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Abstract: The radiometric calibration network (RadCalNet) comprises four pseudo-invariant cali-
bration sites (PICS): Gobabeb, Baotou, Railroad Valley Playa, and La Crau. Due to its site stability
characteristics, it is widely used for sensor performance monitoring and radiometric calibration,
which require high spatiotemporal stability. However, some studies have found that PICS are not
invariable. Previous studies used top-of-atmosphere (TOA) data without verifying site data, which
could affect the accuracy of their results. In this study, we analyzed the short- and long-term radio-
metric trends of RadCalNet sites using bottom-of-atmosphere (BOA) data, and verified the trends
revealed by the TOA data from Landsat 7, 8, and Sentinel-2. Besides the commonly used methods
(e.g., nonparametric Mann–Kendall and sequential Mann–Kendall tests), a more robust Sen’s slope
method was used to estimate the magnitude of the change. We found that (1) the trends based on
TOA reflectance contrasted with those based on BOA reflectance in certain cases, e.g., the reflectance
trends in the red band of BOA data for La Crau in summer and autumn and Baotou were not signif-
icant, while the TOA data showed a significant downward trend; (2) the temporal trends showed
statistically significant and abrupt changes in all PICS, e.g., the SWIR2 band of La Crau in winter and
spring changed by 1.803% per year, and the SWIR1 band of Railroad Valley Playa changed by >0.282%
per year, indicating that the real changes in sensor performance are hard to detect using these sites;
(3) spatial homogeneity was verified using the coefficient of variation (CV) and Getis statistic (Gi*) for
each PICS (CV < 3% and Gi* > 0). Overall, the RadCalNet remains a highly reliable tool for vicarious
calibration; however, the temporal stability should be noted for radiometric performance monitoring
of sensors.

Keywords: PICS; RadCalNet; Mann–Kendall; sequential Mann–Kendall; Sen’s slope

1. Introduction

Satellite remote sensing provides a large amount of data for the global monitoring
of the environment, resources, and disasters. The number of Earth observation satellites
has increased significantly in recent decades, thus improving the temporal resolution of
remote sensing data. As a prerequisite for quantitative applications, radiometric calibration
is performed almost annually to cope with the degradation of satellite performance after
launch. The satellite imager is calibrated at the pre-launch stage; however, its radiometric
performance may change after launch owing to platform vibration, ultraviolet radiation,
and other environmental factors. Although onboard calibration using complicated onboard
instruments is important to minimize the effects of radiometric variations, its efficacy
changes throughout the life cycle of the satellite and the associated instruments increase the
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total cost of satellite manufacturing [1]. As a more economical approach, pseudo-invariant
calibration sites (PICS) are increasingly favored by sensor performance researchers [2].

PICS are spatially uniform, temporally stable, spatially homogeneous, and usually
located in arid areas with little vegetation and rainfall [3–5]. Cosnefroy et al. [5] selected
20 sites with spatial uniformity greater than 3% and temporal variability of 1–2% using
a multitemporal series of Meteosat-4 images in North Africa and Saudi Arabia. Using
Thematic Mapper (TM) and Operational Land Imager (OLI) imagery, Ling et al. [6] suc-
cessfully selected five snow PICS larger than 1.2 km2 on the Tibetan Plateau based on their
stability in maintaining a small spatial coefficient of variation (CV) over a long period.
Bannari et al. [7] and Odongo et al. [4] combined CV and Getis statistic (Gi*) methods to
select PICS of Lunar Lake Playa and Tuz Gölü, respectively, which solved the problem
of “the same value (mean and standard deviation), different classes (surface features).”
Helder et al. [8] developed an algorithm for automatically identifying invariant sites and
successfully identified PICS in the Sahara Desert, the Middle East, Mexico, China, Australia,
and Argentina. Mitchell et al. [9] compared six candidate sites in South Australia and found
that Tinga Tingana in the Strzelecki Desert was the most suitable site for calibration and
verification because of its long-term stability.

PICS are primarily used for radiometric performance evaluation, cross-calibration,
and absolute radiometric calibration [1]; the approach is especially useful in evaluating
radiometric performance degradation [10–14]. Barsi et al. [11] found that the radiometric
consistency of OLI and multispectral instrument (MSI) was approximately 2.5% based on
data from Libya-4 and Algeria-3. Based on PICS data, Micijevic et al. [12] evaluated the
long-term stability of TM, the enhanced thematic mapper (ETM+), and OLI. Based on the
Committee on Earth Observation Satellites reference standard PICS, Chander et al. [14]
investigated the degradation of a moderate resolution imaging spectroradiometer (MODIS)
and ETM+ over ten years and found that the lifetime trends were extremely stable and
the TOA reflectance was no more than 0.4%/year. Barsi et al. [15] used PICS for long-term
monitoring and found that degradation was present in both ETM+ and TM, where all
bands of ETM+ exhibited degradation between –0.1% and –0.22%/year, and two bands of
TM exhibited degradation from –0.27% to –0.15%/year. The RadCalNet, as an initiative of
the Working Group on Calibration and Validation of the Committee on Earth Observation
Satellites, has played a huge role since 2013, that is, from the time data were provided on the
portal. Liu et al. [16] used the Baotou sand calibration field to calibrate and verify the OLI
sensor based on a ground reflectance radiance approach and found that the sensor exhibited
stable radiometric performance with an overall uncertainty of <4.5%. Tonooka et al. [17]
used the Railroad Valley Playa and Lake Kasumigaura to calibrate a compact infrared
camera, thus improving ground test radiation accuracy. The two calibration fields of La
Crau and Gobabeb were used for absolute calibration monitoring of sentinel-2A (S2A) and
sentinel-2B (S2B), which confirms the ~1–2% S2A-S2B bias in VNIR [18].

Previous studies have demonstrated the advantages of PICS in the continuous moni-
toring of satellite performance and calibration. It is generally assumed that the radiometric
performance of PICS is invariant over time, and any changing trends of certain sensors
revealed by these sites are attributed to the sensor performance changes. However, these
sites are inherently unstable; in other words, the results obtained from calibration activities
that assume their invariance are questionable. For instance, Tuli et al. [19] showed that some
PICS displayed temporal variability. Building on Tuli’s work, Khadka et al. [20] conducted
a more detailed analysis of PICS stability and identified points in the time series where
the data behavior changed. Although these findings suggest that PICS are not constantly
stable, this has not yet been verified. Currently, the earliest site in the RadCalNet, Railroad
Valley Playa, has been in operation for nearly ten years, whereas the latest site, Gobabeb,
has been in operation for five years. Jing et al. [21] unexpectedly found that Railroad Valley
Playa exhibited time instability and radiometric degradation.

In previous studies, PICS stability was assessed using TOA data; however, TOA
data are dependent on atmospheric conditions, which can cause unexpected uncertainties
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in monitoring of the Earth’s surface. The concatenation of TOA data under different
atmospheric conditions over a long time series can result in the accumulation of errors,
potentially generating inaccurate results of surface trends. Therefore, it is essential to
independently evaluate the change in reflectance trends estimated by TOA data compared
to other datasets to avoid false results.

This study evaluates the suitability of using the advantages of the BOA data provided
by the RadCalNet to verify the conclusions of the TOA. It also conducts the first compre-
hensive evaluation and analysis of the RadCalNet, which has been in operation for many
years. We investigated the temporal stability of four PICS, identified the year, trend, and
magnitude of change under the confidence level, and verified the accuracy reflected by the
combined TOA data of the OLI, ETM+, and MSI sensors. The structure of the remainder of
this article is as follows: Section 2 provides the data, the location of the RadCalNet sites,
and the work methodology. Section 3 details the results and their interpretation, while
Section 4 presents the discussion. The conclusions are presented in Section 5.

2. Materials and Methods
2.1. Study Area

The RadCalNet is a network of stable surface and atmospheric data sites that is
especially suitable for inter-sensor comparison and radiometric calibration [22–25]. It
currently comprises four instrumented sites: the Baotou (BSCN and BTCN) in China,
La Crau (LCFR) in France, Railroad Valley Playa (RVUS) in the United States, and the
Gobebaba site (GONA) in Namibia (Figure 1).
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Figure 1. Global distribution for four sites of RadCalNet. Figure 1. Global distribution for four sites of RadCalNet.

