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Abstract: Increased demand for sustainable timber products has resulted in large investments
in agroforestry in Australia, with plantations growing various Pinus species, selected to suit a
plantation’s environment. Juvenile Pinus species have a low fire tolerance. With Australia’s history
of wildfires and the likelihood of climate change exacerbating that risk, the potential for a total
loss of invested capital is high unless cost-effective targeted risk minimisation is part of forest
management plans. Based on the belief that the understory profiles within the juvenile plantations
are a major factor determining fuel hazard risks, an accurate assessment of these profiles is required
to effectively mitigate those risks. At present, assessment protocols are largely reliant on ground-
based observations, which are labour-intensive, time consuming, and expensive. This research
project investigates the effectiveness of using geospatial analysis of drone-derived photographic data
collected in the commercial pine plantations of south-eastern Queensland as a cost-saving alternative
to current fuel hazard risk assessment practices. Understory composition was determined using the
supervised classification of orthomosaic images together with derivations of canopy height models
(CHMs). The CHMs were subjected to marker-controlled watershed segmentation (MCWS) analysis,
isolating and removing the plantation pine trees, enabling the quantification of understory fuel
profiles. The method used proved highly applicable to immature forest environments with minimal
canopy closure, but became less reliable for close canopied older plantations.

Keywords: fuel hazard; understory composition; remote sensing; canopy height; orthomosaic; risk
mitigation; plantation; agroforestry; marker-controlled watershed segmentation

1. Introduction

An expanding human population has driven increased demand for timber products,
placing stress on supply and threatening the survival of native forest resources [1,2]. In
response, the agroforestry industry has expanded to meet the growing commercial demand
for a plantation product that is deemed to be sustainable and the result of responsible
environmental practices [3,4]. In south-east Queensland, plantation trees can take up to
25 years to reach commercial maturity [5], and consequently, large amounts of capital
are invested in an agricultural industry that is slow to produce returns on investment.
During this time, the crop faces a myriad of potential threats including drought, floods,
pests and fire, any of which could lead to a total loss of monies invested [6]. Therefore,
responsible forest management practice needs to include strategies designed to mitigate
a total loss of invested funds. With respect to fire, risk mitigation needs to be based on a
detailed knowledge of the location and structure of available fuels [7] and on an informed
understanding of which components of those fuels represent the major risk, before resources
tasked with reducing that risk can be effectively deployed.

The creation of fire requires three basic ingredients: a supply of suitable fuel, available
oxygen and an ignition source. In an outdoor environment, the limitation of available oxy-
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gen is not feasible. Therefore, reducing the risk of a fire is limited to either eliminating the
ignition source or reducing the amount of available dry fuel. Wildfire ignition sources can
broadly be classified as either natural or anthropogenic [8]. Human behaviour concerning
fire is often quite unpredictable and impossible to comprehend, with many fires resulting
from deliberate acts of arson [9,10]. Despite this, lightning remains the largest source of
natural ignitions [8,11]. However, after researching the causes of wildfires in south-eastern
Australia, Nampak et al. [12] found that the percentage of strikes that result in an ignition
event is extremely low, with an annual efficiency of only 0.24%. However, the study also
concluded that low-level vegetation such as dry summer grasses and understories signifi-
cantly increased the likelihood of a successful lightning ignition. This finding supports the
assumption that lower-level vegetation is an important determinant of potential fire risk
and further reinforces the belief that if the potential risk from a wildfire is to be mitigated,
those tasked with performing the mitigation need a good understanding of the profiles of
that lower-level vegetation, which, in many cases, is a forest or woodland understory.

Understanding the mechanisms of lightning and successful wildfire ignitions has
been further complicated by a changing climate [8,13,14]. There is evidence that global
warming has driven increased lightning activity and the logical conclusion is that this
will result in more wildfires [15]. However, as weather events and atmospheric activity
are outside anthropogenic control [11], the only risk mitigation pathway available is to
improve methods of limiting the spread of fire following an ignition by reducing or altering
the fuels available to support that spread.

Globally, forest ecosystems and ignition sources may vary, but few fires successfully
increase in size without the existence of an understory with a volume, structure and
sufficiently low moisture content capable of supporting that increase [16,17]. As with
oxygen availability and ignition sources, the fuel moisture content usually cannot be
feasibly altered in forested environments and, therefore, reductions in the development
of a wildfire from an ignition revolve around interventions that reduce the understory
fuel volumes or alter their structures before conditions favourable to the development of a
wildfire exist.

Anthropogenic behaviour has altered forest understory composition and structure [4].
For example, land use changes in the Mediterranean have led to an increased amount of
more flammable scrubby understory vegetation, increasing chances of ignition and fire
intensity [18]. The situation has been further complicated by human-induced changes
in climate patterns and associated increased periods of warmer weather, limiting the
time available to implement planned fuel hazard reductions, and further contributing
to potential scenarios of larger, more prevalent wildfires. Evidence suggests that this is
already occurring in Australia, where the number and scale of wildfires have increased due
to increased amounts of drier fuel resulting from longer, hotter seasons [19–22]. Similar
conditions are emerging in Asia and the Americas as extended drier and hotter summer
seasons produce increased volumes of dry understory fuels [23,24]. Most recent studies
have concluded that this trend will continue [14,25].

Cruz et al. [26] concluded that high surface fuel loads were the primary factors influ-
encing the ignition and spread of the intense 2009 Black Saturday Fires in Victoria, Australia.
The surface fuels of concern were the dry understory layers comprising desiccated vegeta-
tion and remnant eucalypt litter such as bark and limbs [27,28]. Research by Erni et al. [29]
supported the belief that understory profiles in the Canadian and North American forests
were major determinants of fire ignition and spread.

