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Abstract: Altimeter data processing is very important to improve the quality of sea surface height
(SSH) measurements. Sea state bias (SSB) correction is a relatively uncertain error correction due to
the lack of a clear theoretical model. At present, the commonly used methods for SSB correction are
polynomial models (parametric models) and non-parametric models. The non-parametric model
usually was constructed by collinear data. However, the amount of collinear data was enormous, and
it contained redundant information. In this study, the non-parametric regression estimation model
was optimized by using the parameter replacement method of ascending and descending tracks
based on the crossover data. In this method, significant wave heights from the Jason-2 altimeter data
during cycles 200–301 and wind speed from the ERA5 reanalysis data were used. The non-parametric
regression estimation model of Jason-2 was constructed by combining it with local linear regression,
Epanechnikov kernel function and local window width. At the same time, based on the significant
wave height and wind speed at the crossover points, the SSB polynomial model containing six
parameters was constructed by using the Taylor series expansion, and the model was optimized.
By comparing polynomial model construction with different parameters, the optimized model was
obtained. The SSH of the crossover points and the tide gauge records were used to validate these
results derived from two models and GDR. Compared with the crossover discrepancies of SSH
corrected by the polynomial model, the RMS of the crossover discrepancies of SSH corrected by the
non-parametric regression estimation model was reduced by 7.9%. Compared with the crossover
discrepancies of SSH corrected by the conventional non-parametric model from GDR, the RMS of the
crossover discrepancies of SSH corrected by the non-parametric regression estimation model was
reduced by 4.1%. This shows that the precision of the SSHs derived by after the SSB correction, as
calculated by the non-parametric regression estimation model, was better than that of the polynomial
model and the SSB correction from GDR. Using the Jason-2 altimeter data, the along-track geoid
gradient and the sea level change rate of the global ocean were determined by using two models to
correct the SSB. By comparing the results of the two models, the accuracy of the geoid gradient along
the orbit that was obtained by the non-parametric regression estimation model was better than that
of the polynomial model and GDR. The global average sea level change rate after the non-parametric
regression estimation model correction was 3.47 ± 0.09 mm/y, which was the closest to the average
sea level change rate that has been published in the international literature within this field.

Keywords: sea state bias; polynomial model; non-parametric regression estimation model; satellite
altimetry; Jason-2

1. Introduction

Satellite altimetry has the ability to periodically detect land and ocean changes with
high accuracy. It has irreplaceable advantages in studying the global gravity field model,
sea level changes and large-scale seabed topographies [1,2]. A satellite radar altimeter can
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directly measure the instantaneous distance from the satellite to the nadir point, which
is important as, ideally, the sea surface height (SSH) can be obtained by subtracting the
measured instantaneous distance from the satellite’s ellipsoidal height. However, an
altimeter is a complex measuring system that can be affected by many errors. Satellite orbit
determination errors have been the main error source for altimetry data in previous studies.
With the development of precision orbit determination technology, the radial orbit accuracy
provided by the Jason-2 satellite’s GDR data can currently reach 2 cm [3]; however, the
RMS of its sea state bias (SSB) is also approximately 2 cm [4]. Therefore, SSB has become
one of the largest error sources in satellite altimetry. Consequently, the precise SSB model
developed, which can improve the accuracy of satellite altimetry, is of great significance in
establishing a sea surface model and for determining marine geoid and bathymetry.

Previous scholars have studied the theoretical model and empirical model of SSB [5–11].
They found that the parameters of the SSB theoretical model were difficult to obtain, and
the process of deducing the SSB theoretical model was complicated. Therefore, the empirical
model has been studied and explored. Based on the satellite and data sets, the parameters
of the model have been proposed [12,13]. Passaro et al. (2018) considered that the SSB
correction should be directly applied to the 20 Hz data to reduce the effect of noise [14].
Peng et al. (2020) used two different retrackers to retrack the altimeter waveform and recalcu-
late the SSB correction of high frequency to improve the accuracy of the regional parameter
model [15]. However, the model parameters were determined to minimize the variance of
the SSH differences at crossover points or along collinear tracks. This difference proved to
be the result of the inevitably imperfect specification of the model’s parametric form, which
corrupted the calibration process when performed on the SSH differences rather than directly
on the SSH measurements [16].

To solve this problem, a non-parametric model was proposed. The calculation process
of non-parametric models proposed earlier is very complex and inefficient, and the obtained
results still show changes related to significant wave height [16]. In order to improve it,
different solutions were put forward [17–21]. Jiang (2018) introduced the average wave
period data of ERA-interim, which were taken from the European Centre for Medium-
Range Weather Forecasts (ECMWF), to construct a three-dimensional non-parametric
model of SSB [22]. However, the calculation process of the three-dimensional SSB model
was more complicated, which requires limiting the resolution of the wave model, and the
obtained average wave period could only be used after interpolation in time and space,
respectively. Therefore, it had not been widely used in satellite altimetry.