Reflectance data for the BSCN—largely composed of sand—have been provided
since June 2017. The representative region of the TOA reflectance spectra has an area of
300 m2, centered at 40.8658◦N and 109.6155◦E (Figure 2). The data for the LCFR—a flat
area largely composed of thin pebbly soil and sparse vegetation—have been provided
since January 2015 for an area of ~1 km2 centered at 43.552◦N and 4.854◦E. The data
for the RVUS—composed of compacted clay-rich lacustrine deposits forming a relatively
smooth surface with no vegetation—have been provided since April 2013 for an area of
1 km2 centered at 38.497◦N and 115.690◦W. The data for the GONA—characterized by a
predominantly sand and gravel surface—have been provided since July 2017 for an area of
~1 km2 centered at 23.612◦S and 15.120◦E.
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2.2. Satellite Observations and Site Measurements Overview

Google Earth Engine (GEE) platform and Python were selected as analysis tools
because GEE is a cloud-based platform that can provide high-performance computing
resources to process large geospatial datasets and enables access to global geospatial
datasets [26].

2.2.1. Satellite Sensors

Sentinel-2 (S2) is a component of the European Space Agency’s Copernicus program
and comprises two satellites: S2A, launched in June 2015, and S2B, launched in March 2017.
S2A and S2B follow the same orbit but are separated by 180◦, enabling a high revisit
frequency of 5 d at the equator [27]. S2 features 13 spectral bands with a spatial resolution
varying between 10 to 60 m. The width of the orbital swath is 290 km. The mean local
solar time at the descending node is 10:30 a.m., near Landsat’s local overpass time [28]. L8
and S2A showed stable radiometric calibration with a consistency of ~2.5% [11]. A cross-
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comparison of S2A and S2B revealed a slight discrepancy of ~1%, though both satellites
met the mission requirement for radiometric calibration accuracy of 3% [18,29,30].

The revolutionary Landsat series, the longest operating satellite series in orbit, was
launched in July 1972. L8 OLI is the first choice when data in the region of interest (ROI) is
incomplete. Although the scan line corrector in the Landsat 7 (L7) ETM+ failed in June 2003
and approximately 22% of the data are missing [31], the ROI is covered in satellite transit.
The revisit period of L8 is 16 d with an equatorial crossing time of 10:00 a.m. ± 15 min [31].
After four years of on-orbit operation, the OLI is radiometrically stable at ~1.5% [32]. The
stability of the absolute radiometric calibration of the OLI indicated that the instrument
was within 5% radiance and 3% reflectance [33]. Although the SLC of L7 failed, these data
still meet geometric and radiometric measurement accuracy [31]. ETM+ has demonstrated
high radiometric stability within 2% based on PICS from 1999 to 2017 [12].

2.2.2. Site Data

The data provided by the RadCalNet, based on a reflectance-based approach within a
verified uncertainty budget, are SI-traceable and used for the vicarious calibration of optical
sensors ranging from visible to shortwave infrared wavelength [22,24]. The BOA reflectance
data at a 10 nm spectral sampling interval combined with atmospheric parameters were
processed to TOA reflectance using MODTRAN, and the uncertainty budgets of BOA and
TOA were provided. Except for the temporal variability in the datasets of the PICS, the
available wavelength range of the data also varies: the available band ranges for the BSCN
are VNIR; for LCFR they are VNIR and SWIR; for RVUS they are VNIR and SWIR1; and for
GONA they are VNIR and SWIR1. The RadCalNet provides nadir-view BOA reflectance
data at 30 min intervals between 9 am and 3 pm local standard time.

Table 1 lists the time series of TOA (satellite) and BOA (site) reflectance data used in
this study.

Table 1. Time series range of BOA and TOA of RadCalNet.

Region Time Series Range of BOA
(yyyy.mm.dd)

Time Series Range of TOA
(yyyy.mm.dd)

BSCN 2017.06.01–2023.01.01 2017.01.01–2023.01.01
LCFR 2015.01.01–2023.01.01 2015.01.01–2023.01.01
RVUS 2013.04.01–2023.01.01 2013.01.01–2023.01.01

GONA 2017.07.01–2023.01.01 2017.01.01–2023.01.01

The BOA data were used to verify the trends in the TOA data and assess the temporal
stability of the RadCalNet for the first time. To ensure the accuracy of the results, the
analyses controlled for cloud coverage in the transit site images and purified the time series
TOA data for each site using the 1-sigma principle. The scaling factor of each sensor was
adjusted to match the spectral response function of OLI, and the time series data of each
site were corrected for the bidirectional reflectance distribution function (BRDF) to mitigate
seasonal effects. Subsequently, the time series data were subjected to signal highlighting
and drift correction based on uncertainty. Finally, the Mann–Kendall (MK) abrupt change
test and MK trend analysis were applied to highlight short- and long-term trends time
series data; Sen’s slope was used to quantify trend changes.

2.3. Cloud Filtering and Outlier Removal

To improve the representativeness of the data, 20% cloud cover was selected as a
prerequisite for image collection. For S2, the QA band was selected to remove the cloudy
pixels [34]. Likewise, the QA band was selected for Landsat, and the cloud removal method
was the same as that for S2, both of which were based on bitmask. An empirical sigma
(±1σ) filtering approach was used to remove outliers after removing cloud pixels. Visual
image inspection was performed when the mean TOA reflectance of the ROI exceeded the
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threshold. If clouds, cloud shadows, or other artifacts were not identified within the ROI
during the visual inspection, the scene of outliers was discarded from the analysis.

2.4. Scaling Adjustment Factor

An adjustment factor is required because the spectral response functions (SRF) vary
between sensors (Figure 3), which can cause differences in reflectance and systematic
errors [20]. The scaling adjustment factor (SAF) based on reflectance was employed to
reduce the effects of sensor differences and adjust the sensors to the same scale [19,20,35];
the SAF can account for all types of differences between the “reference” and “adjustment”
sensors with high accuracy, including SRF [19].
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of this article, only VNIR, SWIR1, and SWIR2 bands are displayed).

Given the temporal coverage of RadCalNet observation and superior radiometric
performance, the OLI was chosen as the “reference” sensor, while the MSI and ETM+ were
chosen as the “adjustment” sensors to match the OLI sensor by applying the SAF. The
SAF was calculated as the mean of all ratios, that is, the mean of the ratio of the OLI TOA
reflectance to near-coincident acquisitions with the OLI of each sensor. “Near-coincident
acquisition” was carried out in the specified time window, with a time interval of 4 days
between MSI and OLI, and 8 days between ETM+ and OLI. The SAF was calculated
as follows:

SAF =
∑

ρre f erence
ρadjustment

n
, (1)
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where ρreference denotes the OLI TOA reflectance; ρadjustment denotes the MSI or ETM+ TOA
reflectance; and n is the number of image pairs obtained from “near-coincident acquisition”.

2.5. BRDF-Adjusted Reflectance

TOA reflectance varies because of changes in solar and viewing geometry, especially
in the longer wavelength bands because the Earth’s surface is non-Lambertian. To reduce
the impact of solar and viewing angles, a four-angle BRDF empirical model was derived
with minimal wavelength dependence [36]. In addition, a model with quadratic and
interaction terms is well characterized and has better uncertainty after normalization [37].
The 15-coefficient quadratic model was used for this work to fit the TOA time series data
from various angles to obtain the correction coefficient β. The normalized reflectance of
each PICS at a specific angle was then determined.

ρmodel = β0 + β1Y2
1 + β2X2

1 + β3Y2
2 + β4X2

2 + β5X1Y1 + β6X1Y2 + β7X2Y2
+β8X2Y1 + β9Y1Y2 + β10X1X2 + β11X1 + β12Y1 + β13X2 + β14Y2

(2)

where β0, β1, β2 . . . denotes the model coefficients; Y1, X1, Y2, and X2 are Cartesian
coordinates representing the planar projections of the solar and sensor angles, which were
originally given in the spherical coordinates:

X1 = sin(SZA) ∗ sin(SAA), (3)

Y1 = sin(SZA) ∗ cos(SAA), (4)

X2 = sin(VZA) ∗ sin(VAA), (5)

Y2 = sin(VZA) ∗ cos(VAA), (6)

where SZA, SAA, VZA, and VAA are the solar zenith, solar azimuth, view zenith, and
view azimuth angles, respectively. The BRDF-normalized TOA reflectance was calculated
as follows:

ρBRDF−normalized =
ρobs

ρmodel
× ρre f , (7)

where ρobs is the observed mean TOA reflectance from the ROI of each scene; ρmodel is
the model-predicted TOA reflectance; ρref is the TOA reflectance with respect to a set
of “reference” solar and sensor position angles. For this analysis, the “reference” TOA
reflectance is the average of the “combined” TOA data.

