engine/datasets/catalog/

MODIS_006_MCD15A3H
(accessed on 21 April 2022)

The MCD15A3H V6 level 4, Combined
Fraction of Photosynthetically Active

Radiation (FPAR), and Leaf Area Index (LAI)
product is a 4-day composite data set with

500 m pixel size.

MOD17A2H (Terra Gross
Primary Productivity
8-Day Global 500 M)

2001–2005

https://developers.google.com/
earth-engine/datasets/catalog/

MODIS_006_MOD17A2H
(accessed on 21 April 2022)

The MOD17A2H V6 Gross Primary
Productivity (GPP) product is a cumulative
8-day composite with a 500 m resolution.

MOD09Q1 (Terra Surface
Reflectance 8-Day Global

250 m)
2001–2005

https://developers.google.com/
earth-engine/datasets/catalog/

MODIS_006_MOD09Q1 (accessed
on 21 April 2022)

The MOD09Q1 product provides an estimate
of the surface spectral reflectance of bands 1
and 2 at 250 m resolution and corrected for

atmospheric conditions such as gasses,
aerosols, and Rayleigh scattering.

The NDVI time series dataset is based on the MOD09Q1 product. MCD15A3H,
MOD11A2, MOD17A2H, and MOD09Q1 time-series datasets are provided with detailed
quality control instructions. The NDVI, LAI, and GPP products were chosen as they are
important in reflecting vegetation changes. The MSR product (including near-infrared and
red band data) was chosen as it is a representative primary remote sensing product.
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These four-time series reconstruction models include: (i) the CCTM model developed
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evaluates the reconstruction accuracy between the original time series processed by SG filter
and gap-filling methods and the continuous-time series reconstructed by the four models.

2.3. Data Preprocessing

Data preprocessing involves two parts: (1) point sampling and quality control are
conducted on the Google Earth Engine (GEE) platform; and (2) outlier recognition, gap-
filling, and enhanced SG filtering are conducted.

2.3.1. Points Sampling and Quality Control

The six kinds of datasets were processed using the following two steps. First, setting a
mask for time series data with the quality control band provides the pixel quality status
of each point in the time series. Second, to comprehensively analyze the reconstruction
effects on the specific landcover types, the stable land cover type was defined as the land
cover which has not been changed from 2001 to 2005, and eight stable land cover types
were extracted from the MCD12Q1.006 [42] product for the period 2001–2005: evergreen
needleleaf forests (ENF), evergreen broadleaf forests (EBF), deciduous needleleaf forests
(DBF), deciduous broadleaf forests (DBF), mixed forests (MF), shrublands, savannas, grass-
lands, and croplands. Then, we selected 100 sampling points for each of the ENF, EBF, DBF,
and MF datasets and 200 sampling points for each of the shrubland, savanna, grassland,
and cropland datasets. The distribution of the sampling points and the stable land cover
types are shown in Figure 2. The seasons in the northern hemisphere were defined as:
winter, 1 December–28 February; spring, 1 March–31 May; summer, 1 June–31 August; and
autumn, 1 September–30 November. Southern hemisphere seasons are exactly the opposite.
For each sampling point in the different land cover types, five-year time series (2001–2005)
were obtained according to these seasonal periods.
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Figure 2. Distribution of sampling points and stable land cover types. 13 kinds of stable land cover
types from 2001 to 2005 are extracted from the MCD12Q1.006 product. For 9 kinds of vegetation land
cover types, 100 sampling points for each of the ENF, EBF, DBF, and MF datasets and 200 sampling
points for each of the shrubland, savanna, grassland, and cropland datasets are obtained.
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Noises in the time series can be reduced by methods, such as the maximum composite
method (choosing the highest-quality pixel in a time interval [15]) and the typical time-
series filter [36,41,43]. However, there were still spurious points that remained. Since
outliers can deviate obviously from a gradually changing time series and always exhibit
sudden increases or decreases, a series of algorithms were provided to recognize the
spurious points in the time series.

An outlier is defined based on two criteria. The first is that its value is greater/lower
than the mean of its moving window plus/minus the cutoff (cutoff is twice the standard
deviation of the points in the moving window [43]. In Equation (1), sigma (y(t − c),
y(t − c + 1), . . . , y(t), y(t + 1), . . . , y(t + c)) is the standard deviation of the point values in
the moving window). It is the serial number of time series points, where y(t) is the value
of the tth time series point, c is half of the moving window size, and 2c + 1 is the size of the
moving window.

y(t) < mean(y(t− c), y(t− c + 1), . . . , y(t), y(t + 1), . . . , y(t + c))− cuto f f
y(t) > mean(y(t− c), y(t− c + 1), . . . , y(t), y(t + 1), . . . , y(t + c)) + cuto f f

cuto f = 2 ∗ sigma(y(t− c), y(t− c + 1), . . . , y(t), y(t + 1), . . . , y(t + c))
(1)

In Equation (2), NK is the value of the kth point; dNK−1NK is the inclining or declining
slope from the (k − 1)th point NK−1 to the kth point NK; dNK NK+1 is the inclining or
declining slope from the (k − 1)th point NK to the kth point NK+1; K is the serial number of
the time series point; and ndt is the threshold of the time series points whose interval is
n-day, which is defined as 30%/16 × n and equal to 30% when the temporal resolution is
16 days. The second criterion is that both dNK−1NK and dNK NK+1 are larger than ndt or
lower than −ndt.

dNK−1NK = NK−1−NK
NK

× 100%

dNK NK+1 = NK+1−NK
NK

× 100%
ndt = 30%/16× n

(2)

If one of the above criteria is met, the point in the time series is defined as an outlier.
The second criterion is always used in the outlier recognition of NDVI time series and is
consistent with the best index slope extraction algorithm (BISE) [23].