In order to improve computing efficiency, Zhong et al. (2018) introduced an effective
and efficient linear model called LASSO to the SSB estimation [23]. In ref. [24], taking
account of the data from multiple radar altimeters available, Zhong et al. (2020) introduced
a multi-task learning method called trace-norm regularized multi-task learning (TNR-
MTL) for SSB estimation. In order to weaken the influence of SSB, many scholars directly
processed sea state signals [25–27]. Until now, the non-parametric model commonly used
in GDR data was constructed by collinear data. The kernel smoothing method was used
to construct the non-parametric model to calculate the correction of SSB in GDR of the
Jason-1/Jason-2 altimeter [19]. Compared to the crossover data used in this paper, the
amount of collinear data was enormous, and it contained redundant information.

In this study, the non-parametric regression estimation model was optimized by using
the method of parameter replacement of ascending and descending tracks based on the
crossover data. Compared with collinear data used in SSB’s conventional processing
strategy (GDR data), the crossover point data in this paper can better eliminate some errors
that did not change with time in a short time. This method used the significant wave height
of Jason-2 altimeter during cycle 200–301 and wind speed from the ERA5 reanalysis data,
combined with local linear regression, the Epanechnikov kernel function and local window
width. On the basis of these data, we then used the Taylor series expansion to construct a
polynomial model for SSB with six parameters. These two models were validated with the
crossover SSHs and tide gauge records. They were then used to correct the data from the
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Jason-2 altimeter to estimate the global along-track geoid gradient and the sea level change
rate more accurately.

2. Nonparametric Model Estimation
2.1. SSH Noise Processing

The sea surface height (SSH) can be measured by the altimeter. A raw SSH′, without
SSB correction, contains the geoid height, N; dynamic ocean topography, η; and other
altimeter errors, ε′. The ε′ includes all instrumental and geophysical error corrections,
except for SSB. The SSH′ can be expressed as follows:

SSH′ = SSB + η + ε′ + N (1)

Crossover SSH difference can eliminate the geoid height [1] and part of the dynamic
ocean topography. The SSH′ at the intersection can be expressed as follows:

∆SSH′ = ∆SSB + ∆η + ∆ε′ (2)

where ∆η is the time-varying dynamic ocean topography. ∆ε′ includes residual error terms
for many height measurement error corrections but not for SSB. The altimetry errors are
mainly instrument errors, tropospheric dry delay errors, tropospheric wet delay errors,
ionospheric delay errors, ocean tide errors, polar tide errors, solid earth tide errors, loading
tide errors and dynamic atmosphere errors.

2.2. Methodology

The SSB can be expressed as an arbitrary function [16], as follows:

SSB = ϕ(x) (3)

where x represents the p variables related to SSB. x represents the two-dimensional variable
of SWH and U, i.e., x = (SWH, U). ∆η + ∆ε′ in Equation (2) can be expressed as a noise
term, ε, with zero mean values. Therefore, we can express it as follows:

SSH′2 − SSH′1 = SSB2 − SSB1 + ε (4)

where subscripts 1 and 2 represent observations on the ascending and descending orbits
of crossover points, respectively. Then, y = SSH′2 − SSH′1, Equation (4) can be rewritten
as follows:

y = ϕ(x2)− ϕ(x1) (5)

Under the given condition of x2 = x, the conditional expectation of y is as follows:

E[y|x2 = x] = ϕ(x)− E[ϕ(x1)|x2 = x] (6)

The regression function is r(x) = E[ζ|x] , where ζ is an arbitrary random scalar vari-
able, jointly distributed with x.

Using the joint regression estimator, based on the crossover data (yi, x1i, x2i) observed
by the radar altimeter, Equation (6) can be rewritten as follows:

ϕ(x) =
n

∑
i=1

yiαn(x, x2i) +
n

∑
i=1

ϕ(x1i)αn(x, x2i) (7)

where n is the total number of crossover data; subscripts 1 and 2 still indicate crossover ob-
servations at epoch t1 and t2; and subscript i represents the value at the i-th crossover point.

To estimate ϕ(x1i), x = x1j can be substituted into Equation (7), to produce the following:

ϕ(x1j) =
n

∑
i=1

yiαn(x1j, x2i) +
n

∑
i=1

ϕ(x1i)αn(x1j, x2i)∀j = 1, 2, ..., n (8)
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Equation (8) can be expressed as a matrix form, as follows:

(I −A)ϕ1 = Ay (9)

where I is an n× n identity matrix, A is an n× n matrix with an element of αji = αn
(

x1j, x2i
)
,

ϕT
1 = [ϕ(x11), ..., ϕ(x1n)], and yT = [y1, ..., yn].

Because I − A is a singular matrix, ϕ1 cannot be solved in the linear system equation
(Equation (9)).