Consequently, there is an increased need for intervention to reduce the risk of intense
wildfires developing from ignition events occurring during fire-favourable weather condi-
tions by reducing the available ground-level fuels [30,31]. Fuel load reductions primarily
using controlled hazard reduction burns have long been used as the primary method of
mitigating this risk [32,33], but in commercial forestry, fuel load management can also be in
the form of chemical or mechanical reduction [5,34]. Fuel reduction burns to reduce the
amount of available understory fuel by burning during the cooler seasons, with the aim
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being to reduce understory volume and alter the understory structure without damaging
the tree crowns of taller vegetation. However, in some juvenile pine plantations, the use
of fire can lead to tree mortality and is therefore not appropriate. Whatever the chosen
method, effective fuel hazard reduction programmes direct what are usually limited re-
sources towards regions assessed as being at substantial risk. Unless the ignition source
of a forest fire is a fully developed crowning fire spreading from an adjacent forested
environment, the initial ignition site and, consequently, the area of highest risk is likely
to be in regions with dense understory vegetation, which becomes highly flammable as it
dries [31]. Therefore, the effective implementation of hazard reduction requires a detailed
assessment and a good understanding of that understory if effective measures are to be
implemented to limit the likelihood of a successful ignition and subsequent spread [35].
At present, the assessment of sometimes large regions to determine potential high-risk
locations within is largely based on field observations, which are both time-consuming
and expensive. The reality of large capital losses due to increases in wildfire intensity and
frequency has provided the impetus to improving forest management practices aimed at
limiting the potential losses from destructive events.

Research projects have examined alternative methods that remotely sense forest
structures. However, most of the early studies utilised data from satellite imagery, high-
resolution aerial photographs or LiDAR, obtained using rotary or fixed-wing aircraft, to
produce profiles of forest environments [7,36,37]. These methods were able to cover large
areas, but were expensive to implement and the limited resolution of satellite imagery made
the definition of smaller trees difficult [37–39]. The methodologies mainly concentrated on
quantitative assessment of potential commercial timber inventories using Individual Tree
Crown Detection and Delineation (ITCD) techniques [37,38].

The finer-scale analysis of forest environments has been enhanced by recent devel-
opments in unmanned aerial vehicle (UAV) photogrammetry and LiDAR, leading to the
availability of more cost-effective options for forest structure profiling [37]. The higher
resolution data, when compared to that of satellites, has enabled improved assessment
of areas composed of smaller trees. Again, most of the initial studies concentrated on the
quantification of commercial products contained beneath the forest canopy [37–39]. Despite
extensive literature reviews conducted by the authors, it appears that to date, little work
has been carried out using these techniques to determine what constitutes other forest
layers such as the qualification and quantification of understory profiles as part of overall
fuel hazard management planning.

Improvements in UAVs, the associated data sensing equipment payload and the
computer software capable of analysing the resultant data have enabled some studies
to extend profiling to include the complete forest environment. More recently, with an
increased realisation of the fire risk associated with the forest floor and understory, there
has been an emerging emphasis on the use of remote sensing technologies to profile the
lower levels of forests [40,41].

The adaptation of remote sensing to improve efficiencies in fuel hazard management
has potential benefits for not only the natural environment, but also agricultural operations,
where loss due to fire has major financial implications [42]. This is especially relevant in (but
not limited to) Australia, a country with a history of destructive wildfires that are likely to
become more severe as climate change progresses. Of particular concern to this study is the
growing potentially negative impacts on agricultural operations, particularly silviculture.

Research projects have attempted to find more economically viable methods to im-
plement fire management protocols in forest environments around the world [43–45].
Many of those projects have investigated the use of UAV-supported remote sensing tech-
niques [37,46]. Despite this research, the commercial pine industry has persisted in reliance
on field observations to assess potential fire risks and to direct treatments. These methods
are labour-intensive and therefore expensive [47]. This study aimed to investigate the use
of drone-derived data using photogrammetry to determine the amount, composition and
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structure of understory fuels that could potentially improve efficiencies in fuel hazard
management in the commercial pine plantations of south-eastern Queensland.

2. Materials and Methods
2.1. Overview

The aim of this study was to develop a simple, accurate method of using fuel load
information from high-resolution drone-based RGB images and photogrammetry to deter-
mine the amount and types of understory vegetation in the plantation, with the secondary
aim being to determine the composition of that understory from a fire risk perspective.
Three field samples from three quadrats within each of the ten sites were collected in Au-
gust and November 2020 using the same data collection, collation and assessment protocols.
The data collected included maximum vegetation height, average vegetation height and a
summary of vegetation composition within each sampling quadrat. Each site was surveyed
using drone-based images that were processed for the creation of RGB orthomosaics and
subjected to digital photogrammetry to derive dense point clouds (DPCs) of the surface
elevation related to each location. Canopy height models (CHMs), understory vegetation
height models (DSM(Un)s) and digital elevation models (DEMs) were generated using
varying combinations of image, photogrammetry and geospatial analysis in the digital
environment. Sunshine Coast Council (SCC) LiDAR data (2018) was used to verify the
accuracy of the resultant DEMs. Fuel types were classified into four classes: bare ground
(including pine needle debris), grasses/herbs/sedges/ferns/small shrubs (GHSFSS), resid-
ual debris (Litter) and woody weeds (WW) by applying ENVI Supervised Classification
Workflows to RGB orthomosaics. The resultant fuel height and composition models were
compared with the field samples obtained.

2.2. Specifics
2.2.1. Study Site Location

The study site locations were within the Hancock Queensland Plantations Pty Ltd.
(HQP) Beerburrum Forest and located to the east of the Bruce Highway, approximately
55 km north of Brisbane (Figure 1). The plantation consisted of ‘Southern Pine’ species
(Pinus caribaea and Pinus elliotti) and the 10 study sites selected ranged from new plant-
ings to mature trees. HQP refers to individual plantation sites as ‘compartments’. The
compartments chosen had a tree age range of 1–10 years. The compartment understory
profiles comprised various combinations of grasses, mainly whisky grass (Andropogon
virginicus), blady grass (Imperata cylindrica) and signal grass (Urochloa decumbens), sedges,
shrubs, herbaceous species, bracken fern and dry remnant woody material. The area has
an average annual precipitation of 1057 mm and an average temperature of 20.2 ◦C [48].

2.2.2. Field Data Collection

The compartments were all located within an area of 11 km2, with the study compart-
ments ranging from 1.0 to 6.7 ha. For this study, the juvenile plantings were divided into
three age groupings: Group A, trees 1–3 years of age (YOA); Group B, trees 4–7 YOA; and
Group C, trees 8–10 YOA (Figure 1 and Table 1). The compartments were selected to reflect
variations within each grouping.