2.3.2. Gap Filling

Linear and spline interpolations methods are widely applied to fill the time series
gaps [18,26]. For each sampling point, the gaps in the time series were filled using the three
gap-fill algorithms presented in this paper. The weighted average method is used to fill
gaps in the time series [44], the spurious midpoints can be filled by the weighted average
of the two nearest points. As shown in Figure 3, points a and d can be filled by the known
points b and c according to Equation (3), where Dab is the time interval between points a
and b, Dbd is the time interval between points b and d; Pa is the weight of point a; and Va is
the value of point a.

Pa =
Dbd

Dbd+Dab
Pd = Dab

Dbd+Dab
Vb = Pa ×Va + Pd ×Vd

(3)

The trend-fill method with a decay coefficient alpha can be used to fill the gaps in
the edges of a time series. If there are fewer than five deficient points in one edge of the
time series, they can be predicted according to Equation (4), where delta is the difference
between points b and a and alpha is the change ratio.

delta = Pb − Pa alpha = (1− abs( delta
Pa

))× Pb
Pa

predict_value = Pb + delta× alpha
(4)



Remote Sens. 2022, 14, 2280 7 of 21

Remote Sens. 2022, 14, x FOR PEER REVIEW  7  of  23 
 

 

is n‐day, which is defined as 30%/16 × n and equal to 30% when the temporal resolution 

is 16 days. The second criterion is that both  𝑑𝑁 𝑁   and  𝑑𝑁 𝑁   are larger than  𝑛𝑑𝑡 
or lower than  𝑛𝑑𝑡. 

𝑑𝑁 𝑁
𝑁 𝑁

𝑁
100%  

    𝑑𝑁 𝑁
𝑁 𝑁

𝑁
100% 

𝑛𝑑𝑡 30%/16 𝑛 

(2) 

If one of the above criteria is met, the point in the time series is defined as an outlier. 

The second criterion is always used in the outlier recognition of NDVI time series and is 

consistent with the best index slope extraction algorithm (BISE) [23]. 

2.3.2. Gap Filling 

Linear and spline  interpolations methods are widely applied to fill the time series 

gaps  [18,26]. For each sampling point,  the gaps  in the  time series were  filled using the 

three gap‐fill algorithms presented in this paper. The weighted average method is used to 

fill gaps in the time series [44], the spurious midpoints can be filled by the weighted aver‐

age of the two nearest points. As shown in Figure 3, points a and d can be filled by the 

known points b and c according to Equation (3), where 𝐷   is the time interval between 

points a and b, 𝐷   is the time interval between points b and d;  𝑃   is the weight of point 

a; and  𝑉   is the value of point a. 

 

Figure 3. Gap‐filling method. Solid time series points represent known time series val‐

ues, and hollow time series points represent missing time series values. 

𝑃
𝐷

𝐷 𝐷
𝑃

𝐷
𝐷 𝐷

 

𝑉 𝑃 𝑉 𝑃 𝑉  
(3) 

The trend‐fill method with a decay coefficient alpha can be used to fill the gaps in the 

edges of a time series. If there are fewer than five deficient points in one edge of the time 

series, they can be predicted according to Equation (4), where delta is the difference be‐

tween points b and a and alpha is the change ratio. 

𝑑𝑒𝑙𝑡𝑎 𝑃 𝑃    𝑎𝑙𝑝ℎ𝑎 1 𝑎𝑏𝑠
𝑑𝑒𝑙𝑡𝑎
𝑃

𝑃
𝑃
 

𝑝𝑟𝑒𝑑𝑖𝑐𝑡_𝑣𝑎𝑙𝑢𝑒 𝑃 𝑑𝑒𝑙𝑡𝑎 𝑎𝑙𝑝ℎ𝑎 
(4) 

As  in Figure 4, point c can be predicted from points a and b, while point d can be 

predicted from points b and c. If there are more than five spurious points at the edge of 

the time series, a quadratic polynomial  function  is used to predict the deficient values. 

Precision can be assured by using three times the number of missing points to construct 

the polynomial model. The specific gap‐filling strategy follows Equation (5), where  𝑥  is 

a b c d

Figure 3. Gap-filling method. Solid time series points represent known time series values, and hollow
time series points represent missing time series values.

As in Figure 4, point c can be predicted from points a and b, while point d can be
predicted from points b and c. If there are more than five spurious points at the edge of
the time series, a quadratic polynomial function is used to predict the deficient values.
Precision can be assured by using three times the number of missing points to construct the
polynomial model. The specific gap-filling strategy follows Equation (5), where x is the

serial number of the time series point, β is the coefficient matrix, and
−
x is the index of the

deficient point in the time series.

y = ax2 + bx + c predict_vlaues = βA

β = (AT A)
−1(ATy

)
=

 a
b
c


A =

 1 x x2

... x x2

1 x x2


(5)
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2.3.3. Enhanced SG Filtering

The SG filtering method is nearly fully automatic and only needs a few input param-
eters. It has been proven to be flexible and time-efficient. Its fitting index assures that
the fitted time series has a low deviation from the original time series. In Equation (6),
Y is the original time series value, N is the number of convoluting integers and is equal
to the smoothing window size (2 m + 1), and Ci is the coefficient for the ith value of
the filter (smoothing window), which can be calculated from the equations presented by
Madden [45].