To eliminate this uncertainty, we can set an arbitrary reasonable value for ϕ1, such as
ϕ(x11) = ϕ0. Equation (9) can be rewritten as follows:

B1 ϕ = Ay− B0 ϕ0 (10)

in which ϕ is constructed from n − 1 elements in ϕ1, that is, ϕT = [ϕ(x12), ..., ϕ(x1n)].
B0 and B1 are matrix divisions of I−A, in which B0 is the first column of I − A and B1
represents the remaining columns of I−A. Therefore, the n equations with n− 1 unknowns
can be solved with the least squares method, as follows:

ϕ̂ = (BT
1 B1)

−1
BT

1 (Ay− B0 ϕ0) (11)

ϕ(x1i)(i = 2, . . . , n) can be solved based on Equation (11), which can be plus ϕ0 to
determine the crossover SSB measurement value of the ascending track.

To complete this, ϕ(x1i) can be substituted into Equation (7) to obtain the non-
parametric regression estimation of SSB under any SWH and wind speed.

2.3. Key Factors of Nonparametric Regression Estimation

The key factors of non-parametric regression estimation mainly include the selection
of the regression estimator, the kernel function and the window width. This introduces
the local linear regression estimation, the Epanechnikov kernel function and local win-
dow width.

(1) Local linear regression estimation

Assuming that n groups of observation data (xi, yi) are given, in which xi contains
p-related variables, and xi yi obey the following relation [28–30]:

yi = r(xi) + σi (12)

where σi is the random error, and r(xi) is a regression function of yi, with respect to xi.
Assuming that r(x) has the derivative of order p + 1 at x = x0, and x is in the local

neighborhood of x0, the Taylor series expansion of r(x) is as follows:

r(x) ≈ r(x0) +
∂

∂xi1
r(x0)(xi1 − x01) +

∂
∂xi2

r(x0)(xi2 − x02) + ... + ∂
∂xip

r(x0)(xip − x0p)

≡ β0 + β1(xi1 − x01) + β2(xi2 − x02) + ... + βp(xip − x0p)
(13)

where i represents the number of observation data, and p represents the number of variables
related to x. A group β =

(
β0, β1, . . . , βp

)T should be selected to generate the following:

n

∑
i=1

[
yi − β0 −

p

∑
j=1

β j(xij − xj)

]2

KH(xi − x) = min (14)

in which KH(xi − x) is the kernel function that describes the weight function αn(xi − x).
Based on the locally weighted least squares theory, Equation (14) can be solved to obtain
the following:

β̂ = (XT
DWXD)

−1
XT

DWy (15)
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where W is a n × n diagonal-weighted matrix, that is, W = diag{KH(xi − x)};

y = (y1, y2, ..., yn)
T , and XD =


1 x11 − x1 ... x1p − xp
1 x21 − x1 ... x2p − xp
... ... ...
1 xn1 − x1 ... xnp − xp

.

The local linear regression estimation of r(x) is β̂0, and the other components β̂ are
the estimations of the first-order partial derivative in Equation (13). Therefore, the LLR
estimation is specifically expressed as follows:

r̂LLR(x) = β̂0 = eT
1 (XT

DWXD)
−1

XT
DWy (16)

where e1 is a p× 1 unit vector, that is, eT
1 = (1, 0, ..., 0).

(2) Kernel function

There is a significant amount of altimetry data that leads to the complexity of the
matrix operation and the need to solve large equations. The kernel function controls
the number of data points used in non-parametric regression estimation operations and
holds computational efficiency. If the measurement values of x1j and x2i are very far
apart, the weight, αn(x1j, x2i), is actually very small. In this case, other kernel functions,
such as the Gaussian kernel, are not exactly zero, and so weight αn(x1j, x2i) will still
participate in the calculation. In this case, the Gaussian kernel function will reduce the
calculation efficiency of the matrix. The Epanechnikov kernel function can reduce the
computational burden [31,32] and so was used in the study. The Epanechnikov kernel
function is as follows:

KH(x− xi) = max

{
0,

2
πhUhSWH

×
[

1−
(

U −Ui
hU

)2
−
(

SWH − SWHi
hSWH

)2
]}

(17)

where i is the number of measurement observations, hU is the window width of wind
speed, and hSWH is the window width of SWH.

(3) Window width

The determination of window width has an important influence on the non-parametric
regression estimation. If the window width is too large, the result will be excessively
smooth, causing excessive modeling deviation. If the window width is too small, a large
number of wrong peaks will be caused, which would result in the data not being smooth
enough [33,34].

The selection of window width depends on the specific distribution of altimetry data.
The local window width, which changes with the location of the data points, was selected
in this study. Combined with the Epanechnikov kernel function, the SWH and wind speed,
which are the relevant variables of SSB, are present with a grid of (0.25, 0.25). The window
width modulation is the density function at the grid point [17], as follows:

(hU , hSWH)(x) = (hU , hSWH)0[n(x)/n]−1/6 (18)

where (hU , hSWH)0 refers to the reference window width, n(x) is the number of satellite
observations in the grid, and n is the average number of grid observations greater than one.