Three sampling locations were randomly selected within each compartment as follows:
From a point 20 m from the compartment boundary, the first predetermined compass bear-
ing selected from a list generated using ‘Random Lists’ (https://www.randomlists.com/
random-direction, accessed on 15 May 2023) was followed for a tape-measured distance of
50 m to sampling point one. A labelled stake (Group ID, Compartment Number and Site
Number) was placed at the closest point within the planting row and the GNSS position
was noted on the Field Survey Data Sheet using the GDA94 Zone 56 UTM Coordinate
System. A 0.5 × 0.5 m quadrat was positioned one metre east of the stake (Figure 2). The
maximum and average vegetation heights, a vegetation class summary and % ground
cover within the quadrat were recorded.

https://www.randomlists.com/random-direction
https://www.randomlists.com/random-direction
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Figure 1. Location of the study area and distribution of ten compartments of interest. The background
image is a Nearmap aerial image acquired in September 2021.

Table 1. Summary of compartment groupings.

Grouping Location Compartment
ID

Compartment
Code Area (ha) Centroid

Coordinates Planting Date

Group A
(1–3 years)

Mekins Road West A1 306A 3.5 26◦57′11′′S
153◦00′54′′E March 2018

Mekins Road SE A2 310 2.3 26◦57′00′′S
153◦01′08′′E March 2018

Red Road North A3 314A 5.2 26◦57′29′′S
153◦01′00′′E October 2018

Mekins Road West A4 306A 1.0 26◦57′05′′S
153◦00′49′′E March 2018

Group B
(4–7 years)

Mekins Road B1 256A 2.8 26◦57′11′′S
153◦00′46′′E May 2015

Mekins Road B2 256A 6.7 26◦57′22′′S
153◦00′39′′E May 2015

Red Road B3 313 5.2 26◦57′24′′S
153◦01′41′′E April 2017

Group C
(8–10 years)

Mekins Road NW C1 206B 4.4 26◦65′53′′S
153◦00′25′′E August 2010

Mekins Road NW C2 207B 5.1 26◦56′50′′S
153◦00′41′′E June 2011

Bakers Road West C3 203C 4.6 26◦56′50′′S
153◦59′58′′E February 2012
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Figure 2. Illustration of the method used to position the quadrat relative to labelled stake.

From sampling location one, the next randomly selected bearing was followed for
50 m to sampling location 2, and the procedure was repeated for sampling location 3.
Where a proposed sampling location was less than 10 m from the compartment border, a
return was made to the previous sampling location and the next compass bearing selected.

This sampling process was performed twice, initially in August 2020 and later in
November 2020. The protocols for both samplings were as previously described with the
exception that in November, the sampling quadrats were positioned 1 m to the west of the
positioned stake, whereas the quadrats were positioned 1 m to the east of the same stakes
in August.

2.2.3. Drone-Based Image Collection

Colour composite images with red, green and blue bands were collected in November
2020 using a Phantom 4 Pro drone with a 4K camera, flown in a Double-Grid ‘PIX4D
Capture’ pattern, at an altitude of 60 m AGL, with a 65◦ camera angle and 80% lateral
and longitudinal image overlap. The spectral ranges of the red, green and blue bands are
detailed in Appendix A. Flights were carried out in accordance with CASA regulations for
the safe operation of an unmanned aerial vehicle (UAV) and by suitably qualified personnel
in clear weather conditions with maximum winds not exceeding 20 kph.

The photographic data were stored on a 32 GB Micro SD card installed on the drone
and uploaded to the computer system for further analysis.

2.2.4. Data Analysis

The data analysis workflow followed the pathway summarised by the eight steps below:

1. Orthomosaic generation;
2. DSM generation (through point cloud);
3. Identification of ground locations on orthomosaic to generate DEM from DSM;
4. CHM generation using the following algebraic expression in ArcGIS: CHM = DSM− DEM;
5. Calibration of above-ground height from objects with known heights (Figure 3). For

this, the parked vehicles with known heights were used. Since there was not much
difference between the estimated and actual height, no statistical tests and corrections
to CHM were performed;

6. MCWS identification and elimination of plantation pine from CHM to create DSM(Un);
7. Classification of orthomosaic using RGB bands to determine understory composition;
8. Volume calculation using statistics from step 7.
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The primary task was to generate high-quality dense point clouds (DPC) from the
remotely sensed overlapping drone imagery. After some experimentation with Agisoft
Metashape (1.7.1), Meshroom (2019.2.0), ArcGIS (10.6.1) and ArcGIS Pro (2.3.3), it was
concluded that Agisoft Metashape produced the best results. Due to the data bank size and
the calculations involved, batch processing was performed using Agisoft’s workflow and
the university’s network processing facility.

The outcome was a series of high-resolution DPCs representing the vegetation three-
dimensional shape profiles of each compartment A1–C3. Further processing of the DPCs
resulted in high-resolution RGB composite orthomosaics for each compartment, includ-
ing statistics relating to output resolution and accuracy. Initially, the project planned
to use corrected GNSS positions of ground control points (GCPs) to georeference the
computer-generated DPCs. For this investigation, horizontal accuracy, though important,
was considered not as crucial as the accuracy of vertical measurements (i.e., vegetation
height), and initially, the vehicle for acquiring that accuracy was the use of GCPs and cor-
rected GNSS location coordinates to the georeference output. However, it quickly became
apparent that this approach did not fit particularly well with the other aim of this study,
which was to develop an efficient and simple system. The positioning and retrieval of
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GCPs is labour intensive and time consuming. Recording GNSS positions and correct-
ing those positions consumes more time and further complicates the process, potentially
increasing costs. In addition, for compartments greater than five years old, the method
proved somewhat ineffective, as GCPs placed within the compartment area were often
obscured from view and therefore not clear in the remotely sensed imagery. The practice of
placement along the perimeter of a compartment defeated the purpose of GCP placement
as their effective positioning required an even pattern of distribution within the area under
survey. In this application, the need for very high accuracy was not crucial and therefore
alternative methods of analysing the remotely sensed imagery without the use of GCPs
were investigated.

To achieve this outcome, bare ground points were identified and selected on each
orthomosaic RGB composite raster. Elevation values were extracted from the associated
DSM and interpolated to produce a DEM. The contouring of the resultant DEM raster
was checked for accuracy against the DEM produced from 2018 LiDAR point cloud data
provided by the SCC.