Yj
∗ =

∑i=m
i=−m CiYj+1

N
, (6)
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Enhanced SG filtering methods are designed separately for time series of NDVI and
other data, such as GPP and LAI. For NDVI time-series data, only smoothed points with
values greater than the original value can be accepted as the upper boundary of NDVI.
However, for other time-series datasets, some high values cannot be accepted and the
NDVI smoothing strategy is not appropriate.

The strategy for NDVI aims to obtain the upper envelope of the time series values, as
per Equation (7) [26]:

N1
i = 〈 N0

i
Ntr

i

when
when

N0
i ≥ Ntr

i
N0

i ≤ Ntr
i

(7)

Fk =
n

∑
1
(
∣∣∣Nk+1

i − N0
i

∣∣∣×Wi) Wi =

〈
1

1− di/dmax
〈 when

when
N0

i ≥ Ntr
i

N0
i < Ntr

i
(8)

where N0
i is the original NDVI time series value after outlier recognition, Ntr

i is the
smoothed NDVI time series value, and Wi is the weight of the ith point, di =

∣∣N0
i − Ntr

i

∣∣
and dmax is the maximum of the absolute difference value of N0

i and Ntr
i . When the time

series meets the condition: iteration times > n or abs(FK − FK−1) < DeltaK (n is set to 20
and DeltaK is set to 0.01 for the NDVI time series), then the smoothing process terminates.

In addition, for time series datasets other than NDVI, to evaluate the smoothness of
the time series, the mean slope of every point in the time series is calculated. When the
maximum MeanSlope of all the points meets the condition, the SG process will terminate
and the specific condition can be defined as per Equation (9), where MMS is the maximum
MeanSlope of all the points in the time series; MMSM is the MMS of the Mth filter process;
n is the number of iterations; DeltaM is the threshold for the difference between MMSM+1
and SM; n = 5 and DeltaM = 0.1.

MeanSlope = dNK−1 NK+dNK NK+1
2

MMS = MAX(MeanSlope1, . . . , MeanSlopen)
MMSM−1 ≥ MMSM ≤ MMSM+1

or iteration times > n
or abs(MMSM+1 −MMSM) < DeltaM

(9)

To ensure that the smoothed time series data retains the characteristics of the original
time series, all the time series are smoothed by the enhanced SG filtering method. Finally,
we defined, at most, 20 smoothing times for the NDVI time series and 5 smoothing times
for the GPP, reflectance, and LAI data, which can retain the original data characteristics as
much as possible.

2.4. Model Fitting
2.4.1. CCTM Model

Generally, land surface changes are of four types [46]: (1) uniform variation whose
variation rate is fixed; (2) decelerated variation whose absolute value of the variation
rate is getting smaller and smaller; (3) accelerated variation whose absolute value of the
change rate is getting smaller and smaller, which are always caused by deforestation, floods,
fire, insects, urbanization, etc.; and (4) periodic variation caused by seasonality, climate
variability, vegetation growth, etc. Therefore, we developed the CCTM time series model,
which includes components of gradual, periodic, and abrupt variations to capture all four
types of surface change. A typical model can be expressed as per Equation (10), where
f1(y1), f2(y2), f3(y3), f4(y4), y1, y2, y3, y4 are the functions of the Julian day, with ranges
of [0, 365] or [0, 366]. In the above function-based model, f1(y1) is used to fit the uniform
variations, f2(y2) is used to fit the accelerated variations, f3(y3) is used to fit the decelerated
variations, and f4(y4) is used to fit the short-term periodic variations.

_
ρ (i, k, x)simple = f1(y1) + f2(y2) + f3(y3) + f4(y4) (10)
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The typical mathematical functions can also be divided into three categories according
to their second derivative ( f ′′ (x)): (1) the second derivative is larger than zero ( f ′′ (x) > 0).
This kind of basic function can be a polynomial function like axk + bxk−1 + cxk−2 + . . . + d,
an exponential function like ex, or a negative logarithmic function like − ln x. (2) The
second derivative is equal to zero ( f ′′ (x) = 0), such as a linear function ax + b. (3) The
second derivative is lower than zero ( f ′′ (x) < 0). This kind of basic function can be an
exponential function like e−x or positive logarithmic function like ln x etc.

To comprehensively represent the variations in yearly time series data, the final fitting
function is composed of four parts. First, the uniform variation part can be fitted by a linear
model, which can also capture the long-term change over a year: f1(y1) = a1,k,i y1 + β.
Second, the accelerated variation can be fitted by a positive exponential function model:
f2(y2)= b ey2 . Third, the decelerated variation can be fitted by a positive logarithmic func-
tion model: f3(y3)= c ln(y3). Finally, the unimodal variation or short-term periodic variation
parts can be fitted by this harmonic model [47], where f4(y4) = d1,k,i cos(2πy4) + e1,k,i sin(2πy4).
The harmonic model is comprised of a sine function and a cosine function, and it can
precisely represent periodic variations. Therefore, the final model can take the form
of Equation (11).

_
ρ
(

i, k, y)simple = a1,k,i×y1 + β + b1,k,i × ey2 + c1,k,i × ln(y3

)
+d1,k,i × cos(2πy4) + e1,k,i × sin(2πy4)

(11)

To magnify the values of the coefficients (such as a1,k,i and b1,k,i), the Julian day values
are normalized to the range of [0, 1] and y4 = max−x

max−min . Due to the value of exponential
function being persistently larger than 0 and rapidly increasing, the Julian day has also
rescaled to [0, 1] and y2 = x−max

10 . For the logarithmic function model, the Julian days
are limited to [1, e] and y3 = 1 + x−min

max−min ∗ (e− 1). Then, all of the function values are
transformed to the range of [0, 1], which is beneficial for magnifying the coefficients of the
fitting function.