3. Parameter Model of SSB
3.1. Methodology

The functional model of SSB [12] was as follows:

SSB = f (x, θ)SWH (19)

where x is the variable related to SSB, θ is the constant parameter, and f is a function related
to x and θ. x should be the direct observations of the altimetry satellite, that is, SWH, wind
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speed, backscattering coefficient or a combination of them. The wind speed can be obtained
by the inversion of the backscattering coefficient, so there is a strong correlation between
the wind speed and the backscattering coefficient. Generally, Equation (19) is expanded by
second-order Taylor expansion based on SWH and wind speed [12]. The parameter model
of SSB can be expressed as follows:

SSB = SWH · (a1 + a2 · SWH + a3 ·U + a4 · SWH2 + a5 ·U2 + a6 · SWH ·U) (20)

where SWH is the significant wave height, U is the wind speed, and a1, a2, a3, a4, a5, a6 are
six parameters to be estimated. The 32 polynomial models can be obtained by increasing
the number of variables successively while retaining the first parameter a1. The optimal
polynomial model can be determined by optimizing all of the polynomial models.

3.2. Linear Regression Estimation

By substituting Equation (20) into Equation (2), we can generate the following:

∆SSH′ =
6

∑
i=1

ai∆Xi+∆η + ∆ε′ (21)

where ∆SSH′ is the crossover SSH discrepancy without SSB correction, and ∆Xi(i = 1, . . . , 6)
is ∆SWH, ∆SWH2, ∆(SWH·U), ∆SWH3, ∆

(
SWH·U2), and ∆

(
SWH2·U

)
, respectively. a0 is

the offset, and ε is the noise—the mean value of which is equal to zero. Therefore, all errors
can be expressed as the sum of a0 and ε. Equation (22) can be expressed as follows:

∆SSH′ =
6

∑
i=0

ai∆Xi + ε (22)

where ∆X0 is a dummy variable equal to unity [12]. Equation (22) can be expressed as a
classical multiple linear regression problem. When

(
∆SSH′, ∆X

)
are obtained, parameter a

can be estimated with the least squares method, as follows:

a = (∆XT∆X)
−1

∆XT∆SSH′ (23)

3.3. Parameter Model Optimization

The goodness-of-fit test is simply to test the concentration of sample data around
the regression line, and then to evaluate the representation of sample data in the regres-
sion equation.

The commonly used test methods in regression analysis are the t-test and the determi-
nation coefficient test [35]. The t-value and determination coefficient are as follows:

t =
√

R2 ×
√

n− 2
1− R2 (24)

R2 =
ESS
TSS

(25)

where n is the number of observation data, R2 is the determination coefficient, ESS is
the regression squares sum, and TSS is the total deviation squares sum. The greater the
proportion of the regression squares sum in the total deviation squares sum, the greater
the determination coefficient, and the higher the goodness of fit of the regression equation.
In this study, under the condition that the significance level was given as 0.05, the t-test
and determination coefficient test were conducted for 32 types of SSB polynomial models,
according to Equations (24) and (25). The larger the determination coefficient was, the
higher the goodness of fit of the model was. The best polynomial model was selected
according to the determination coefficient.
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4. Results and Analysis
4.1. Data Preprocessing
4.1.1. Altimeter Data

The Jason-2 altimeter was successfully launched in June 2008. It was a follow-up
satellite for the TOPEX/Poseidon and the Jason-1 altimeter. The main objective of the
Jason-2 altimeter was to ensure the continuity of high-quality ocean observation. The
Jason-2 satellite can obtain the wind speeds and SWHs of oceans and then observe the
global sea level change. It can better understand the short-term and long-term changes of
ocean circulation and can provide data for weather forecasts, climate monitoring and wave
modeling. The satellite operates in a non-sun synchronous orbit, with an orbital altitude of
1336 km, an orbital inclination of 66.15◦, a repetition period of 9.9156 days, and a global
coverage of 66.15◦N~66.15◦S [36].

The data used in this study were those based on the geophysical data record (GDR) of
version d from cycle201 to cycle300. These data were released by Archiving Validation and
Interpretation of Satellite Oceanographic Data (Aviso) (ftp://ftp-access.aviso.altimetry.fr
(accessed on 6 April 2023)). These GDR data were screened according to the editing
standards of the data manual [36].

4.1.2. ERA5 Reanalysis Data

The wind speed data used in this study were the ERA5 reanalysis data of the ECMWF
(https://www.ecmwf.int/ (accessed on 6 April 2023)). They showed the hourly wind
components in two directions. The ERA5 reanalysis data are the fifth generation of the
ECMWF reanalysis data on the global climate and weather [37,38]. These data have
replaced the ERA-Interim reanalysis data. In the ERA5 reanalysis data, the physical model
is combined with the observations from around the world, to synthesize a complete global
dataset, which is based on the physical laws. The ERA5 reanalysis data provide hourly
estimates of the atmospheres, the waves and the surfaces of the oceans, using a horizontal
resolution of 0.25◦ × 0.25◦ for the atmospheric reanalysis data.