The understory digital surface model (DSM(Un)) is a DSM of the forest understory and
can be described as the CHM without the inclusion of the commercial plantation product.
To identify and eliminate the unwanted component of the CHM, marker-controlled water-
shed segmentation (MCWS) algorithms were used. The process revolves around image
reconstruction using a set of morphological filters to eliminate undesirable or unwanted
features without affecting the remaining desired features [49] and, until now, has been used
for the interpretation of medical imagery. Using ‘Forest Tools’ from the R Library [50], the
MCWS algorithms were able to separate the understory profiles from other taller forest
vegetation. This was achieved by subjecting the reference image, the orthomosaic of the
compartment, to an algorithm that morphologically reconstructed the image, eliminating
the taller plantation pine trees to reveal the remaining understory height profiles. The
output model was the DSM(Un) for that compartment. The position of each pixel within
the DSM(Un) raster was that pixel’s x and y value and the colouration or greyscale intensity,
dependent on the selected symbology, represented the z value or the understory vegetation
height associated with that pixel.

In addition to the vegetation height measurements, the field data included data sum-
marising the vegetation type and the percentages of each located within the quadrats sam-
pled. The intention was to compare these data with the vegetation composition modelling
resulting from the computer classification of the ‘RGB composite’ orthomosaics of each
compartment. The classification was performed using ENVI V5.6 (64-bit) software. The
chosen classification workflow was that of supervised classification (maximum likelihood
algorithm) with data training for 5 classes (bare ground, grasses/herbs/sedges/ferns/small
shrubs (GHSFSS), larger woody weeds (non-pine species > 1.5 m tall) (WW) and debris
(Litter)). The training criterion employed was a minimum of fifteen training polygons per
class for each compartment that were drawn for homogeneous areas around locations col-
lected in the field. To determine the understory composition, unclassified (UnC◦) and pine
(P◦) percentages were eliminated and the resultant percentages of bare ground, GHSFSS,
WW and Litter were calculated using the formula below:

% Understory GHSFSS =
100 × GHSFSS◦

100− (UnC◦ + P◦)

where GHSFSS◦ is the percentage of grasses/herbs/sedges/ferns/small shrubs in the
supervised classification class statistics, and UnC◦ and P◦ are the percentages of the un-
classified and pine components of those same statistics. The detail of field data about
specific vegetation types was more extensive than that possible by computer classification
modelling. For the purposes of comparison, the field data divisions were refined into the
same five classes as the supervised classification models; bare ground including pine needle
cover, grasses/herbs/sedges/ferns/small shrubs (GHSFSS), residual debris (Litter) and
larger woody weeds (WW). ArcGIS zonal statistics relating to the classified composition
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model ‘tif’ rasters included the average height of vegetation classes and the percentage
cover of the classes in each compartment. Using these values, the calculation of the volumes
of each vegetation class within a compartment was possible, completing the process of
understory composition profiling.

2.2.5. Statistical Analysis

The resultant fuel height and composition models were compared with the field
samples obtained and the strength of the correlations was tested using MS Excel statistical
data analysis software (MS Excel version 2301). The correlations between field-measured
data and the modelled data were tested using the Pearson correlation test and reported
according to statistical analysis best practice.

3. Results
3.1. Field Data Summary of Compartment Vegetation Composition and Heights

The compartments were initially selected to reflect the variability in the understory
structure, composition and their overall commercial development. The compartments
demonstrated diverse species composition (Appendix B and Figure 4) and there was also
variation in the plantation tree height ranges between compartments of similar age. For
example, in Compartment B3, the trees had not reached the same height as those in the
other same-aged compartments B1 and B3. Growth in C3 had surpassed C1 and C2.

Remote Sens. 2023, 15, x FOR PEER REVIEW 10 of 28 
 

 

 
Figure 4. Illustration of the field data vegetation composition diversity based on compartment age. 

It is evident from Figure 4 that as the compartment age and canopy closure advance, 
there are generally increased amounts of woody shrubs, lantana and sedges. The observed 
fuel load peaked in ‘B’ compartments (4–7 YOA) and then reduced. 

The diversity in plant composition was also evident between compartments of the 
same age grouping. Figure 5, a comparison of the vegetation composition between com-
partments A1, A2, A3 and A4, graphically illustrates this high degree of variability. This 
variation was also reflected in the compositional structures within the ‘B’ and ‘C’ com-
partments. The species variability influenced the wide range of maximum and average 
heights within compartments and between compartments of similar age ranges. 

 
Figure 5. Graphical representation of the field data compositional variability within ‘A’ compart-
ment quadrats. 

  

0%
10%
20%
30%
40%
50%
60%
70%
80%
90%

100%

A1 A2 A3 A4 B1 B2 B3 C1 C2 C3

Pe
rc

en
ta

ge
 co

m
po

sit
io

n

BareGnd GHSFSS Woody Weeds Litter

0
10
20
30
40
50
60
70
80
90

100

A11 A12 A13 A21 A22 A23 A31 A32 A33 A41 A42 A43

Pe
rc

en
ta

ge
 co

m
po

sit
io

n

Bare Ground  GHSFSS WW Litter

Figure 4. Illustration of the field data vegetation composition diversity based on compartment age.

It is evident from Figure 4 that as the compartment age and canopy closure advance,
there are generally increased amounts of woody shrubs, lantana and sedges. The observed
fuel load peaked in ‘B’ compartments (4–7 YOA) and then reduced.

The diversity in plant composition was also evident between compartments of the
same age grouping. Figure 5, a comparison of the vegetation composition between com-
partments A1, A2, A3 and A4, graphically illustrates this high degree of variability. This
variation was also reflected in the compositional structures within the ‘B’ and ‘C’ compart-
ments. The species variability influenced the wide range of maximum and average heights
within compartments and between compartments of similar age ranges.
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Figure 5. Graphical representation of the field data compositional variability within ‘A’ compart-
ment quadrats.