A practical BRDF model was used for normalizing the TOA reflectance with a set of
angles, which is more reasonable than using a different BRDF model for the same site with
different sensors [20]. As the site data were measured from the nadir (0◦ view zenith) of the
instrument, the BOA reflectance was affected only by changes in the sun angle. Therefore,
only the angle of the sun was linearly corrected.

2.6. Drift Corrections

Excluding the influence of the atmosphere and the non-Lambert surface, TOA data
should show periodic changes with time. However, the degradation of the sensor itself,
different atmospheric conditions, and the non-Lambertian nature of the site led to the
introduction of different degrees of noise into the TOA data. Therefore, it is necessary
to denoise the TOA data, expose the real information in the time series, and perform
drift correction. Accordingly, the inverse variance-weighted average method was used
as follows:

ρweighted =
∑n

i=1 wiρi

∑n
i=1 wi

, (8)
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wi =
1

σ2
total

, (9)

where ρi is the “combined” TOA reflectance time series, and wi is the weight determined
by the inverse ratio of the square of the uncertainty of each point [38]. The moving window
method was used to conduct the inverse-weighted average of the TOA, with a window
size of 14 d due to the large data interval during the period when S2 was not operational.
The total uncertainty (σtotal) comprised four parts of uncertainty: (1) spatial; (2) the BRDF
model; (3) the SAF; (4) the sensor-calibration uncertainty. The σtotal is calculated as follows:

σtotal =
√

σ2
spatital + σ2

BRDF + σ2
SAF + σ2

sensor. (10)

2.7. Temporal Stability Analysis

As some BRDF-corrected data bands do not follow the assumptions of normality and
linearity, parametric tests may lead to misleading conclusions [19]. Nonparametric tests,
such as the MK and sequential MK tests, are preferred because they are less affected by the
overall distribution of the data. Hence, these tests were used for temporal stability analysis.

2.7.1. Sequential MK Test

The sequential version of the MK test is a nonparametric test that can detect potential
trend turning points in long-term series data [39,40]. It has been used to detect abrupt
changes in temperature and precipitation [41–43].

The sequential MK test is computed using the ranked values yi of the original values
(x1, x2, x3, . . . xn), where forward u(t) and backward u’(t) sequential statistics were used to
detect the points of change with magnitudes of yi (I = 1, 2, 3, . . . n) when compared with yj
(j = 1, 2, 3, . . . i–1). For each comparison, the cases where yi > yj are counted and denoted
by ni. The statistic ti is then calculated as

ti =
i

∑
j=1

ni. (11)

The distribution of test statistic ti, has a mean of

E(ti) =
i(i− 1)

4
, (12)

and variance of

Var(ti) =
i(i− 1)(2i + 5)

72
. (13)

The sequential values for the series were calculated for each test statistic variables ti
as follows:

u(ti) =
ti − E(ti)√

Var(ti)
, (14)

where u(ti) is a standardized variable that has a mean of zero and unit standard deviation,
whose sequential behavior fluctuates around zero level [41]. While the forward sequential
statistic u(t) is estimated using the original time series (x1, x2, x3, . . . xn), the backward
sequential statistic u’(t) is estimated in the same way as u(t), but the estimation starts from
the end of the series (xn, xn–1, xn–2, . . . x1). The intersection of the forward u(t) and backward
u’(t) represents an approximate trend turning point. Abrupt change points are identified
by the intersections of u(t) and u’(t) occurring outside the confidence level threshold of the
standardized statistic. The threshold value in this study was ±1.96 (95% confidence level).
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2.7.2. MK Test

The MK test is a rank-based nonparametric trend detection method that is widely used
in time series analysis [44,45]. The test is based on two hypotheses: the null hypothesis
H0, with non-monotonic trend data, and the alternative hypothesis H1, which follows a
monotonic trend.

The MK test analyzes all potential pairs of measurements in the dataset to evaluate if a
series of values trends upward or downward over time. The MK test statistic is calculated
as follows:

S =
n−1

∑
k=1

n

∑
j=k+1

sgn(Xj − Xi), (15)

where Xi and Xj are two variables from time series X; Xi represents (X1, X2, . . . Xi); and Xj
represents (Xi+1, Xi+2, . . . Xj). If Xj is greater in magnitude than Xi, S increases by one; if Xj
is less than Xi, S decreases by one. The sgn is defined as

sgn(Xj − Xi) =


1 Xj > Xi
0 Xj = Xi
−1 Xj < Xi

. (16)

The test was performed at a 0.05 significance level. An upward or downward trend
is indicated by a positive or negative S value, respectively. The MK test not only detects
the trend over the entire time series in every band, but also the trend in different periods
separated by change points detected using the sequential MK test.

2.7.3. Sen’s Slope Estimator

Sen’s slope statistic is a nonparametric test proposed by Sen [46]. Strong fitting of
Sen’s slope results in a more robust slope estimate than the least-squares approach [46]. For
this purpose, Sen’s slope was selected to estimate the slope of the trend in the entire time
series for each segment, which is calculated as follows:

Qk =
Xj − Xi

tj − ti
, (17)

where k = [1, N(N–1)/2, i = [1, N–1], and j = [2, N] which ensures that i < j. Qk indicates the
slope of a data pair. Sen’s slope is then calculated as the median of all slopes (Qk):

Qmed =

 Q[(N+1)/2] N is odd

Q[N/2]+[(N+2)/2]
2 N is even

. (18)

Hence, Qmed represents the time series data’s trend and slope, which are related to
the MK (represented by S) test [47]. The confidence interval of Qmed was obtained under a
particular probability to ascertain whether the median slope was statistically significant.
The confidence interval of the slope is given by

Cα = Z1−α/2

√
Var(S), (19)

where Z1–α/2 was obtained from a common normal distribution table.
Var (S) and Zs are computed as follows:

Var(S) =
n(n− 1)(2n + 5)−

m
∑

i=1
ti(ti − 1)(2ti + 5)

18
, (20)
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ZS =


S−1√
Var(S)

S > 0

0 S = 0
S+1√
Var(S)

S < 0
, (21)

where n is the number of data series, m the number of tied groups (the same value is a tied
group), and ti is the number of data series in the i-th group.

2.8. Spatial Homogeneity Analysis

The spatial homogeneity of the site is the basis of radiometric calibration. CV and Gi*
represent the site’s local variability and spatial clustering, respectively. CV and Gi* are
suitable combinations for screening spatial homogeneity regions [4]. Hence, CV and Gi*
were used for spatial homogeneity analysis.

CV is a dimensionless value that provides a standardized measure of reflectance
variability within a defined area of an image. The CV has been widely used to estimate
spatial homogeneity of vicarious calibration sites [4,7,48,49]. The CV is defined as follows:

CV =
σ

x
, (22)

where σ and x are the standard deviation and mean within a pre-defined window, respec-
tively. For Landsat, the 3 × 3 window is selected, and S2 is 9 × 9 to match the difference
in resolution.

The Gi* statistic, which gives a measure of clustering, is a local indicator of spatial
association, indicating spatial homogeneity and dependence when similar values are
clustered [50,51]. The Gi* is defined as follows:

Gi∗(d) =
∑ wij(d)xj −W∗i x

s[W∗i (n−W∗i )/(n− 1)]1/2 , (23)

where n is the total number of pixels; x is the global mean of x; s is the variance of x; wij(d)
is a matrix of spectral weights with binary and symmetric weight equal to unity (wij = 1)
for all pixels found within the distance d of pixel i considered and a weight equal to zero
(wij = 0) for all pixels found outside d; ∑wij(d)xj is the sum of varying values X within the
distance d of pixel I; W*i is the number of pixels within the distance d. Gi* values greater
than zero were extracted, indicating spatial homogeneity of the matrix region; the region
consists of the same kind of elements or has a similar nature in space, meaning that it
exhibits a similar spatial reflectance structure [4,52].