The final CCTM time series model is as follows:

_
ρ (i, x)simple = a0,ix + b0,i + a1,i × cos( 2π(x−min)

365.25 )

+b1,i × sin( 2π(x−min)
365.25 + a2,i × e

x−max
10 + a3,i × ln(1

+ x−min
365.25 (e− 1))

(12)

where x is the Julian day; max is the maximum Julian day of the date range; min is the
minimum Julian day of the date range; i is the year; a0,i, b0,i are the coefficients of the
linear model; a1,i, b1,i are coefficients of the harmonic model which captures the unimodal
variation; a2,i is the coefficient of the index model that captures the accelerated variation
in a year; and a3,i is the coefficient of the logarithmic model that captures the decelerated
variation in a year.

2.4.2. Two Patterns of the CCTM Model

Two patterns of the CCTM model have been proposed in this paper. One is the
seasonal time-series pattern, another is the yearly time-series pattern. The seasonal time-
series pattern is to divide the yearly time series into four seasons, and each seasonal time
series is fitted by the CCTM model, so this pattern has 24 coefficients. The yearly time-series
pattern is to directly fit the yearly time series by using the CCTM model, and this pattern
has 6 coefficients.

The CCTM model in the yearly time-series pattern is shown as Equation (13):

_
ρ (i, x)simple = a0,i × x + b0,i + a1,i × cos( 2π(x−min)

365.25 ) + b1,i × sin( 2π(x−min)
365.25 +

a2,i × e
x−max

10 + a3,i × ln(1 + x−min
365.25 × (e− 1))

(13)
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In the seasonal time-series pattern, the yearly time series can be represented as the
sequence of the four seasonal CCTM models (Equation (14)):

_
ρ (i, x) = [

_
ρ (i, 1, x)simple,

_
ρ(i, 2, x)simple,

_
ρ(i, 3, x)simple,

_
ρ
(

i, 4, x)simple

]
_
ρ (i, k, x)simple = a0,i × x + b0,i + a1,i × cos( 2π(x−min)

max−min )

+b1,i × sin( 2π(x−min)
max−min + a2,i × e

x−max
10 + a3,i × ln(1

+ x−min
max−min (e− 1))

(14)

where, x is the Julian day; max is the maximum day of seasonal date interval; min is
the minimum day of seasonal date interval; k represents the season, where 1 = spring,
2 = summer, 3 = autumn, and 4 = winter; i is the year; a0,i, b0,i are the coefficients of the
linear model; a1,i, b1,i are coefficients of the harmonic model which captures the unimodal
variation; a2,i is the coefficient of the index model that captures the accelerated variation
in a year; and a3,i is the coefficient of the logarithmic model that captures the decelerated
variation in a year.

2.4.3. Comparison Models

To test the performance of the new model, we carried out a comparison among four
models by using the above sampling points. Besides the CCTM model proposed in this
paper, three other models were used, including the CCDC model, the Exp model, and the
Ln model. The Exp model is the CCTM model without the decelerated variation part, and
the Ln model is the CCTM model without the accelerated variation part.

The CCDC model designed for Landsat surface reflectance reconstruction provides
4, 6, and 8 coefficient function patterns, and the 6-coefficient model was applied to the
comparison (Equation (15)). The Exp model is shown in Equation (16) and the Ln model
is shown in Equation (17). Like the CCTM model, these models all have two patterns—a
yearly time-series pattern and a seasonal time-series pattern.

_
ρ (i, x)simple = a0,i + b0,i × x + a1,i × cos( 2π

max−min x)
+b1,i × sin( 2π

max−min x) + a2,i × cos( 4π
max−min x)

+b2,i × sin( 4π
max−min x)

(15)

_
ρ (i, x)simple = a0,i + b0,i × x + a1,i × sin( 2πx

max−min ) + b1,i×
cos( 2πx

max−min )+a2,i e
x−max

10
(16)

_
ρ (i, x)simple = a0,i + b0,i × x + a1,i × sin( 2πx

max−min )

+b1,i × cos( 2πx
max−min ) + a2,i × ln(1 + x−min

max−min × (e− 1))
(17)

where, x is the Julian date; i is the year; for all the time series datasets, the models were
compared using two different preprocessing flows: (1) reconstruction without smoothing
for the preprocess; and (2) reconstruction with smoothing for the preprocess.

2.4.4. Evaluation of Time Series Reconstruction Accuracy

The gap-filled time series has maintained the original characteristics in the time series
variations, so it can be used as the standard time series for evaluating the reconstruction
effect. Two indices between the gap-filled time series and reconstructed time series are
calculated to evaluate the reconstruction effects. First, the RMSE (Root mean square error
index) can measure the degree of deviation of the model from the original data. Second, the
R2 index can evaluate the consistency of the original data before and after reconstruction.
These indices are shown as Equation (18), where f (i) is the point value of the processed
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time series, s(i) is the point value of the original time series, m is the number of the time
series points.

MSE =

√
∑m

1 ( f (i)−s(i))
m

R2 = 1− ∑i ( f (i)−s(i))2

∑i (s(i)−s(i))
2

(18)

2.4.5. Accuracy Validation of Yearly and Seasonal Time Series Patterns

The continuous reconstruction results of the four models are compared in the two
patterns: (1) yearly time series reconstruction; and (2) seasonal segment time series recon-
struction. Both continuous-time series reconstructions use the above-mentioned methods
including the time series outlier gap-filling algorithm and the Enhanced SG filter noise
smoothing process, and then the accuracies of the four models for the continuous-time
series reconstruction are evaluated by R2 and RMSE respectively.