3.2. GIS Data Analysis
3.2.1. Derived Products—Dense Point Clouds, Orthomosaics, Digital Surface Models and
Digital Elevation Models

Dense point cloud and orthomosaic composites with red, green and blue bands were
generated from the photographic data collected by the drone. This facilitated the creation
of data products such as DSMs, DEMs, classified images, colourised point clouds and
estimations of the composition of understory vegetation types including their areas and
volumes. The raster data products generated were of a very high spatial resolution with
ground sampling distances (GSD) of 1.67 cm. The clouds for all ‘A’ compartments and for
B2 and B3 were extremely good and of a quality evident in Figure 6.
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Figure 6. Colourised dense point cloud generated from drone images using Agisoft Metashape for
compartment B2.

Several compartments (e.g., B1, C1, C2 and C3) exhibited areas without elevation
points. These locations of ‘no data’ are evident in the DPC of compartment C1 shown in
Figure 7. The orthomosaics generated from the DPCs of affected compartments exhibited
some blurring in these affected areas. This phenomenon is likely attributable to the effects
of vegetation movement due to wind. These areas were masked for CHM calculations, but
were retained for compartment understory vegetation type classification.

Segments of the final RGB composite orthomosaic outputs are visually presented in
Figure 8. The orthomosaics exhibit high levels of data quality for all compartments except
for C1, where some blurring is evident in the centre left of the image.
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3.2.2. CHMs Derivation and MCWS Analysis

(i) Canopy Height Models
The panel below (Figure 9) presents the results of the generation of CHM for each

compartment. The plantation pine can be easily identified based on the patterns generated
by the CHM. Additionally, the raster provides information about the height distribution of
the understory vegetation.
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(ii) MCWS Application and DSM(Un) Modelling
The application of the MCWS algorithm to the CHMs facilitated the isolation and

removal of areas occupied by the taller pine vegetation (Figure 10). The remaining raster
layer, the understory digital surface model (DSM(Un)), enabled the visualisation of the
understory vegetation height distribution within each compartment (Figure 11). The white
regions are areas of taller vegetation not perceived as understory and are therefore regions
of ‘No Data’.
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Figure 10. Application of MCWS on the canopy height model to identify pine trees and their
subsequent removal to focus on understory vegetation, an example from plot B2. (a) Derivation of
tall vegetation in the CHM; (b) identification of pine; (c) comparison of pines with the orthomosaic;
(d) classified understory vegetation.
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Figure 11. DSM(Un), the understory vegetation height, derived by masking pine trees using the
marker-controlled watershed segmentation application on CHMs. Panels (A1–A4,B1–B3,C1–C3) are
showing understory vegetation heights for different compartments.

(iii) Understory Vegetation Heights and Statistical Analysis of the Results
The average height values of the compartment understories, extracted from the statis-

tical summaries related to each of the DSM(Un) rasters, are summarised in Table 2. The
range of difference in the numerical height values between the field samples and MCWS
models varied from 0.2 cm (A2) to 21.5 cm (B3), but the biggest discrepancy occurred for
C3, where the field sample average height was 15.7 cm, whereas the modelling produced
an understory height average of 1 cm, a difference of 1470%.
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Table 2. Compartment understory average height comparison summary (field samples and MCWS
model) (cm).

Compartment Average Understory Height Summary

Site ID Field Samples (cm) CHM Values in MCWS
Segments (cm)

A1 35.0 26

A2 15.8 16

A3 26.6 26

A4 30.0 13

B1 18.5 14

B2 11.7 18

B3 42.5 21

C1 27.5 14

C2 41.7 54

C3 15.7 1

The graphical representation of the field and modelled understory heights generally
indicates that the modelling tended to predict lower values than was measured in the
field, with the exceptions being B2 and C2. The difference between the field samples and
the modelled values tended to increase with the plantation age groupings. For example,
except for A4, where the difference between the field and modelled values was 17 cm, ‘A’
compartment values showed more correlation than was exhibited in the older B3 and the
‘C’ compartments.

Statistically, the field data and DSM(Un) results showed moderate support for an
association between the two sets of values with a Pearson’s correlation coefficient (r) of
0.64, degrees of freedom = 8, p-value = 0.005 (Figure 12).
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Figure 12. Compartment average understory height scatterplot and statistics analysis summary.

3.3. Vegetation Classification Model

The classified vegetation modelling for orthomosaics A1–C3 is illustrated in Figure 13.
The comparison of the compartment composition field data and classified models is pre-
sented in Table 3. The presence of woody weeds in B2–C2 and the increased canopy cover
in the ‘C’ compartments are evident.
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Figure 13. Understory vegetation classification and percentage composition of all compartments
derived by classifying RGB orthomosaics. Panels for compartments (A1–A4,B1–B3,C1–C3) show
composition of understory vegetation in each compartment.

The classified models and field observations showed close agreement for most ‘A’ and
‘B’ compartments. Both Figure 14a,b illustrate similarities in the trending of variations in
the amounts of particular vegetation types in different compartments. For example, as
evident in Figure 14a, the field data and the classifications agreed that there is less GHSFSS
and bare ground in A2 when compared to A1 and the amount of bare ground was less in
both A3 and A4 than in compartments A1 and A2. Whilst these trends and evidence of
agreement continued with the ‘B’ compartments, an examination of Figure 14b suggests
that the associations between the field data and the classified vegetation profiles became
less convincing. For instance, in B1, both the field and modelled results agreed that there
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was a predominance of litter and the values for bare ground were similar. This scenario
continued for B2, but the results for compartment B3 showed increasing divergence.

Table 3. Summary of compartment understory vegetation classes and percentage composition.