3. Results
3.1. Statistical Analysis of GONA
3.1.1. Scaling Adjustment

The TOA distribution of each sensor without adjustment is shown in Figure 4. Figure 5
shows the “virtual constellation” combining the sensor data [53] after the SAF adjustment.
Comparison of sensor data before and after adjustment showed that the SAF had a minor
adjustment on the reflectance of S2 and L7, particularly for bands with shorter wavelengths.
However, the adjustment effect was more pronounced for bands with longer wavelengths.
This is because of the low reflectance energy in shorter wavelength bands; the reflectance
energy fluctuates significantly with the increase in wavelength [14]. Additionally, the
SRF between the sensors did not differ significantly in the shorter wavelength bands.
Consequently, the “fit” of the S2, L7, and L8 reflectance data was already near perfect in the
shorter wavelength bands before the SAF adjustment. The obvious offsets of the longer
wavelength may be due to the overall effect of the spectral energy characteristics of longer



Remote Sens. 2023, 15, 2639 11 of 34

wavelengths, RSR difference, and the atmospheric effect [14]. The SAF not only adjusts the
difference between sensors, but also equalizes the influence of the atmosphere [19].
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Figure 4. TOA reflectance before SAF adjustment of the combined data.

3.1.2. BRDF Correction

Figure 6 shows the BRDF-corrected TOA reflectance. The BRDF (based on 15 coefficient-
corrected GONA datasets) reduced directional effects. It can be seen from the figure that
BRDF correction seems to play little role, and only fine-tuned the raw TOA data. This
is because the surface type of GONA has the minimum BRDF effect, and the terrain is
relatively flat [24]. For SWIR1 and SWIR2 bands, the model was proved to be effective.
The temporal trends among the bands remained consistent before and after the correction,
indicating consistency for each band response of the sensor on GONA. Table S1 lists the
β-parameter values of the BRDF model for each band of the four PICS in RadCalNet.
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Figure 5. TOA reflectance after SAF adjustment of the combined data.

3.1.3. Drift Correction

Figure 7 shows that the distribution of TOA data was evened out after weight adjust-
ment. However, some time node data are distinct from the overall distribution because of a
limited amount of data, which impedes the accurate analysis of trends in the data. Data
distribution has large changes that were not removed because they represent trends in the
dataset. Overall, there were no obvious fluctuations in the dataset, reflecting the long-term
trends in the data. Table 2 lists the total uncertainties of the four data sources.
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Figure 6. TOA reflectance after BRDF correction of GONA.

Table 2. Total average uncertainty of RadCalNet.

Bands BSCN GONA LCFR
(Winter and Spring)

LCFR
(Summer and Autumn) RVUS

Blue 6.04 2.62 6.34 4.64 6.14
Green 5.56 2.88 6.00 6.32 5.35
Red 5.39 2.96 6.26 5.62 5.36
NIR 4.56 3.25 5.96 5.55 5.60

SWIR1 4.94 2.67 6.55 4.85 5.39
SWIR2 5.02 3.13 7.20 5.35 5.88
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Figure 7. TOA reflectance after weight adjustment of the combined data of GONA.

3.1.4. Sequential MK Analysis for TOA and BOA Data

The sequential MK test was conducted for the GONA dataset at a 95% confidence level
using a critical value of ±1.96. The intersection points of the curve indicate statistically
significant changes in the yearly trend of the TOA. Figure 8 shows the sequential MK
trend analysis for the TOA series of GONA. For all bands, except the NIR and SWIR2
bands, an abrupt change point occurred in 2021; however, only the SWIR1 band was
within the confidence interval, which proved that this abrupt change point was statistically
significant. All bands’ forward and backward trends were roughly the same, indicating
good consistency in their radiometric performance at this site. The NIR and SWIR1 bands
had two abrupt change points in 2017 and 2018, but a statistically significant change was
detected only in 2018. In 2022, multiple change points occurred in the NIR, SWIR1, and
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SWIR2 bands, but only the change point in the NIR band was significant. Table 3 presents
the years of significant change points in each band.
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Table 3. Change point detection using sequential MK test for TOA data of GONA (* p ≤ 0.05).

Band Detected Change Points (Year) Remarks

Blue - - 2021 -
Green - - 2021 -
Red - - 2021 -
NIR 2017 2018 * - 2022 * Significant

SWIR1 2017 2018 * 2021 * 2022 Significant
SWIR2 - - - 2022

Figure 9 shows the sequential MK trend analysis for the yearly BOA data of GONA.
The BOA data were first filtered by an aerosol optical depth (AOD) of less than 0.2, cor-
rected by the BRDF, and finally weighted by the inverse variance of the uncertainties. The
uncertainties include the residual of the BRDF model and the uncertainty of wavelength
reflectance. SWIR2 was not calculated because the wavelength range of the GONA instru-
ment could not support the complete calculation of reflectance. The positive sequential MK
curve of each band showed a high degree of consistency, consistent with the reverse curve.
This reflects the homogeneity of the site reflectance at each wavelength. All bands, except
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for the NIR band, exhibited a statistically significant abrupt change in 2021 (2022 for the
NIR band). Table 4 presents the years of significant change points for each band.

Remote Sens. 2023, 15, x FOR PEER REVIEW 16 of 35 
 

 

  

  

 

Figure 8. Test of abrupt change points for the combined TOA data of GONA. 

  

  

Remote Sens. 2023, 15, x FOR PEER REVIEW 17 of 35 
 

 

 

 

Figure 9. Test of abrupt change points for the combined BOA data of GONA. 

Table 3. Change point detection using sequential MK test for TOA data of GONA (* p ≤ 0.05). 

Band Detected Change Points (year) Remarks 

Blue - - 2021 -  

Green - - 2021 -  

Red - - 2021 -  

NIR 2017 2018 * - 2022 * Significant 

SWIR1 2017 2018 * 2021 * 2022 Significant 

SWIR2 - - - 2022  

Table 4. Change point detection using the sequential MK test for BOA data of GONA (* p ≤ 0.05). 

Band Detected Change Points (year) Remarks 

Blue 2021 * - Significant 

Green 2021 * - Significant 

Red 2021 * - Significant 

NIR - 2022 * Significant 

SWIR1 2021 * - Significant 

3.1.5. MK Trend and Sen’s Slope Estimator Analysis for TOA and BOA Data 

The MK trend test was applied to the combined data to determine long-term trends 

for GONA’s TOA and BOA datasets (Table 5). The test results showed a long-term mono-

tonic trend for all bands of the BOA data; only the blue, green, and red had a long-term 

monotonic trend for the TOA data. The MK test of the BOA showed a strong significance 

level. For the NIR, SWIR1, and SWIR2 bands of TOA, there was insufficient evidence for 

a monotonic trend, which means that these bands were stable during the entire period; 

however, Sen’s slope provides a monotonic trend without a significant level to support 

this evidence. These analyses provide sufficient evidence to support a monotonic trend 

for the five bands of the BOA data and three bands in the TOA data. This inconsistency 

between the datasets proves that the surface information reflected in the TOA data is af-

fected by atmospheric and spectral band adjustments. 

Table 5. MK trend test and Sen’s slope for TOA and BOA data of GONA (at 0.05 significance level). 

Band 
p value Decision Slope p value Decision Slope 

TOA BOA 

Blue 2.50 × 10–5 Upward trend 4.926 × 10–6 0 Upward trend 9.414 × 10–6 

Green 4.50 × 10–6 Upward trend 9.578 × 10–6 0 Upward trend 2.196 × 10–5 

Red 9.50 × 10–7 Upward trend 1.523 × 10–5 0 Upward trend 2.889 × 10–5 
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Table 4. Change point detection using the sequential MK test for BOA data of GONA (* p ≤ 0.05).

Band Detected Change Points (Year) Remarks

Blue 2021 * - Significant
Green 2021 * - Significant
Red 2021 * - Significant
NIR - 2022 * Significant

SWIR1 2021 * - Significant

Comparison of the sequential MK tests of the TOA and BOA datasets revealed that the
abrupt change points reflected by the TOA did not necessarily correspond with changes
in the BOA data. This may be related to the impact of the atmosphere, as the optical path
containing the actual surface information may be masked or obscured by atmospheric
effects. In addition, the spectral band adjustment adjusts the atmospheric condition of the
image to the atmospheric state of a scene or the average atmospheric state of multi-scene
images, which will further mask the real surface state.
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3.1.5. MK Trend and Sen’s Slope Estimator Analysis for TOA and BOA Data

The MK trend test was applied to the combined data to determine long-term trends for
GONA’s TOA and BOA datasets (Table 5). The test results showed a long-term monotonic
trend for all bands of the BOA data; only the blue, green, and red had a long-term monotonic
trend for the TOA data. The MK test of the BOA showed a strong significance level. For the
NIR, SWIR1, and SWIR2 bands of TOA, there was insufficient evidence for a monotonic
trend, which means that these bands were stable during the entire period; however, Sen’s
slope provides a monotonic trend without a significant level to support this evidence. These
analyses provide sufficient evidence to support a monotonic trend for the five bands of
the BOA data and three bands in the TOA data. This inconsistency between the datasets
proves that the surface information reflected in the TOA data is affected by atmospheric
and spectral band adjustments.