For the yearly time series pattern, the following steps compare the reconstruction
results of the four models in the yearly time series reconstruction pattern. First, the yearly
cropland, forest, and grassland NDVI time-series datasets are selected to evaluate the
trend-fitting ability for its application in phenology extraction. In total, 494 cropland
sampling points, 456 forest sampling points, and 2261 grass sampling points are chosen
to evaluate the fitting abilities among different models. All the NDVI time series points
are preprocessed, including outlier recognition, Gap filling, and the Enhanced SG filter.
The yearly time series that remove some detailed variations and only retains the yearly
trend is not too challenging for the four models. Therefore, for the yearly time series, the
SG filter iteration time is set to be less than 100, and the yearly characteristics will not be
lost but detailed variations are nearly lost during the process. Six or 8 parameters are not
too challenging for smoothed time series. Second, the fitting accuracies are evaluated using
the indices R2 and the RMSE calculated from the preprocessed time series and the fitted
time series.

For the seasonal time series pattern, the time series of the sampling points in Section 2.3.1
are preprocessed by outlier recognition and gap-filling methods in Sections 2.3.1 and 2.3.2.
The preprocessed time series was then smoothed by the Enhance SG filter. Finally, with the
seasonal division strategy, the time series are separately reconstructed by the four function
fitting models. The fitting R2 and RMSE are separately calculated from the preprocessed
time series and the final time series to evaluate the fitting accuracy of the four function
fitting models.

3. Results
3.1. Comparison of Yearly Timeseries Pattern

The RMSE probability distribution plots in Figure 5 and the R2 probability distribution
plots in Figure 6 show that the Harmonic model has the strongest fitting ability for the
yearly time series. More than 95%R2 values and RMSE values are separately larger than
0.90 and less than 0.01 for the Harmonic model and the CCTM model. The CCTM model
is slightly inferior to the Harmonic model in fitting accuracy, and the Exp model and the
Ln models have shown nearly the same fitting ability. The average statistical result of R2

and RMSE has shown that the Harmonic model has the best fitting accuracy, which has
minimal differences from the original time series.

In addition, Figure 7 shows some of the fitting curves of different models in yearly time
series patterns. The four models have some differences in the fitting effects. Although the
Harmonic model and the CCTM model have nearly the same fitting effects, the Harmonic
model has shown more time-series symmetrical characteristics than the CCTM model. The
annual time series contains more periodic variation characteristics than the seasonal time
series, and to comprehensively assess the fitting effects of the four models, the seasonal
segment time-series pattern will also be compared among the four function fitting models.



Remote Sens. 2022, 14, 2280 12 of 21

Remote Sens. 2022, 14, x FOR PEER REVIEW  13  of  23 
 

 

the seasonal segment time‐series pattern will also be compared among the four function 

fitting models. 

 

Figure 5. Fitting RMSE distribution on different land cover types among different models. 

The figs reflect the fitting RMSE probability density distributions of different models. The 

frequency is the number of time series points in a certain RMSE range, and different land 

cover types may have different RMSE categories. 

 

Figure 6. R² distribution on different land cover types among different models. The figs 

reflect the fitting R²probability density distributions of different models. The frequency is 

the number of time series points in the certain R² range, and different land cover types 

may have different RMSE categories. 

 

Figure 5. Fitting RMSE distribution on different land cover types among different models. The figs
reflect the fitting RMSE probability density distributions of different models. The frequency is the
number of time series points in a certain RMSE range, and different land cover types may have
different RMSE categories.

Remote Sens. 2022, 14, x FOR PEER REVIEW  13  of  23 
 

 

the seasonal segment time‐series pattern will also be compared among the four function 

fitting models. 

 

Figure 5. Fitting RMSE distribution on different land cover types among different models. 

The figs reflect the fitting RMSE probability density distributions of different models. The 

frequency is the number of time series points in a certain RMSE range, and different land 

cover types may have different RMSE categories. 

 

Figure 6. R² distribution on different land cover types among different models. The figs 

reflect the fitting R²probability density distributions of different models. The frequency is 

the number of time series points in the certain R² range, and different land cover types 

may have different RMSE categories. 

 

Figure 6. R2 distribution on different land cover types among different models. The figs reflect
the fitting R2probability density distributions of different models. The frequency is the number
of time series points in the certain R2 range, and different land cover types may have different
RMSE categories.

Remote Sens. 2022, 14, x FOR PEER REVIEW  13  of  23 
 

 

the seasonal segment time‐series pattern will also be compared among the four function 

fitting models. 

 

Figure 5. Fitting RMSE distribution on different land cover types among different models. 

The figs reflect the fitting RMSE probability density distributions of different models. The 

frequency is the number of time series points in a certain RMSE range, and different land 

cover types may have different RMSE categories. 

 

Figure 6. R² distribution on different land cover types among different models. The figs 

reflect the fitting R²probability density distributions of different models. The frequency is 

the number of time series points in the certain R² range, and different land cover types 

may have different RMSE categories. 

 

Figure 7. The fitting curves of different models with no seasons division. The figs reflect the yearly
time series fitted by the CCTM, Harmonic, Exp, and Ln models.