Compartment Understory Vegetation Summary Field Data and Classification Results (Percentage)

Site ID

Field Results Classification Results

Bare
Ground GHSFSS Woody

Weeds Litter Bare
Ground GHSFSS Woody

Weeds Litter

A1 13.3 56.7 0.0 30.0 11.4 51.6 0.0 37.0

A2 6.7 35.8 0.0 57.5 8.6 46.7 0.0 44.7

A3 8.3 45.0 0.0 46.7 2.5 51.1 0.0 46.4

A4 6.7 46.6 0.0 46.7 5.2 46.6 0.0 48.2

B1 13.3 4.2 0.0 82.5 13.9 13.2 0.0 73.0

B2 17.5 36.0 14.2 32.3 14.9 31.9 21.2 32.0

B3 6.7 43.5 14.2 35.7 2.5 31.8 10.8 54.9

C1 2.5 59.8 0.2 37.5 5.7 64.9 17.6 11.9

C2 4.2 30.0 10.0 55.8 2.7 36.7 30.9 29.7

C3 0.0 10.8 0.2 89.0 1.1 52.9 0.0 46.0

This move towards less agreement continued with the C1, C2 and C3 comparisons.
The classification of C1 produced a value of 17.6% for woody weeds, whereas the field data
supported an amount of 0.2%. In C2, the disagreement regarding the amount of woody
weeds was also apparent, with a difference in the perceived values of 20.9%, and for C3, the
classification yielded the presence of 1.1% bare ground, whereas none was evident in the
field as the compartment was covered by a layer of pine needle debris. There was a large
discrepancy between the amounts of litter and understory vegetation between the two sets
of values for C3. These variations between the field and modelled values are graphically
summarised in Figure 14c.

The statistical analysis of the relationships between the field and modelled values
is summarised in Table 4. The results demonstrated that the correlations between the
understory vegetation composition profiles observed in the field and the classification of
the orthomosaic were very strong for compartments with minimal canopy closure, namely,
the ‘A’ and ‘B’ compartments. The Pearson correlation coefficients (r values) were above
0.93, and p-values were less than 0.001, indicating a better than 99% chance of the existence
of a very strong correlation between each of the two sets of values.

As the compartment canopy closure increased in the ‘C’ compartments, the strength
of the associations decreased, with r values decreasing to 0.64, but the significance of this
result was still greater than 0.05. This result is still encouraging and provides credible
support for agreement between the field observations and the classified models of these
more mature compartments.

The r values for all C compartments indicated weak correlations between the field
results and the classified vegetation composition profiles, supported by low probabilities of
an association, especially in compartments C2 and C3, where the p-values approached 0.5.
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Figure 14. Classification of understory vegetation results in different compartments (a) Compartment
A; (b) compartment B; (c) compartment C.
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Table 4. Understory composition statistical analysis summary (field data and classification results).

Understory Composition Statistical Analysis

Compartments Pearson’s Correlation
Coefficient (r) n df p-Value Significance

A 0.97 16 14 4.1 × 10−10 <0.001

B 0.93 12 10 1.2 × 10−5 <0.001

C 0.64 12 10 0.02 <0.05

3.4. Understory Volumetric Calculations

The zonal statistics extracted from ArcGIS about the area, average vegetation heights
and calculated total volumes of each vegetation class within the compartments are pre-
sented in Appendix C. The results have been expanded to include the volume per hectare.
Accurate field values were not recorded, so the statistical significance of these values was
not tested. However, the results are mostly consistent with general observations, with
the exceptions being the amount of pine tree volume in B3 and the disparity between the
amounts of low vegetation and litter in C3.

4. Discussion

This study successfully used drone-derived data to determine the amount, composi-
tion and structure of understory fuels that could potentially improve efficiencies in fuel
hazard management forests. The goal was to develop a workflow that is efficient, cost-
effective and of sufficient accuracy to safely direct fuel management protocols within the
juvenile forest environment. The investigation concluded that the use of remotely sensed
data to quantify understories was possible using the application of MCWS algorithms
to identify and eliminate taller vegetation in the digital models, and with some further
refinement, this method could become an alternative to the less efficient practices currently
employed. The use of the supervised classification of orthomosaics successfully provided
information about understory vegetation composition with a level of detail suitable for
potential fuel hazard determination.

However, while the results were encouraging, certain aspects of this study indicate that
further investigation and refinement would be required before this approach could become
a viable commercial reality. The method showed very promising results for younger
plantations where the understory was not obscured by canopy closure. This finding
was consistent with many other remote sensing forest profiling studies where the results
using photogrammetry were good in open forest environments, but became less accurate
compared to LiDAR-based studies as forests aged [47,51,52].

In general, the use of MCWS to mask the commercial plantation trees for the subse-
quent modelling for average understory height calculations produced reliable results for
less mature plantations—those 1–3 YOA and for some compartments 3–7 YOA. However,
the outcomes for A4, B2 and B3 were exceptions. Despite the numerical variation in some
more mature compartments, the trends were mostly consistent and statistically, the results
were significant.

The classification results showed a similar pattern, with mostly good correlations in
younger plantations and less agreement in those that were more mature, as canopy closure
advanced limiting the detail of the aerial imagery. The statistical significance for the ‘A’ and
‘B’ compartments suggests a 99% chance that the results were correct and the correlations
between the field and classified values were strong. The gap between the actual understory
composition and the classified model widened with the ‘C’ compartments, where the results
showed weaker agreement. As with the height calculations, this trend was probably due to
a decrease in the percentage of visible understory within compartments as the amount of
canopy closure increased.
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The degree of error was potentially magnified in the more mature compartments as
the classified composition model became increasingly based on smaller areas of visible veg-
etation, further contributing to a general deterioration in the results in older compartments.
This explained the reasonably strong association between the two sets of average height
values in the A compartments and B1, and the lessening of correlations in compartments
B2, B3 and all C compartments where plantation maturity and increased canopy closure
influenced the agreement between the field values and the analytical results. In these older
compartments, the models produced were based on the limited areas within a compartment
where the imagery included the understory. Our methods then expanded those findings to
cover the invisible areas under the canopy, based on the assumption that the vegetation
under the canopy layer had the same characteristics. Factors such as altered pH, shading
and ground wetness may have affected the nature of the under-canopy vegetation [53] and
the modelling assuming continuity may be flawed. The problems profiling understory in
forests with advanced canopy closure might be overcome with the use of aerial LiDAR
together with RGB cameras. Ongoing improvements in drone and LiDAR technologies
are likely to make this a viable future alternative, but at the current level of development,
drone-based systems capable of the necessary endurance whilst supporting a payload of
both LiDAR equipment and an RGB camera is a more expensive option [54,55].