Table 5. MK trend test and Sen’s slope for TOA and BOA data of GONA (at 0.05 significance level).

Band
p Value Decision Slope p Value Decision Slope

TOA BOA

Blue 2.50 × 10−5 Upward trend 4.926 × 10−6 0 Upward trend 9.414 × 10−6

Green 4.50 × 10−6 Upward trend 9.578 × 10−6 0 Upward trend 2.196 × 10−5

Red 9.50 × 10−7 Upward trend 1.523 × 10−5 0 Upward trend 2.889 × 10−5

NIR 0.579 No trend 1.998 × 10−6 0 Upward trend 1.733 × 10−5

SWIR1 0.553 No trend 1.938 × 10−6 0 Upward trend 1.680 × 10−5

SWIR2 0.069 No trend 7.544 × 10−6

Table 6 lists the MK test and Sen’s slopes results for each abrupt change point in the
TOA and BOA data, respectively. No statistically significant abrupt change points were
found in the blue, green, red, or SWIR2 bands. Instead, significant abrupt change points
were observed in the NIR and SWIR1 bands, where data on both sides of the NIR band
showed an increasing trend. Specifically, a significant increasing trend in the SWIR1 band
was detected between 2017 and 2018, followed by a downward trend from 2021 to 2022.
There was insufficient statistical evidence to support a monotonic trend from 2018 to 2021;
although the slope indicated a possible increase outside the confidence interval, it exceeded
outside the significance level. With the exception of the SWIR1 band, an increasing trend
was detected in each abrupt change interval of the other four bands of the BOA data,
coinciding with each band’s overall trend. The two abrupt change intervals of the SWIR1
band showed a decreasing trend and an overall upward trend, which may be difficult to
understand intuitively, but was consistent with the statistical analysis.

3.2. Statistical Analysis of BSCN, RVUS, and LCFR

The previous section summarized the results for GONA and illustrated our step-by-
step analytical procedure. The results for BSCN, RVUS, and LCFR are presented in this
section, with all tests conducted at a 95% confidence level. The number of bands of BOA
data at each site is based on the wavelength ranges provided by the sites.

Figures 10 and 11 present the sequential MK test results for the TOA and BOA data of
BSCN, respectively. The forward and backward sequential MK test curves of each band
showed strong consistency. Consequently, it can be inferred that the site was similar in the
long time series TOA and BOA trends of the visible, NIR, and SWIR bands. Although the
curves intersected, not all intersections represented turning points because they were not
statistically significant. Except for the blue and SWIR2 bands, all other bands in the TOA
time series had significant abrupt turning points in 2019. Actual change points for the red
and NIR bands occurred in 2021 and 2018, respectively. The only significant abrupt point
in the blue band was in 2020. The actual change point in the SWIR2 band only occurred in
2021. Compared with the BOA time series data, only the blue and green bands changed
significantly in 2020, while the red and NIR bands had several intersections, but both



Remote Sens. 2023, 15, 2639 18 of 34

exceeded the confidence range. Tables 7 and 8 list the change points detected by using the
sequential MK test for the TOA and BOA data of BSCN, respectively.

Table 6. MK trend test and Sen’s slope for each change point for TOA and BOA data of GONA (at
0.05 significance level).

Band Period p Value Decision Slope

TOA

NIR
2017–2018 4.528 × 10−8 Upward trend 2.296 × 10−4

2018–2022 0.003 Upward trend 1.747 × 10−5

SWIR1
2017–2018 1.676 × 10−5 Upward trend 2.628 × 10−4

2018–2021 0.129 No trend 1.339 × 10−5

2021–2022 0.006 Downward trend –5.694 × 10−5

BOA

Blue
2017–2021 4.074 × 10−8 Upward trend 7.396 × 10−6

2021–2022 4.883 × 10−8 Upward trend 3.062 × 10−5

Green
2017–2021 1.443 × 10−7 Upward trend 1.805 × 10−5

2021–2022 1.786 × 10−7 Upward trend 2.727 × 10−5

Red
2017–2021 1.175 × 10−6 Upward trend 2.118 × 10−5

2021–2022 8.981 × 10−7 Upward trend 2.933 × 10−5

NIR
2017–2021 1.430 × 10−8 Upward trend 1.256 × 10−5

2021–2022 1.784 × 10−8 Upward trend 2.429 × 10−4

SWIR1
2017–2021 6.428 × 10−3 Downward trend –9.085 × 10−6

2021–2022 7.608 × 10−3 Downward trend –1.269 × 10−5

Table 7. Change points detected using the sequential MK test for TOA data of BSCN (* p ≤ 0.05).

Band Detected Change Points (Year) Remarks

Blue 2017 - - 2020 * 2022 Significant
Green 2017 - 2019 * - 2022 Significant
Red - - 2019 * 2021 * 2022 Significant
NIR 2017 2018 * 2019 * - 2022 Significant

SWIR1 - - 2019 * - - Significant
SWIR2 2017 2018 - 2021 * 2022 Significant

Table 8. Change points detected using the sequential MK test for BOA data of BSCN (* p ≤ 0.05).

Band Detected Change Points (Year) Remarks

Blue - 2020 * - 2022 Significant
Green 2018 2020 * - 2022 Significant
Red 2018 - 2021 2022
NIR 2018 - 2021 2022

Table 9 lists the MK trend test and Sen’s slope results for each change point of the TOA
and BOA data of BSCN. The results showed an increasing trend in each abrupt change
interval for each band of the TOA data, except for the red band from 2021 to 2022 and each
abrupt change region of the SWIR2 band. Additionally, there was a long-term increasing
trend across each abrupt change interval of the blue and green bands for the BOA data.
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Table 9. MK trend test and Sen’s slope of each change point for TOA and BOA data of BSCN (at 0.05
significance level).

Band Period p Value Decision Slope

TOA

Blue
2017–2020 0.005 Upward trend 2.511 × 10−5

2020–2022 0.008 Upward trend 1.390 × 10−5

Green
2017–2019 0.001 Upward trend 3.733 × 10−5

2019–2022 0.001 Upward trend 1.331 × 10−5

Red
2017–2019 9.919 × 10−4 Upward trend 4.385 × 10−5

2019–2021 0.007 Upward trend 4.626 × 10−5

2021–2022 0.008 Downward trend −3.361 × 10−5

NIR
2017–2018 0.016 Upward trend 3.367 × 10−5

2018–2022 0.008 Upward trend 1.180 × 10−5

SWIR1
2017–2019 9.970 × 10−4 Upward trend 4.676 × 10−5

2019–2022 5.154 × 10−4 Upward trend 2.508 × 10−5

SWIR2
2017–2021 2.127 × 10−4 Downward trend −3.207 × 10−5

2021–2022 2.890 × 10−4 Downward trend −9.895 × 10−5

BOA

Blue
2018–2020 0.020 Downward trend −4.910 × 10−4

2020–2022 0.004 Downward trend −1.812 × 10−4

Green
2018–2020 0.032 Downward trend −4.693 × 10−4

2020–2022 0.019 Downward trend −1.826 × 10−4

Figures 12 and 13 show the sequential MK test results for the TOA and BOA data
of RVUS, respectively. A significant abrupt change point for each band of the TOA data
was detected in 2022, while the abrupt change points of the BOA occurred in 2020, 2021,
and 2022. The abrupt points of each band in 2020 and 2022 were significant within the
confidence interval. In 2021, the other abrupt change points of bands were statistically
significant, except for the blue, green, and red bands. Tables 10 and 11 list the change points
detected by using the sequential MK test for the TOA and BOA data of RVUS, respectively.

Table 10. Change points detected using the sequential MK test for TOA data of RVUS (* p ≤ 0.05).

Band Detected Change Points (Year) Remarks

Blue 2022 * Significant
Green 2022 * Significant
Red 2022 * Significant
NIR 2022 * Significant

SWIR1 2022 * Significant
SWIR2 2022 * Significant

Table 11. Change points detected using the sequential MK test for BOA data of RVUS (* p ≤ 0.05).