Remote Sens. 2022, 14, 2280 13 of 21

3.2. Reconstruction with Seasonal Segment Time-Series Fitting
3.2.1. Smoothing Process

Before the smoothing process of the SG filter, the gap-filled time series are extracted,
and R2 and RMSE between the gap-filled time series and smoothing processed time series
are calculated. The final statistical results are shown in Table 2.

Table 2. Statistics of the percentages of sampling points in the threshold range after smoothing.

Data type GPP

land cover Grassland Cropland DBF EBF ENF MF Savannas Shrubland

R2 (>0.9) 99 97 100 93 100 100 99 96
RMSE (<5) 99 99 93 64 97 97 97 100

num_points 985 985 490 485 480 490 470 980

Data type NDVI

landcover Grassland Cropland DBF EBF ENF MF Savannas Shrubland

R2 (>0.9) 95 90 100 33 94 98 94 86
RMSE (>0.01) 96 99 100 99 100 100 100 79
num_points 945 842 481 202 415 470 446 977

Data type LAI

landcover Grassland Cropland DBF EBF ENF MF Savannas Shrubland

R2 (>0.9) 98 97 97 93 98 98 97 97
RMSE (<0.5) 100 100 91 70 94 92 98 100
num_points 979 831 490 490 480 490 485 923

Data type MSR

landcover Grassland Cropland DBF EBF ENF MF Savannas Shrubland

R2 (>0.9) 91 96 99 94 98 99 97 67
RMSE (<0.035) 91 97 99 99 99 98 92 93

num_points 817 736 440 142 374 395 382 730

Before and after smoothing, nearly 95% of GPP time series data of all land cover types
except EBF have smoothing RMSEs <5 g C m−2. Almost 95% of LAI time series data of
all land covers except EBF have a smoothing RMSE <5. The GPP and LAI time series
data for forests, such as EBF, ENF, DBF, and MF, have relatively high RMSEs than those
for grassland, cropland, savanna, and shrubland. However, the time series values of the
forest types are higher than those of other land cover types, including cropland, grassland,
savanna, and shrubland.

The R2 result of the GPP and LAI smoothing process shows that: (1) except for
cropland, EBF, and shrubland, nearly 90% of GPP time series points have R2-values >0.90.
The EBF time series points have lost more original characteristics (about 30% LAI time
series points have RMSE >0.5 and >30% GPP time series points have RMSE >5) than other
land cover types (>90% LAI time series points have RMSE <0.5 and >95% GPP time series
point have RMSE <5); (2) nearly 85% of LAI time series points of all land covers except
EBF have R2-values >0.90. The smoothing processes applied to GPP and LAI time series
maintained the original time series characteristics.

For the NDVI data, the smoothing process was used to reduce noise. Nearly all of the
data except for shrubland have RMSEs > 0.01, and almost 95% of data except that of EBF
have R2-values >0.9.

For reflectance data, more than 90% of time series points have RMSEs <0.035, and
more than 90% of land cover types except shrubland have R2-values >0.9. The data for
forest types, including the ENF, DBF, and MF, have higher R2-values than other land covers.
In addition, the reflectance data of land cover types except shrubland have lower RMSEs
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and higher R2-values. This can, to some extent, indicate that the smoothing process reduces
noise in the time series data and maintains its original long-term trend.

3.2.2. Reconstruction with Smoothing Process by Seasonal Segment Fitting

In this section, the time series after gap-filled and SG filter smoothing processes was
defined to be the original time series, and the processed time series was the fitted time
series by the four reconstruction models. The R2 and RMSE values between the original
and processed time series are calculated in Table 3.

Table 3. Reconstruction results after smoothing.

Data Type Models Ln Harmonic Exp CCTM Num
Points

GPP

landcover R2

(>0.98)
RMSE
(<2)

R2

(>0.98)
RMSE
(<2)

R2

(>0.98)
RMSE
(<2)

R2

(>0.98)
RMSE
(<2)

Grassland 83 98 96 97 84 95 99 100 995
Cropland 64 92 85 86 65 79 94 98 990

DBF 87 89 97 66 90 65 88 99 500
EBF 28 41 65 28 29 18 85 81 485
ENF 97 97 99 72 97 77 100 100 500
MF 95 94 99 62 95 70 100 99 500

Savannas 78 92 94 82 79 80 98 99 500
Shrubland 79 100 92 99 80 100 98 100 990

LAI

landcover R2

(>0.9)
RMSE
(<0.5)

R2

(>0.9)
RMSE
(<0.5)

R2

(>0.9)
RMSE
(<0.5)

R2

(>0.9)
RMSE
(<0.5)

Grassland 95 99 99 100 96 99 97 100 934
Cropland 86 98 98 99 89 98 92 99 880

DBF 96 84 99 95 97 86 99 91 480
EBF 61 34 91 57 67 31 75 48 438
ENF 88 85 99 93 91 84 93 89 482
MF 91 83 99 94 94 83 96 89 493

Savannas 90 97 98 97 93 96 94 97 470
Shrubland 92 100 98 100 93 100 96 100 976

NDVI

landcover R2

(>0.995)
RMSE
(<0.02)

R2

(>0.995)
RMSE
(<0.02)

R2

(>0.995)
RMSE
(<0.02)

R2

(>0.995)
RMSE
(<0.02)

Grassland 65 97 34 97 29 96 98 98 956
Cropland 55 98 28 96 21 94 96 99 987

DBF 90 94 55 93 49 91 100 99 491
EBF 6 99 0 97 0 95 59 100 204
ENF 61 85 31 88 25 75 95 96 421
MF 76 84 43 89 35 76 98 95 475