4.1.3. Tidal Gauge Records

The tidal gauge records that were used in this study were from the University of
Hawaii Sea Level Center (UHSLC) (https://uhslc.soest.hawaii.edu/ (accessed on 6 April
2023)). There were two different levels of data provided by UHSLC [39]: fast delivery
data (FD) and research-quality data (RQD). In this case, the RQD were the scientific data
obtained by the tide gauge station; therefore, hourly RQD data were selected for our
altimeter data quality assessment.

4.1.4. Deflections of the Vertical

This SIO V30.1_ DOV model (download address: https://topex.ucsd.edu/0 (accessed
on 6 April 2023)) was used in this study. This model was the 30.1 version of the global ma-
rine vertical deviation model, which was issued by the Scripps Institution of Oceanography
(SIO) in 2020. The grid resolution of this model was 1′ × 1′, which was obtained by solving
the ERM and GM data from Jason-1, Jason-2, CryoSat-2, ERS-1 and SRL/DP [40].

4.2. Nonparametric Model of SSB for Jason-2 Altimeter

The data editing and quality control in this study were carried out according to the
data manual. These were performed for the 1-Hz GDR data of cycle201–cycle300, in the
Ku band of the Jason-2 radar altimeter and for the wind speeds in the ERA5 reanalysis
data. In addition, the SSHs that were corrected for all errors—except SSB—were calcu-
lated. Furthermore, the SSHs, SWHs and the wind speeds of the crossover points in
each cycle that were not corrected by SSB were calculated. There were approximately
6000–7000 crossover points in each cycle. Since the 10-day crossover difference could not
completely offset the change of ocean signal, based on Section 2.2, we also had to use
x = x2j to perform the second replacement operation, after using x = x1j to perform the

ftp://ftp-access.aviso.altimetry.fr
https://www.ecmwf.int/
https://uhslc.soest.hawaii.edu/
https://topex.ucsd.edu/0


Remote Sens. 2023, 15, 2666 8 of 20

first replacement operation. We then repeated the calculation process to obtain two two-
dimensional lookup tables, which were determined by both the ascending and descending
orbits. Finally, we used the mean value of the above two grid tables and conducted a
bilinear interpolation, according to the wind speed and SWH, to obtain the non-parametric
regression estimate of SSB at each nadir point.

4.3. SSB Parameter Model for Jason-2 Altimeter

Data editing and quality control were carried out for 1-Hz GDR data, which were
obtained from cycle 201 to cycle 300, from the Ku-band radar altimeter of Jason-2 and the
wind speeds in the ERA5 reanalysis data. Next, the SSHs, SWHs and the wind speeds at
crossover points without SSB correction were calculated by using the latitude difference
method [41].

According to the modeling principle of the parameter models, for Equation (20), on
the premise of retaining the parameter a1, the number of other parameters was increased
successively. After this, 32 types of polynomial models were obtained, and the parameters
of all the models were estimated in turn. Under the condition that the significance level was
given as 0.05, the t-values and the determination coefficients of the 32 polynomial models
were solved according to Equations (24) and (25). The parameter estimates, the t-values
and the determination coefficients of the 32 parameter models are listed in Appendix A
(Table A1).

When the significance level was 0.05, the t-values of the 32 models were all greater
than the critical value shown in Appendix A (Table A1). The polynomial model with
six parameters had the largest determination coefficient and the highest goodness of fit;
therefore, the polynomial model with six parameters was selected as the optimal SSB
parameter model in our study. This polynomial model can be found in Appendix A
(Formula (A1)).

The SWHs in the GDR of the Jason-2 satellite and the wind speeds in the ERA5
reanalysis data were extracted and brought into Equation (20) to calculate the SSB estimate
of the polynomial model.

4.4. Precision Evaluation of Parametric and Nonparametric Models
4.4.1. Comparison and Analysis of SSBs in Jason-2 GDR

The SSBs in the version-d GDR data obtained from the Jason-2 altimeter were estimated
according to the GDR data of one year, covered by cycle001–cycle038. They generated the
collinear data by processing the ECMWF wind speed and by correcting the SSH and the
SWH for all errors, except for SSB, and then by determining the ascending and descending
orbit parameters. The SSB grid table was obtained by averaging these two parameter
results [19]. The SSB was obtained by interpolating the grid table according to SWH and
wind speed, which is hereinafter referred to as the GDR model. The SSB correction values
were calculated by the polynomial model and the non-parametric regression estimation
model, which were constructed in this paper. They were then compared with the GDR
model to evaluate the effectiveness of the polynomial model and the non-parametric
regression estimation model.

The sea state bias result, SSB (p), was obtained using the polynomial model and the
result, SSB (np), was obtained using the non-parametric regression estimation model. Both
models were linearly fitted with the SSB (GDR) in the GDR. The fitting scatter plot of the
polynomial model is shown in Figure 1, and the fitting equation was as follows:

y = 0.6225x− 0.0248 (26)
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The fitting scatter plot of the non-parametric regression estimation model is shown in
Figure 2, and the fitting equation is as follows:

y = 1.0065x + 0.0097 (27)
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From Figures 1 and 2 and Equations (26) and (27), we can see that SSB (p) and SSB
(GDR), as well as SSB (np) and SSB (GDR) were positively correlated, and that the overall
data were well fitted. In Table 1, we have presented the statistics on the differences between
SSB (p), SSB (GDR) and SSB (GDR). This shows that the SSB results obtained by the
non-parametric regression estimation model were in better accordance with the sea state
deviation in GDR, than the results obtained by using the polynomial model.