Band Detected Change Points (Year) Remarks

Blue 2020 * - 2022 * Significant
Green 2020 * - 2022 * Significant
Red 2020 * - 2022 * Significant
NIR 2020 * 2021 * 2022 * Significant

SWIR1 2020 * 2021 * 2022 * Significant

Table 12 lists the MK trend test and Sen’s slope results of each abrupt change point
for the TOA and BOA data of RVUS. A clear increasing trend was found for each abrupt
change interval in each band of the TOA data. For the BOA data, all abrupt change intervals
showed a significant downward trend from 2020 to 2021, except for those in the NIR and
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SWIR1 bands. The NIR band exhibited no statistically significant trend change between
2020 and 2021, while SWIR1 showed an increasing trend.
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It is significant to note that the LCFR site’s surface varies from moderate vegetation
and pebble cover in the winter and spring to a semi-arid soil surface in the summer and
fall [54,55]. For improved accuracy in the results, the TOA and BOA data of the LCFR site
were separated by seasons, with winter and spring in one group and summer and autumn
in another group.

Figures 14 and 15 show the sequential MK test results for the TOA and BOA data
of LCFR (winter and spring), respectively. An abrupt change point was observed in 2019
for all bands except the blue band in 2020 and the NIR band in 2021, with only the blue
and red bands being statistically significant. For the SWIR1 and SWIR2 bands, the change
points were detected in 2016, 2019, and 2022. However, the probability values were below
the 95% confidence level and could not be utilized as significant change points. For the
BOA data, multiple abrupt change points were detected in each band. Except for the SWIR
band, there are significant abrupt points in all other bands between 2015 and 2022, with
the blue band in 2017, 2018, and 2019, the green band in 2015 and 2020, the red band in
2017 and 2020, and the NIR band in 2019 and 2020. The SWIR bands were all detected
with change points in 2017, but not significantly. Tables 13 and 14 list the change points
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detected using the sequential MK test for the TOA and BOA data of LCFR (winter and
spring), respectively.
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Table 12. MK trend test and Sen’s slope of each change point for TOA data of RVUS (at 0.05
significance level).

Band Period p Value Decision Slope

TOA

Blue
2013–2022 1.701 × 10−11 Upward trend 6.332 × 10−5

2022–2022 1.485 × 10−11 Upward trend 5.777 × 10−4

Green
2013–2022 4.014 × 10−10 Upward trend 6.957 × 10−5

2022–2022 3.963 × 10−9 Upward trend 4.323 × 10−4

Red
2013–2022 1.580 × 10−9 Upward trend 7.191 × 10−5

2022–2022 1.568 × 10−8 Upward trend 4.361 × 10−4

NIR
2013–2022 2.541 × 10−7 Upward trend 7.118 × 10−5

2022–2022 1.937 × 10−7 Upward trend 4.073 × 10−4

SWIR1
2013–2022 4.691 × 10−11 Upward trend 7.791 × 10−5

2022–2022 3.053 × 10−11 Upward trend 6.179 × 10−4

SWIR2
2013–2022 1.089 × 10−7 Upward trend 6.393 × 10−5

2022–2022 6.485 × 10−8 Upward trend 1.458 × 10−3
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Table 12. Cont.

Band Period p Value Decision Slope

BOA

Blue
2013–2020 0 Downward trend –3.162 × 10−5

2020–2022 0 Downward trend –1.966 × 10−4

Green
2013–2020 0 Downward trend –3.587 × 10−5

2020–2022 0 Downward trend –2.224 × 10−4

Red
2013–2020 0 Downward trend –3.109 × 10−5

2020–2022 0 Downward trend –2.536 × 10−4

NIR
2013–2020 0 Downward trend –3.340 × 10−5

2020–2021 0.896 No trend 6.067 × 10−6

2021–2022 0 Downward trend –2.227 × 10−4

SWIR1
2013–2020 0 Downward trend –3.284 × 10−5

2020–2021 2.678 × 10−5 Upward trend 3.181 × 10−4

2021–2022 3.427 × 10−4 Downward trend –6.497 × 10−5
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Table 13. Change points detected using the sequential MK test for TOA data of LCFR (winter and
spring) (* p ≤ 0.05).

Band Detected Change Points (Year) Remarks

Blue - - 2020 * - - Significant
Green - 2019 - - -
Red - 2019 * - - - Significant
NIR - - - 2021 -

SWIR1 2016 2019 - - 2022
SWIR2 2016 2019 - - 2022

Table 14. Change points detected using the sequential MK test for BOA data of LCFR (winter and
spring) (* p ≤ 0.05).

Band Detected Change Points (Year) Remarks

Blue 2015 2016 2017 * 2018 * 2019 * 2020 2021 2022 Significant
Green 2015 * - - - 2019 2020 * - - Significant
Red - - 2017 * - - 2020 * 2021 - Significant
NIR 2015 - 2017 - 2019 * 2020 * 2021 - Significant

SWIR1 - - 2017 - - - - -
SWIR2 - - 2017 - - - - -
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Table 15 lists the MK trend test and Sen’s slope results of each abrupt point for the
TOA and BOA data of LCFR (winter and spring). A monotonic trend was detected in all
bands of each abrupt interval of the TOA and BOA data, except for the blue band from
2015 to 2017 of the BOA data. In addition, the trends and abrupt change intervals varied
between the TOA and BOA data. An increasing trend was detected in the red and green
bands of the TOA at various abrupt intervals, and the magnitude of the slope was lower
than 10 × 10−4. For the BOA data, a statistically significant change was not detected in the
blue band between 2015 and 2017, with a monotonically increasing trend between 2017
and 2018 and 2018 and 2019, and a downward trend between 2019 and 2022. There was
a significant increase in the green and red bands at each abrupt interval. A downward
trend was detected between 2015 and 2019 for the NIR band, but it monotonically increased
within the two abrupt intervals of 2020 and 2022.

Table 15. MK trend test and Sen’s slope of each change point for TOA and BOA data of LCFR (winter
and spring) (at 0.05 significance level).

Band Period p Value Decision Slope

TOA

Blue
2015–2020 0.047 Upward trend 5.199 × 10−5

2020–2022 0.022 Upward trend 6.381 × 10−5

Red
2015–2019 0.019 Upward trend 1.118 × 10−4

2019–2022 0.047 Upward trend 1.200 × 10−4

BOA

Blue

2015–2017 0.051 No trend 7.253 × 10−5

2017–2018 4.485 × 10−14 Upward trend 4.846 × 10−4

2018–2019 0.042 Upward trend 8.249 × 10−5

2019–2022 0.007 Downward trend –3.735 × 10−5

Green
2015–2020 2.357 × 10−6 Upward trend 5.339 × 10−5

2020–2022 0.003 Upward trend 2.438 × 10−4

Red
2015–2017 7.52 × 10−4 Upward trend 3.879 × 10−4

2017–2020 6.974 × 10−9 Upward trend 1.519 × 10−4

2020–2022 7.761 × 10−4 Upward trend 2.123 × 10−4

NIR
2015–2019 0.011 Downward trend –4.408 × 10−5

2019–2020 0.023 Upward trend 3.501 × 10−4

2020–2022 0.037 Upward trend 2.837 × 10−4

Figures 16 and 17 show the sequential MK test results for the TOA and BOA data of
LCFR (summer and autumn), respectively. For TOA data, an abrupt change point was
found in all bands, except for the blue and SWIR2 bands in 2020, where only NIR was
statistically significant. An actual change point was detected in the blue band in 2016 and
2019. In 2022, a significant abrupt change point was detected in the green and SWIR2 bands.
For the BOA data, multiple abrupt change points were detected in all bands, some of which
were statistically significant. The abrupt points of the green band in 2015, the red band in
2015 and 2019, the NIR band in 2016, and the two SWIR bands in 2016, 2019, and 2020 are
all reliable at the confidence levels. Tables 16 and 17 list all the detected change points.