Savannas 75 92 37 88 30 83 98 98 456
Shrubland 57 91 21 85 15 84 94 94 987

MSR

landcover R2

(>0.995)
RMSE
(<0.01)

R2

(>0.995)
RMSE
(<0.01)

R2

(>0.995)
RMSE
(<0.01)

R2

(>0.995)
RMSE
(<0.01)

Grassland 19 76 39 73 18 71 58 87 827
Cropland 9 87 30 85 8 84 54 96 678

DBF 27 94 54 92 27 89 77 99 447
EBF 1 99 8 99 1 99 31 99 142
ENF 27 90 66 90 28 86 85 97 377
MF 32 90 67 86 36 83 81 95 396

Savannas 23 70 64 97 27 61 74 85 827
Shrubland 12 83 23 81 11 81 46 90 678

For the NDVI data, the CCTM model has a lower RMSE compared to other models
(Figure 8). More than 95% of the time series points of all the land cover types except EBF
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have fitting R2-values >0.995, and <5% of all the time series points except shrubland type
have a fitting RMSE >0.02 (Figure 9). However, for Exp and Harmonic models, more than
50% of time series points of all the land cover types have a fitting RMSE higher than 0.02.
The reconstruction effect of the Ln model is not as good as the CCTM model (especially
for the EBF land cover type), but it is significantly better than other models. The CCTM
model generally shows considerably better performance than other models for the NDVI
time series reconstruction.
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For the GPP dataset (Table 3), more than 95% of the time series points of land cover
types except EBF have fitting R2-values >0.98, and more than 95% of time series points of
all the land cover types have fitting RMSEs <0.02 g C m−2 using the CCTM model. The
CCTM model is significantly better than other models, especially for the GPP time series of
shrubland, savanna, grassland, cropland, and EBF. For other forest types, except for EBF,
there are smaller differences among the four models. Overall, the CCTM model performs
well for the GPP time series reconstruction for all land cover types.
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For the LAI dataset (Table 3), the harmonic model shows the best reconstruction
performance, with the CCTM model being slightly inferior. Except for the EBF land cover
type, nearly 90% of time series points have fitting R2-values >0.9, which indicates that the
CCTM model also has a great trend-preserving ability. For different land cover types, the
reconstruction RMSEs are relatively inconsistent, and the forest types have larger RMSEs
than non-forest types such as savanna, shrubland, and cropland. Due to the relatively low
RMSE and high R2-values, the CCTM model is suitable for LAI time series reconstruction.

For the reflectance dataset, the reconstruction result after smoothing achieved high
R2-values (nearly 100% of time series points have R2-values >0.9 by any of the mod-
els)(Figure 10). The CCTM model has the best reconstruction effect among the four models,
and nearly all the time series points have R2-values >0.95(Figure 11). In addition, the CCTM
also gained the lowest RMSE, about 90% of time series points of all land cover types have
RMSE <0.01.
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4. Discussion

The discussion section consists of three parts: (1) the major advantages and limita-
tions, the reasons for high accuracy reconstruction results and the limitations of the new
method are discussed in this part; (2) the potential applications; and (3) the time series
functionalization and compression, the compression patterns and choices are discussed in
this section.

4.1. Advantages and Limitations

In this paper, the fitting abilities of the four function fitting models are compared in the
two time series patterns—the yearly time series pattern and the seasonal time series pattern.
Different results exist in the two different patterns. For the yearly time series pattern, the
Harmonic model shows the best fitting accuracy, and the CCTM model is slightly inferior
to the Harmonic model. Most of the cropland, forest, and grassland NDVI time series have
obvious seasonal time-series variation characteristics [48–50], and the Harmonic model has
the most symmetrical fitting functions among the four function fitting models [51], so the
Harmonic model has shown the best fitting accuracy among the four models.

For the seasonal time series pattern, the four function fitting models have all shown
higher fitting accuracy than the models in the yearly time series pattern. Obviously, the
seasonal pattern is a kind of segment fitting technique, and therefore the higher fitting
accuracies were obtained in this pattern. The CCTM model has shown the highest fitting
accuracy in this pattern. The CCTM model is designed according to the type of time series
variation rates. It is a more comprehensive function fitting model than the Harmonic model.
When it comes to time series with fewer periodic variations, such as the time series in one
season, the CCTM model shows better fitting ability than the Harmonic model.

The higher accuracy of the CCTM model also shows that the CCTM model has a
stronger comprehensive function fitting ability than the Harmonic model for the asymmet-
ric time-series variations induced by vegetation growth, natural disasters, etc. From the
meaning of the second derivative mathematical function, the CCTM model has more com-
prehensive representation techniques. Therefore, the CCTM model can be more accurate
than the Harmonic model for the continuous-time series reconstruction.

The seasonal segment fitting results show that there are differences among different
vegetation types. Obviously, different vegetation types mean different seasonal variation
cycles and ranges of time series values, which lead to different fitting effects among different
function fitting models. For the EBF vegetation type, the periodic variation characteristic is
not significant in the yearly NDVI time series, and the Harmonic model and the CCTM
model showed the largest differences.

However, the CCTM model has more complex function fitting structures than the
Harmonic model. If there is no requirement for high-precision reconstruction results or
model interpretability, the CCTM model is not suggested.

4.2. Potential Applications

Due to the high precision reconstruction effect, the CCTM model may also be applied
to land surface phenology detection and monitoring, seasonal characteristics extraction,
and trend analysis. For seasonal characteristic extraction, the CCTM model is specially
designed to decompose the seasonal characteristics into four change parts and effectively
extract the seasonal variation characteristics. For the trend analysis, because the CCTM
model can decompose the time series into different variation types, the CCTM model can
analyze trends of different variation types. The phenology extraction demands extracting
the time series statistical features to obtain different transition states [52]. The CCTM model
can represent the time series practically with high accuracy, improving the efficiency and
accuracy of phenological extraction.