Table 1. Statistics on the differences between SSB(p) and SSB(GDR), and SSB(np) and SSB(GDR).

MIN (m) MAX (m) MEAN (m) STD (m) RMS (m) Relative Error

SSB(p) −0.058 0.178 0.008 0.019 0.020 18.38%
SSB(np) −0.055 0.165 −0.009 0.006 0.011 12.64%
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4.4.2. Analysis of Crossover SSH

Ideally, the crossover discrepancies of SSH should be zero. However, due to the
influence of sea surfaces’ dynamic topography, orbital errors and geophysical errors, the
crossover discrepancies of SSH at the intersection were actually not zero.

When the other correction conditions were the same, the SSBs obtained from the
polynomial model and from the non-parametric regression estimation model were used to
correct the sea surface height, based on the GDR data that were obtained from the Jason-2
altimeter, cycle201–cycle300. The crossover discrepancies of SSH of the two models were
compared with the crossover discrepancies of SSH that were corrected by the GDR model.
The results are listed in Table 2.

Table 2. Statistics of crossover discrepancies of SSH corrected by these models.

Model MEAN (m) STD (m) RMS (m)

Polynomial model 0.000 0.076 0.076
Nonparametric model 0.000 0.070 0.070

GDR model 0.000 0.073 0.073

It can be seen from Table 2 that the RMS of the non-parametric regression estimation
model was 0.070 m, which was 4.1% smaller than that of the GDR model and 7.9% smaller
than that of the polynomial model. This indicates that the accuracy of the non-parametric
regression estimation model in this paper was better than that of the GDR model and the
polynomial model.

The crossover explains variance was also used to evaluate the accuracy of the SSB
models. The explained variance was as follows:

Var′ = Var(∆SSH′)−Var(∆SSH) (28)

where Var(∆SSH′) is the crossover discrepancies of SSH without SSB correction, and
Var(∆SSH) is the SSH discrepancy after SSB correction. The larger the explain variance
is, the stronger the explainability of SSB, and the better the SSB model [22]. The explain
variances calculated by the polynomial model, the non-parametric regression estimation
model and the GDR model in this study are listed in Table 3.

Table 3. Explain variances for different SSB models.

SSB Model Explain Variance (cm2)

Polynomial model 17
Nonparametric model 24

GDR model 22

It can be seen from Table 3 that the explain variance of the non-parametric regression
estimation model was the largest. Compared with the explain variances of the polynomial
model and GDR model, the explain variances of the non-parametric regression estimation
increased by 41.2% and 9.1%, respectively. This showed that the non-parametric regression
estimation model had the strongest ability to interpret SSBs and, thus, was superior to both
the polynomial model and the GDR model.

4.4.3. Accuracy Analysis from Tidal Gauge Records

We selected the hourly data of three tide gauge stations in Japan from 2013 to 2016:
Hamada, Mera and Hakodate. The ground track of the Jason-2 altimeter, cycle201–cycle 300,
within 50 km around the tide gauge station was extracted. The nearest distance between
pass0112 and Hamada is 25.714 km, the nearest distance between pass0086 and Mera is
39.378 km, and the nearest distance between pass0238 and Hakodate is 42.705 km. The
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specific geographical location of the tide observation station and the satellite passage track
can be seen in Appendix A (Figure A1).

The data for the tide gauge records are based on the local zero tide level, whereas the
radar altimeter data are based on the reference ellipsoid [42]. Assuming that the geoid
difference between the geoid at the tide gauge station and that the altimetry at the nadir
point was constant, it was considered that the difference between the tide gauge records
and the altimeter data would be constant due to the different reference planes. Therefore,
the polynomial model, the non-parametric regression estimation model and the GDR model
were used to establish each altimetry time series in turn.

The time series of the SSH, which was corrected by the three models, and the time
series of the tide gauge records after subtracting their respective mean values. The time
series after removing their mean values were obtained, as shown in Figures 3–5. The
abscissa refers to the accumulated days calculated since 2000, and the ordinate refers to
the SSH after the removal of the mean value. Table 4 lists the correlation coefficients
and standard deviations between the SSHs obtained by the three models and the tide
gauge records.
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According to Table 4 and Figures 3–5, when compared to the STD of the differences
between the SSHs obtained by the polynomial model, the GDR model, and the tidal
gauge records, the STD of the differences between the SSHs that were calculated by the
non-parametric regression estimation model and the tidal gauge records, decreased by
4.3–11.1% and 1.8–10.5%, respectively.

Table 4. Statistics of the correlation coefficient between tide gauge records and altimetry.