Successful height analysis using the remotely sensed data was hindered by the dif-
ficulty of establishing an effective ground zero. The drone was flown at 60 m above the
ground height at the take-off/landing point. An idiosyncrasy of DJI Phantom 4 drones
was that this did not necessarily mean that the image EXIF values relating to the altitude at
which an image was taken corresponded to that value. Other studies using the same equip-
ment have experienced similar problems [56]. The range variation in ground level altitude
across all of the compartments was less than 4 m, whilst the range in EXIF values for the
images obtained from the field flights was approximately 41.1 m (28.2 m (C2)–69.3 m (B2)).
GNSS ‘georeferencing’ would usually be the method of choice used to correct these incon-
sistencies, but for the reasons previously alluded to, this study aimed to find methodologies
that did not utilise this technique. Many alternative methods were trialled, and some did
produce results. The reporting of those results was outside the scope of this study, but the
researchers wondered whether some of those methods discarded due to lower correlations
may have shown more promise if compared to the results emanating from a study with
more field sampling.

A repetition of this study with an increased number of field data sampling sites per
compartment would also influence correlation probabilities. The low number of samples
affected the results in two ways. Firstly, it potentially altered the statistical analysis, ele-
vating the critical values required for the results to have statistical significance. In several
compartments, a favourable Pearson’s correlation coefficient was not supported by a corre-
spondingly favourable statistical significance value. Secondly, it is possible that the field
sampling was not extensive enough to reflect the true height or composition profiles of
the compartments. The field observations indicated that large variations existed within
compartments and between compartments of the same age grouping. Establishing under-
story average heights and composition within compartments using only six field samples
was probably not an effective method of establishing an average height or composition
profile reflective of that compartment, especially with respect to compartments with ad-
vanced canopy closure where the composition and structure of the understory became
more complicated. An interesting result is that of compartment C3; this compartment
had, at some time, been subjected to fire, possibly a fuel hazard reduction burn and the
understory consisted of a small amount of remnant pine debris, some regenerated sedges
and a continuous layer of pine needle litter approximately 100 mm in depth. The DSM(Un)
resulted from MCWS application to a CHM derived using a DEM interpolated from ground
points that may have potentially been the surface of the litter layer as captured in the drone
imagery of compartment C3. Adjustment for this possible error would have significantly
improved the results for the modelled average heights in this compartment. Similar poten-
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tial error scenarios may have existed in other B and C compartments where shadowing
and difficulties in the differentiation between the colour of bare ground and ground litter
increased, complicating the determination of the true nature of the surface selected as a
ground point. As before, point clouds produced from the analysis of aerial-derived LiDAR
data would improve the results by minimising these errors.

The potential for the use of MCWS in the natural environment is only just being
realised. As previously mentioned, it improves the delineation or outline of features of
interest, enabling more accurate quantification of that feature. Initially, its main use was the
interpretation of medical imagery such as MIRs to determine the extent of tumorous lesions.
For example, the technology was investigated as a method to analyse imagery of human
brains by Michael [57]. Cui et al. [58] were able to adapt MCWS to successfully interpret
cancerous lesions in medical imagery of breast tissue. However, it has the potential to
assist the interpretation of any form of imagery, and since 2010, its use has expanded to
other fields including agriculture and industry. Devi and Singh [59] successfully used the
algorithm to count pigs, and Heltin Genitha et al. [60] were able to use MCWS to delineate
ships detected in satellite imagery. Dahlstrom et al. [61] adapted the use of MCWS to
improve coating processes in paper manufacture. The forestry industry has recognised the
benefits of applying MCWS to the delineation of individual tree canopies visible in aerial
imagery [62–64]. However, after extensive literature searches, it is the author’s conclusion
that this study is the first to investigate the use of MCWS algorithms to profile forest
understories. Part of the initial goal for this project was to develop simple methods of data
analysis. Complicated computer pathways involving highly developed software and large
capacity hardware requires increased operator specialisation and drives increased costs [65].
In silviculture, the increased processing time from data acquisition to model availability
decreases efficiency, elevates costs and possibly leads to the lack of outcome relevancy,
as a forest is a constantly changing environment and opportunities may have been lost.
Processing using ESRI software and subsequent MCWS application was complicated, and
initial attempts involved using ArcGIS Pro to process the Agisoft Metashape DPC. Driven
by a need to further understand the processes attempted and to refine those processes to
improve results, the researchers reverted to using ArcGIS software, which allowed more
operator input to refine the methodology. Once refined, processing could be simplified by
producing workflows capable of completing the analysis more efficiently and without the
need for continual analyst intervention.

5. Conclusions

This study demonstrates an alternative, more cost-effective method than direct field
observations to determine fuel management in commercial as well as natural forest systems.
Our research concluded that point cloud and orthomosaics resulting from the photogram-
metric analysis of drone imagery and the subsequent derivation of canopy height models
from that dense point cloud, the classification of the RGB orthomosaics and the applica-
tion of MCWS on the CHMs could profile the understory vegetation within commercial
pine plantations. With further refinement, the application of marker-controlled watershed
segmentation to this method of understory vegetation modelling using remotely sensed
UAV photographic imagery could become a very cost-effective and efficient method of
understory fuel load determination, not only for use in these pine plantations, but in all
forests where canopy closure does not inhibit views of most of the forest floor. However,
in forests approaching levels of canopy maturity, this approach would have limited appli-
cation in determining the amount of understory present, and the effective determination
of that understory’s composition and structure using classification software would also
be compromised.

Refinements in methodology might include further testing to fine-tune the MCWS
parameters, enhancing the quality of the outcomes. Incorporating these upgrades into
developed automated workflows would further improve efficiencies by reducing the
amount of operator input required to complete the data analysis. Methodologies improving
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the ground point selection process, as part of DEM creation, would lead to improved
accuracies in the calculation of the average understory vegetation heights.

Our results have been partially successful, indicating that alternative methods do exist
and they do work in immature plantations. Considering that compartments of juvenile
pine trees are the most susceptible to total investment loss in the event of even a mild
wildfire, the method proposed and tested in this study is worthy of further consideration.
The method is very cheap. It is quick and of high accuracy in immature forest plantings.
The method could act as a stopgap until developments in UAV—LiDAR-RBG Camera
platforms become a more commercially viable option.
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Appendix A

Table A1. Phantom 4 Pro camera spectral ranges.

Bands Colour Spectral Range (nm)

B1 Red 594 +/− 32.5

B2 Green 532 +/− 58

B3 Blue 468 +/− 47

Appendix B

Table A2. Summary of initial general compartment field observations from a potential fire risk perspective.