Table 18 lists the MK trend test and Sen’s slope results of each abrupt change point for
the TOA and BOA data of LCFR (summer and autumn). The blue band of the TOA was
detected with a downward trend from 2015 to 2016 and an increase from 2016 to 2019 and
also from 2019 to 2022. However, there is no abrupt interval in the blue band of the BOA
at the confidence level. The red band of the BOA was detected with a monotonic increase
between 2019 and 2022, but no abrupt interval was detected in the red band of the TOA.
The green and SWIR2 bands of the TOA were detected decreasing between 2015 and 2022,
while the NIR band increased at various intervals. A downward trend was detected in the
NIR band of the BOA within the abrupt interval. There is an increasing trend in the SWIR1
band between 2020 and 2022, but no statistically significant trend was detected in other
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intervals. The SWIR2 band was detected decreasing and increasing from 2015 to 2016 and
2020 to 2022, respectively. It can be found that the TOA and BOA data showed different
trends and abrupt change intervals.
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Table 16. Change points detected using the sequential MK test for TOA data of LCFR (summer and
autumn) (* p ≤ 0.05).

Band Detected Change Points (Year) Remarks

Blue 2015 2016 * 2019 * - - Significant
Green - - - 2020 2022 * Significant
Red - - - 2020 -
NIR - - - 2020 * - Significant

SWIR1 - - - 2020 -
SWIR2 - - 2019 - 2022 * Significant

Table 19 lists the MK trend test and Sen’s slope results for the TOA and BOA data
of the BSCN, RVUS, and LCFR sites over the study period. All bands for the TOA data
of RVUS showed a significant long-term upward trend. Compared with the BOA data,
there was a long-term upward trend within the significance level. For the TOA data of
BSCN, all bands, except for the red and SWIR1 bands, were temporally stable. In contrast,
the BOA data of BSCN lacked enough evidence to prove the monotonicity of all bands.
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For the TOA data of LCFR (winter and spring), the green, red, and NIR bands showed a
significant long-term downward trend across the entire period, while the other three bands
were temporally stable. For the BOA data of LCFR (winter and spring), an increasing trend
was detected in only the SWIR1 and SWIR2 bands, while the other bands were temporally
stable. For TOA data of LCFR (summer and autumn), there was a downward trend for all
bands except for the blue band, while the BOA data showed a long-term downward trend
in all bands except for the red, SWIR1, and SWIR2 bands.

Table 17. Change points detected using the sequential MK test for BOA data of LCFR (summer and
autumn) (* p ≤ 0.05).

Band Detected Change Points (Year) Remarks

Blue - - 2019 - -
Green 2015 * - - 2020 - Significant
Red 2015 * - 2019 * 2020 - Significant
NIR - 2016 * - 2020 - Significant

SWIR1 2015 2016 * 2019 * 2020 * 2021 Significant
SWIR2 2015 2016 * 2019 * 2020 * 2021 Significant
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Table 18. MK trend test and Sen’s slope of each change point for TOA and BOA data of LCFR
(summer and autumn) (at 0.05 significance level).

Band Period p Value Decision Slope

TOA

Blue
2015–2016 0.029 Downward trend –1.516 × 10−4

2016–2019 9.257 × 10−4 Upward trend 7.877 × 10−4

2019–2022 1.253 × 10−6 Upward trend 6.736 × 10−5

Green 2015–2022 6.880 × 10−6 Downward trend –5.628 × 10−5

NIR
2015–2020 2.258 × 10−4 Upward trend 1.401 × 10−4

2020–2022 3.525 × 10−3 Upward trend 9.900 × 10−5

SWIR2 2015–2022 1.297 × 10−3 Downward trend –9.159 × 10−5

BOA

Green 2015–2022 2.500 × 10−7 Downward trend –6.184 × 10−5

Red
2015–2019 0.950 No trend –2.585 × 10−6

2019–2022 0.007 Upward trend 1.756 × 10−4

NIR
2015–2016 4.853 × 10−4 Downward trend –2.316 × 10−4

2016–2022 4.198 × 10−4 Downward trend –5.463 × 10−5

SWIR1

2015–2016 0.078 No trend –3.518 × 10−4

2016–2019 0.516 No trend 2.541 × 10−5

2019–2020 0.620 No trend –3.677 × 10−4

2020–2022 0.016 Upward trend 2.346 × 10−4

SWIR2

2015–2016 0.046 Downward trend –4.589 × 10−4

2016–2019 0.511 No trend 2.515 × 10−5

2019–2020 0.448 No trend 7.171 × 10−4

2020–2022 0.034 Upward trend 2.299 × 10−4

3.3. Percentage Change from the TOA and BOA of the RadCalNet That Reflects Instability and
Indicates That This Site Cannot Be Used to Reliably Track the Radiometric Performance of the
SWIR1 and SWIR2 Bands

Table 20 lists the percentage change of the RadCalNet for the study period. It can
be seen that the TOA and BOA datasets varied in the degree of change. The change in
trend for the TOA data was significantly smaller than that for the BOA data, except for
RVUS. This discrepancy may be attributed to the atmosphere’s influence and the sensor’s
attenuation uncertainty. While the uncertainties in the BRDF and SAF models, sites, and
sensors had been considered and corrected, the uncertainty of the satellite sensor was taken
as a constant value. In fact, the uncertainty of the sensor is continually changing. Overall,
BSCN exhibited good stability, based on both the TOA and BOA data. However, the annual
percentage change of the SWIR1 and SWIR2 bands of LCFR reached 1.144% and 1.803%,
respectively, which reflects instability and indicates that this site cannot be used to reliably
track the radiometric performance of the SWIR1 and SWIR2 bands.

3.4. Spatial Stability Analysis of RadCalNet

Table 21 lists the ratio of site homogeneity reaching the standard during the operation
period of each site. Whether it is local variability or spatial clustering, the proportion of
GONA bands meeting the conditions was greater than 0.979, and the ratio of the blue and
green bands meeting the local variability conditions reached 1. GONA exhibits very good
spatial homogeneity throughout the year [56]. The other three sites also basically met the
spatial homogeneity conditions during the satellite transit, with the lowest spatial clustering
ratio of 0.582 found in the NIR band of LCFR. This suggests that the NIR band of LCFR was
homogeneous only half of the time throughout the year, which is reasonable considering
the seasonal variation in the surface type of LCFR [54,55]. The NIR band exhibits spatial
heterogeneity when the local surface is a mixture of cobbles and sparse vegetation.
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Table 19. MK trend test and Sen’s slope for TOA and BOA data of BSCN, RVUS, and LCFR (at 0.05
significance level, * indicates instances where the reflectance of the corresponding wavelength was
not provided).

Band
p Value Decision Slope p Value Decision Slope

TOA BOA

BSCN

Blue 0.477 No trend –1.770 × 10−6 0.114 No trend 8.818 × 10−5

Green 0.500 No trend –1.089 × 10−6 0.803 No trend 1.762 × 10−5

Red 0.037 Downward trend –6.036 × 10−6 0.543 No trend –3.514 × 10−5

NIR 0.622 No trend 9.716 × 10−7 0.789 No trend 1.351 × 10−5

SWIR1 0.003 Downward trend –9.509 × 10−6 * * *
SWIR2 0.064 No trend –9.374 × 10−6 * * *

RVUS

Blue 0 Upward trend 9.543 × 10−5 4.755 × 10−9 Upward trend 1.574 × 10−5

Green 0 Upward trend 1.082 × 10−4 1.711 × 10−9 Upward trend 1.712 × 10−5

Red 0 Upward trend 1.136 × 10−4 2.727 × 10−9 Upward trend 1.611 × 10−5

NIR 0 Upward trend 1.286 × 10−4 9.523 × 10−8 Upward trend 1.504 × 10−5

SWIR1 0 Upward trend 1.039 × 10−4 2.975 × 10−4 Upward trend 9.031 × 10−6

SWIR2 4.440 × 10−16 Upward trend 8.553 × 10−5 * * *

LCFR (winter and spring)

Blue 0.078 No trend –1.947 × 10−5 0.870 No trend 1.131 × 10−6

Green 3.801 × 10−4 Downward trend –4.333 × 10−5 0.162 No trend 9.721 × 10−6

Red 2.192 × 10−4 Downward trend –7.812 × 10−5 0.051 No trend 2.391 × 10−5

NIR 0.010 Downward trend –7.211 × 10−5 0.836 No trend –2.707 × 10−6

SWIR1 0.249 No trend –5.912 × 10−5 4.330 × 10−9 Upward trend 1.119 × 10−4

SWIR2 0.311 No trend –3.248 × 10−5 2.648 × 10−9 Upward trend 1.126 × 10−4

LCFR (summer and autumn)

Blue 0.164 No trend –7.678 × 10−6 6.797 × 10−5 Downward trend –3.194 × 10−5

Green 3.801 × 10−4 Downward trend –3.552 × 10−5 4.415 × 10−3 Downward trend –3.076 × 10−5

Red 1.424 × 10−5 Downward trend –9.603 × 10−5 0.053 No trend –3.233 × 10−5

NIR 0.008 Downward trend –4.468 × 10−5 5.281 × 10−8 Downward trend –5.380 × 10−5

SWIR1 2.174 × 10−5 Downward trend –8.992 × 10−5 0.279 No trend 1.781 × 10−5

SWIR2 0.007 Downward trend –6.249 × 10−5 0.231 No trend 2.013 × 10−5

Table 20. Annual percentage change in TOA and BOA data over the study period (- represents
insufficient evidence to support monotonous trends. * indicates instances where the reflectance of the
corresponding wavelength range was not provided by the site instrument).