Tide Gauge Track STD (m) Correlation Coefficient

Hamada
SSB(p) pass0112 0.099 87.73%

SSB(np) pass0112 0.088 90.55%
SSB(GDR) pass0112 0.094 88.88%

Mera
SSB(p) pass0086 0.259 81.69%

SSB(np) pass0086 0.231 84.54%
SSB(GDR) pass0086 0.258 81.85%

Hakodate
SSB(p) pass0238 0.230 79.78%

SSB(np) pass0238 0.220 85.52%
SSB(GDR) pass0238 0.224 81.35%
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It can be seen that the SSHs calculated by the non-parametric regression estimation
model showed lower standard deviation and higher correlation than those obtained by the
polynomial or the GDR model, which shows that the non-parametric regression estimation
model that was built in this study improved the SSH accuracy.
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5. Discussion
5.1. Influence of Wind and Wave on SSB Modeling

The SSBs calculated by the polynomial model, the non-parametric regression estima-
tion model and the Jason-2 GDR model were distributed in the (SWH, U) plane, as shown
in Figures 6–8.

It can be seen from Figures 6–8 that the SWHs in the three models had a more signifi-
cant impact on the SSBs than wind speed. The greater the SWH, the greater the absolute
value of the SSB. In addition, for areas with large SWHs and wind speeds, the SSBs of the
non-parametric regression estimation model were close to those of the GDR model.
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5.2. Along-Track Deflection of the Vertical

The meridian component and the prime vertical component of the vertical deviation
at each along-track point of the Jason-2 can be interpolated from the grid deflections of
the vertical in the SIO V30.1_DOV model. Then, the along-track geoid gradient can be
calculated by the vertical deviation model, according to the azimuth angle of the Jason-2
along-track [43].

Based on the Jason-2 GDR data from cycle201–cycle300, the SSBs obtained from the
polynomial model and the non-parametric regression estimation model were each used to
correct the SSHs. The SSHs corrected by the two models and by the GDR model subtracted
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the sea surface topography, using the MDT_CLS18 model to calculate the along-track geoid
gradient between two adjacent nadir points [44].

The differences between the along-track geoid gradients, which were determined
using the three SSB models and the SIO V30.1_DOV model, were calculated in turn.
The histograms of the along-track geoid gradient differences are shown in Figures 9–11,
respectively. The difference statistics are listed in Table 5.
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It can be seen from Figures 9–11 and Table 5 that when compared with the along-track
geoid gradient differences, the RMSs calculated by the polynomial model, the GDR model
and the SIO V30.1_DOV model, and the differences in the RMSs calculated by the non-
parametric regression estimation model and the SIO V30.1_DOV model, decreased by 2.8%
and 2.4%, respectively. Therefore, the along-track geoid gradient accuracy calculated by the
non-parametric regression estimation model was better than that of the polynomial model
and GDR model.
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Table 5. Statistics of the differences between the along-track geoid gradients calculated by the three
models and SIO V30.1_DOV.

SSB Model Mean (µrad) STD (µrad) RMS (µrad)

Polynomial model −0.023 5.43 5.43
Nonparametric model −0.022 5.28 5.28

GDR model −0.023 5.41 5.41

5.3. Global Sea Level Change

The SSHs were determined by the polynomial model, the non-parametric regression
estimation model and the GDR model. The global sea level change rate was computed by
analyzing the SSHs with the singular spectrum analysis (SSA) method. SSA is a digital
signal processing technique that extracts as much reliable information as possible from
short and noisy time series without using prior knowledge about the underlying physics
or biology of the system. It is based on principal component analysis (PCA) in the vector
space of delay coordinates for a time series. [45].

Based on the 1-Hz Ku-band GDRs from cycle001 to cycle259 of the Jason-2 altimeter,
the GDR model, polynomial model and the non-parametric regression estimation model
were all used to determine the sea-level anomaly, which was corrected by various errors.
The global sea level series can be calculated with the weighted SLA processing, which
was analyzed with SSA to obtain the global sea level change rate. The technical roadmap
for calculating the change in the mean global sea level can be seen in the Appendix A
(Figure A2). The average global sea-level rise rate between 2009 and 2015 was obtained, as
shown in Figure 12. The global sea-level change rate after the GDR model’s correction was
3.50± 0.10 mm/yr; the global sea-level change rate after the polynomial model’s correction
was 3.40 ± 0.10 mm/yr; the average global change rate after the non-parametric regression
estimation model correction was 3.47 ± 0.09 mm/y; the average global sea-level rise rate
between 1993 and 2010—published by the IPCC [46]—was 2.8–3.6 mm/yr; and the average
global sea-level change rate of 3.0 ± 0.4 mm/yr [47,48] was obtained from the T/P series
altimetry data for the past 25 years (since 1993). Therefore, the average global sea-level rise
rate calculated by the two models built in this paper was reliable.
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6. Conclusions

The Jason-2 GDR data and the ERA5 reanalysis data were used to study the SSB
corrections based on crossover data. A parametric SSB model and a non-parametric SSB
model for correcting the Jason-2 altimeter data were built in this study. The precision
analysis and application of the two models were also determined in this study. The non-
parametric regression estimation model, based on SWH and wind speed, improved the
SSH accuracy of the Jason-2 altimeter’s data.