Site ID Summary of
Composition

Plantation Pine
Tree Height (m)

Canopy
Description Fuel Load Quadrat Heights (m)

Maximum Average

A1

Whisky Grass (1.3 m)

1.5–2.5 m Open Low–Medium 1.10 0.35

Blady Grass (0.8–1 m)

Urena Burr

Patches of Debris

Some Signal Grass
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Table A2. Cont.

Site ID Summary of
Composition

Plantation Pine
Tree Height (m)

Canopy
Description Fuel Load Quadrat Heights (m)

Maximum Average

A2

Whisky Grass

1.8–4.1 m Open Low–Medium 1.00 0.16

Signal Grass (Patches)

Urena Burr

Debris

Woody Weeds

Lantana

A3

Couch

1.5–2.5 m Open Low–Medium 1.10 0.27

Urena Burr

Blady Grass (1.0 m)

Lantana (1.4 m)

Signal Grass
(0.6–0.7 m)

A4

Whisky Grass (1.3 m)

1.5–2.5 m Open Low–Medium 0.90 0.30
Blady Grass (0.8 m)

Urena Burr

Patches of Debris

B1

Dense Cutty Grass
(1.5–2 m)

6.8–9.8 m 30% Closed Medium 1.70 0.19
Sedges

Wildlings and
Woody Shrubs

Debris (Common)

B2

Whisky Grass
(1.0–1.3 m)

8.0–10.0 m Mostly Open Medium 2.00 0.12

Cutty Grass
(Scattered throughout)

Sedges (Common)
(0.5 m)

Entolasia stricta and
Forest Grasses

Wildings (Common) in
understory 1–2 m

Signal Grass on tracks

Large amounts of
debris, some large

B3

Urena Burr,
Debris, Herbs

2.0–4.0 m Mostly Open Medium 1.80 0.43

Blady Grass (Patches)
(<1 m)

Signal Grass (Patches)
(0.6 m)

Woody Weeds
(Scattered)

Blackberry (Patches)
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Table A2. Cont.

Site ID Summary of
Composition

Plantation Pine
Tree Height (m)

Canopy
Description Fuel Load Quadrat Heights (m)

Maximum Average

C1

Cutty Grass (Scattered)

9.0–13.0 m

Areas
Approaching

Canopy
Closure

Medium 1.50 0.28
Bracken Fern

(Abundant) (1.2 m)

Woody Shrubs 2 m
(Scattered)

C2

Cutty Grass (1.5 m)

8.2–12.2 m

Areas
Approaching

Canopy
Closure

Medium 2.00 0.42

Woody Shrubs
(1.5–2 m) (Common)

Bracken Fern (Dense)

Sedges

Wildlings

C3

Cutty Grass (Scattered)
(0.5–1 m)

12.0–15.0 m
Large Areas of
Closed Canopy Low 1.20 0.16

Sedges (Juncus sp.)
common, scattered

Dense pine needle
layer throughout

Whisky Grass
(Very Scattered)

Some wildlings >2 m
(Not killed by fire)

Appendix C

Table A3. Summary of the compartment vegetation volumes by class.

Compartment Vegetation Volume Calculations

Compartment
ID

Compartment
Area (m2)

Vegetation
Class Area (m2)

Mean Height
(m) Volume (m3)

Volume per
Hectare
(m3/Ha)

A1 18,260.98

WW 0.00 0.000 0.0 0.0

GHSFSS 8642.92 0.411 3552.2 1945.3

Litter 6203.25 0.159 986.3 540.1

Plantation Pine 1506.53 1.059 1595.4 873.7

A2 18,125.82

WW 0.00 0.000 0.0 0.0

GHSFSS 6528.92 0.308 2011.2 1109.6

Litter 6244.34 0.170 1061.5 585.6

Plantation Pine 1205.37 1.010 1217.0 671.4

A3 28,545.51

WW 0.00 0.000 0.0 0.0

GHSFSS 12,274.57 0.355 4353.8 1525.2

Litter 11,138.46 0.200 2222.9 778.7

Plantation Pine 4433.03 0.926 4106.2 1438.5
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Table A3. Cont.

Compartment Vegetation Volume Calculations

Compartment
ID

Compartment
Area (m2)

Vegetation
Class Area (m2)

Mean Height
(m) Volume (m3)

Volume per
Hectare
(m3/Ha)

A4 9088.02

WW 0.00 0.000 0.0 0.0

GHSFSS 3864.22 0.217 838.5 922.7

Litter 4000.55 0.079 316.0 347.7

Plantation Pine 788.84 0.929 732.8 806.4

B1 12,121.86

WW 0.00 0.000 0.0 0.0

GHSFSS 1101.88 0.592 652.3 581.4

Litter 6064.57 0.390 2365.2 2108.3

Plantation Pine 3758.99 4.211 15,829.1 13,058.3

B2 23,079.48

WW 3097.27 2.953 9146.2 39,629.9

GHSFSS 4657.44 0.409 1904.9 825.4

Litter 4673.59 0.188 878.6 380.7

Plantation Pine 8479.40 2.759 23,394.7 10,136.6

B3 13,149.82

WW 2910.28 0.751 2185.6 1662.1

GHSFSS 4070.69 0.270 1099.1 835.8

Litter 3309.07 0.137 453.3 343.0

Plantation Pine 1834.54 1.233 2261.0 1720.2

C1 17,470.04

WW 1229.89 3.449 4242.0 2428.2

GHSFSS 4526.49 1.614 7304.6 4181.2

Litter 826.33 0.364 300.9 172.2

Plantation Pine 10,485.52 3.559 37,322.7 21,363.8

C2 17,803.32

WW 2356.46 2.115 8387.7 4711.3

GHSFSS 2779.48 1.374 3820.4 2145.9

Litter 2259.53 0.856 2191.2 1230.8

Plantation Pine 10,106.79 3.614 36,522.7 20,514.5

C3 17,906.91

WW 0.00 0.000 0.0 0.0

GHSFSS 2113.02 1.142 2413.1 1347.6

Litter 1839.04 0.545 1002.0 559.6

Plantation Pine 13,910.09 3.739 52,003.1 29,040.8
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