Band GONA BSCN RVUS LCFR
(Winter and Spring)

LCFR
(Summer and Autumn)

TOA

Blue 0.172 - 1.788 - -
Green 0.283 - 1.702 –0.615 –0.580
Red 0.323 –0.153 1.566 –0.978 –1.133
NIR - - 1.567 –0.416 –0.425

SWIR1 - –0.149 1.142 - –0.614
SWIR2 - - 1.126 - –0.589

BOA

Blue 0.914 - 0.801 - –1.324
Green 1.293 - 0.676 - –0.858
Red 0.957 - 0.579 - -
NIR 0.731 - 0.498 - –0.682

SWIR1 0.569 * 0.282 1.144 -
SWIR2 * * * 1.803 -
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Table 21. Ratio of CV and Gi meeting conditions at each site of RadCalNet during the operation (The
condition of CV is less than 3%, and of Gi* greater than 0).

Site Blue Green Red NIR SWIR1 SWIR2

CV ratio

GONA 1.000 1.000 0.998 0.998 0.988 0.988
BSCN 0.948 0.939 0.911 0.943 0.916 0.886
RVUS 0.998 0.997 0.997 0.995 0.971 0.969
LCFR 0.981 0.960 0.799 0.925 0.939 0.813

Gi* ratio

GONA 0.998 0.998 0.998 0.996 0.996 0.979
BSCN 0.916 0.939 0.946 0.911 0.986 0.988
RVUS 0.920 0.957 0.965 0.922 0.915 0.674
LCFR 0.962 0.976 0.986 0.582 0.995 0.991

4. Discussion

Tuli [19] and Khadka [20] used multi-sensor TOA data (ETM+, OLI, MSI, and MODIS)
to evaluate the temporal stability of the six PICS used by the SDSU for calibration analysis.
However, it is important to note that atmospheric conditions can easily affect the TOA data,
which may not accurately reflect true surface information. Therefore, when analyzing and
evaluating the temporal stability of PICS sites using TOA data, the authenticity of the results
should be considered and discussed. This study focused on evaluating the RadCalNet sites
and aimed to verify the authenticity of the surface reflected by the sequence of the TOA
data. The BOA data were obtained using strict criteria, including an AOD of less than 0.2
and a consideration of uncertainty, to ensure the reliability of the results.

The analyses of this study showed that the TOA and BOA data varied in terms of
significant abrupt change points and trends, indicating that the real change state of the
PICS surface cannot be accurately reflected using long-term TOA data. This is likely
because the atmosphere alters the optical path containing the surface information before it
reaches the satellite sensor. Therefore, the TOA data contain both surface and atmospheric
information. The discrepancy could also be related to the spectral band adjustment. The
SAF was obtained from the mean ratio of the image values closest to the two sensors. This
can alter the RSR and other differences between the two sensors [19], meaning that the
atmospheric state of all images is adjusted to the average atmospheric state of the near-
coincident acquisition image pair. The surface reflectance noise in the data and spectral
band adjustment can obscure the real surface information and lead to misinterpretations.
Compared to the multi-satellite sensor data of Tuli and Khadka, this experiment only used
data from ETM+, OLI, and MSI sensors owing to the size limitation of the site’s core area,
resulting in a disadvantage in temporal resolution.

The interpretation of our results was supported by a high level of confidence and
statistical significance based on the MK test and Sen’s slope. As shown, it reflects instability
and indicates that this site cannot be used to reliably track the radiometric performance of
the SWIR1 and SWIR2 bands.

As can be seen in Table 20, for some bands, such as the visible light bands of BSCN
and LCFR (winter and spring) and the red SWIR1 and SWIR2 bands of LCFR (winter and
spring), there is insufficient evidence to support the monotonous trends of abrupt change
intervals outside the confidence level, indicating that the bands are stable. However, the
annual change rates of the green band of GONA, the blue band of LCFR (summer and
autumn), and the SWIR1 and SWIR2 bands of LCFR (winter and spring) all exceeded 1%,
surpassing the radiometric accuracy of sensor-traceable radiometry underpinning terres-
trial and helio studies (0.3%) [57]. This indicates that these bands are unstable at these
sites and unsuitable for monitoring the sensors’ radiometric performance. Moreover, the
magnitude of change of these bands within the operating period (>5%) is greater than the
task requirements of OLI, ETM+, and MSI sensor calibration uncertainties (5% for ETM+
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and 3% for OLI and MSI), which further proves that the site cannot be used as a radiometric
performance tracking source. While the long-term reflectance shows a significant rate of
change (0.282%/year–1.324%/year) at the confidence level, the CV remains essentially less
than 3% and the Gi* greater than 0 (Table 21), indicating that the RadCalNet is homogenous
enough for use in radiometric calibration. Nonetheless, using the sites with the large
change rates for radiometric performance tracking of the corresponding bands would be
inappropriate and likely to result in errors.

The trend analysis of the RadCalNet sites provides an uncertainty basis for satellite
sensor calibration. The BOA data could effectively reveal the changes in reflectance trends
between bands at each site determined using TOA data and quantify spatial stability and
temporal instability at the RadCalNet sites. Our study can provide reference for researchers
who use the TOA to quantify PICS radiometric stability and for satellite calibration and
radiometric performance tracking using the RadCalNet sites.

5. Conclusions

The monitoring of sensor performance is closely related to data quality and accuracy,
and PICS-based calibration has become the most popular method for monitoring sensor
radiometric performance. However, previous studies had confirmed that PICS are not
temporally stable, but the results were performed using TOA data without the support
of surface reflectance data. Therefore, this study analyzed the spatiotemporal stability
of the RadCalNet sites (for the GONA, BSCN, RVUS, and LCFR) using three sensors
(ETM+, OLI, and MSI) and site BOA data, while also verifying the accuracy of the surface
state reflected in the TOA time series. Additionally, it provides the first comprehensive
evaluation of the temporal stability of RadCalNet, estimates the magnitude of change using
the more robust Sen’s slope, and serves as a useful reference for sensor calibration and
radiometric performance monitoring. The results showed that (1) the TOA time series data
cannot accurately reflect the real change points and long-/short-term trends of the surface
compared to the BOA data. Significant abrupt changes were detected in each band for
the TOA data of RUVS in 2022, with each abrupt change interval exhibiting an increasing
trend; however, the abrupt changes detected in each band of the BOA data occurred in 2020
and showed a downward trend. (2) Based on the analysis of the BOA data, it was found
that the RadCalNet sites exhibited a monotonic trend and a significant annual change
rate since the initiation of its operation. Each band of GONA, RVUS, and LCFR showed
an annual rate of change > 0.2%, with a maximum of 1.803%. However, for BSCN, there
was insufficient evidence to support a monotonous trend. (3) Nevertheless, our findings
support the applicability of the RadCalNet for calibration based on the CV and Gi statistics
for each site.

This study provides a verification reference for using the TOA to evaluate the accuracy
of PICS spatiotemporal stability. Moreover, it proposes the use of the more robust Sen’s
slope to characterize site trends. Although the change in reflectance trends based on
the TOA data did not completely match that based on the BOA data, the RadCalNet
sites showed good radiometric calibration performance. To improve the accuracy of
reflectance estimated using the TOA data, future studies would benefit from a more precise
characterization of atmospheric conditions and the replacement of the SAF with SBAF for
more accurate fusion.

Supplementary Materials: The following supporting information can be downloaded at: https://
www.mdpi.com/article/10.3390/rs15102639/s1, Table S1: β-parameter values of BRDF model for each
band of the four sites in RadCalNet.
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