Remote Sens. 2022, 14, 2280 18 of 21

4.3. Time Series Functionalization and Compression

The CCTM model also provides a solution to minimize time series storage, one-year
time series can be precisely characterized with only 24 coefficients in the seasonal time series
pattern. The 24 coefficients can replace the original huge dataset as the new input, conducive
to analyzing and applying extensive time-series data. Because extracting statistical features
with a function is easier than extracting from actual time series, the functionalization for
the time series can also optimize the extraction efficiency of statistical characteristics.

In addition, the coefficients have mathematical meanings, and the coefficients of
different variation types represent the weights of different variations. More research is
needed to explore the correlation of the coefficients with different variation types.

The CCTM model can also be applied to time series image compression. The daily
time series have 365 or 366 bands, the 4-day time series dataset has approximately 90 bands,
and the 8-day time series dataset has about 46 bands. All these time series can be stored in
only 24 bands in the seasonal time series pattern, with each seasonal time series being fitted
by the CCTM model which has 6 coefficients. Therefore the 4-day time series can approxi-
mately reach the compression ratio of 3.75, the 8-day time series dataset can approximately
achieve the compression ratio of 1.91, and the daily time series dataset can approximately
achieve the compression ratio of 15.

The DBF land cover type’s daily reflectance dataset and 8-day NDVI dataset have
been selected to evaluate the compression effects. The CCTM model separately compresses
these two datasets with 24 coefficients in seasonal time series pattern and 6 coefficients in
yearly time series pattern.

The compression of the CCTM model has two patterns. The seasonal time series
compression pattern which has 24 coefficients is to divide the yearly time series into four
seasons. The yearly time series compression pattern which has 6 coefficients is to directly
fit the yearly time series by using the CCTM model.

By using the above compression patterns, the storage before or after compression
is compared and the R2 between the original time series and compressed time series is
calculated (Table 4). The original NDVI compression image has 383 rows, 307 columns,
and 46 bands. Every pixel value is stored with a 32-bit integer, so the total image size is
20.63 MB. Similarly, the original consistent reflectance image has 365 bands, so the total
image size is 163.7 MB. For the seasonal compression pattern, when applying the CCTM
model to these datasets, the storage of the compressed time-series dataset for both NDVI
and reflectance time series is only 10.7 MB, which is 52% of the original 8-day NDVI dataset
and 6.5% of the original daily reflectance dataset.

Table 4. The time series compression evaluation in two compression patterns.

Dataset 8-Day Time Series NDVI Daily Time Series
Reflectance

Compression pattern seasonal yearly seasonal

Coefficient number 24 6 24
Original storage (MB) 20.63 21 163.7

Compressed storage (MB) 10.7 2.7 10.7
R2 0.99 1 0.97

For the yearly time series compression pattern, the final compressed NDVI and re-
flectance time series can be stored with only 2.69 MB, which is 13% of the original 8-day
NDVI dataset and 1.6% of the original daily reflectance dataset. The number of com-
pression coefficients should be chosen using the actual data precision when selecting the
compression method.

The CCTM model is flexible on the number of the coefficients; a whole year time
series can be compressed with 6 and 24 parameters. Remote sensing image compression
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has its standards, and the specified compression methods using the CCTM model need
further research.

Due to the seasonal segment time series fitting technique, the CCTM model can achieve
higher accuracy in the seasonal time series pattern than that in the yearly time series pattern,
but the compression in the seasonal time series pattern needs more storage space than the
compression in the yearly time series pattern. The compression pattern should be decided
by the trade-off between compression ratio and compression accuracy. Only when the
yearly time series compression pattern can not meet the accuracy requirement, the seasonal
time series compression pattern should be adopted.

5. Conclusions

The essence of remote sensing time series reconstruction is to repair missing values
by exploring and using relevant time series data. Traditional time series reconstruction
methods commonly have over-smoothing and under-fitting deficiencies, and traditional
reconstruction function-based models are too simple to reflect complex time series varia-
tions. Certainly, a complex model with many more parameters definitely fits data better
than a simple model, but simply increasing the number of parameters is not effective.
The CCTM model with 6 parameters is constructed based on the second-order derivative
theorem and this is why its reconstruction precision is higher than the Harmonic model
with 8 parameters. In general, the CCTM model can comprehensively reflect the complex
characteristics of time series variation and embody seasonal characteristics.

Compared to the Exp, Ln, and harmonic models, the CCTM model has lower fitting
errors. In the reconstruction of GPP and MSR time series with a smoothing process, >95%
of time series points (except the EBF type) had R2-values >0.9 and RMSEs < 2 g C m−2 and
0.025, respectively by using the CCTM model. For NDVI reconstruction after smoothing,
>95% of time series points had R2-values >0.9 and RMSEs < 0.01 (except for the ENF and
MF types) using the CCTM model. The CCTM model had the fewest extreme fitting errors
but also has its limitations. Because the TP and LST time-series datasets contain too many
frequent fluctuations, none of the models is suitable for their reconstruction.

Developing high-precision models can improve the precision of time series recon-
struction and be beneficial in obtaining accurate knowledge of the variations in the time
series dataset. Besides, the CCTM model is supposed to be applied to time series change
detection, trend analysis, extraction of phenology and seasonal characteristics, time-series
image compression, and land cover classification.
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