Based on the 1-Hz, Ku-band GDR data from cycle201 to cycle300 of the Jason-2
altimeter and the wind speed of ERA5, the LLR estimator, the Epanechnikov kernel function
and the local window width were selected to construct the non-parametric regression
estimation method.

Based on the Taylor expansion, 32 types of polynomial SSB models were constructed
by using the 1-Hz GDR data from cycle201–cycle300 in the Ku band of the Jason-2 altimeter,
with the SWH and wind speed as variables. These polynomial models were tested for the
determination coefficient. The larger the determination coefficient, the higher the goodness
of fit of the model. Among the 32 models, the polynomial model with six parameters
had the largest determination coefficient, which indicated that the polynomial model with
six parameters had the highest goodness of fit. Therefore, the optimal model was the
polynomial model with six parameters.

By comparing the SSBs obtained from the polynomial model and the non-parametric
regression estimation model, using the GDR SSB, we saw that the RMSs of the differences
between them were 2.0 cm and 1.1 cm, respectively. Therefore, the overall data fitting effect
was good, and the results of the non-parametric regression estimation model and the GDR
model were closer.

According to our analysis of the crossover SSHs and the tide gauge records—compared
with the polynomial model and the GDR model—the RMS of the crossover discrepancies of
SSH, which was calculated by the non-parametric regression estimation model, decreased
by 7.9% and 4.1%, respectively. The STD of the differences between the corrected SSHs and
the tide data decreased by 4.3–11.1% and 1.8–10.5%, respectively.

Based on the global along-track geoid gradient and the global sea-level change rate
calculated by the two models constructed in this paper and compared with the calculation
of the polynomial model and the GDR model, the RMS of the along-track geoid gradient
difference calculated by the non-parametric regression estimation model and the vertical
deviation model decreased by 2.8% and 2.4%, respectively. The along-track geoid gradient
accuracy obtained by the non-parametric regression estimation model was the best. When
it used SSA to analyze the 7-year time series of global sea level changes, the global sea-level
change rate that was calculated by the three models was close to the average sea-level
change rate published in the international literature.
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Appendix A

Table A1. Parameter estimates, t-values, and determination coefficients of parametric models.

a1 a2 a3 a4 a5 a6 t R2

One parameter
−0.016613 315.279904 0.147522

Two parameters
−0.037493 0.002530 347.947260 0.174079
−0.017927 0.000076 315.809955 0.147945
−0.027173 0.000179 345.568253 0.172115
−0.019314 0.000009 319.293321 0.150732
−0.024502 0.000062 333.749694 0.162423

Three parameters
−0.036694 0.002746 −0.000149 349.688400 0.175519
−0.040669 0.003362 −0.000063 348.110604 0.174214
−0.037644 0.002653 −0.000003 348.269085 0.174345
−0.038135 0.002745 −0.000009 348.087616 0.174195
−0.025721 −0.000128 0.000192 346.873452 0.173192
−0.011500 −0.001587 0.000078 337.271101 0.165299
−0.021871 −0.000826 0.000153 354.992864 0.179919
−0.026934 0.000185 −0.000002 345.725879 0.172245
−0.027111 0.000184 −0.000003 345.581592 0.172126
−0.026409 −0.000036 0.000157 346.879508 0.173197

Four parameters
−0.040289 0.003694 −0.000151 −0.000071 349.898612 0.175693
−0.029401 0.002229 −0.010798 0.000046 355.679576 0.180490
−0.022457 0.000104 −0.000805 0.000148 355.000082 0.179925
−0.040832 0.003489 −0.000063 −0.000003 348.432383 0.174480
−0.040834 0.003446 −0.000055 −0.000008 348.211018 0.174297
−0.034484 0.001858 −0.000014 0.000051 348.634356 0.174647
−0.020249 −0.001080 0.000152 0.000047 353.043737 0.178300
−0.019271 −0.001147 −0.000111 0.000228 356.097917 0.180838
−0.019573 −0.001180 0.000022 0.000134 356.034213 0.180785
−0.026677 0.000050 −0.000027 0.000117 347.047849 0.173336

Five parameters
−0.035268 0.003835 −0.001122 −0.000122 0.000048 356.283001 0.180992
−0.032950 0.003433 −0.001146 −0.000350 0.000223 358.684311 0.182992
−0.024263 0.001001 −0.001121 0.000031 0.000079 356.516121 0.181186
−0.039809 0.003288 −0.000166 −0.000025 0.000102 349.428604 0.175304
−0.018759 −0.001253 −0.000074 0.000013 0.000191 356.353903 0.181051

Six parameters
−0.032723 0.003537 −0.001278 −0.000309 0.000017 0.000176 359.083707 0.183325
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Formula A1, as follows:

SSB = SWH · (−0.032723 + 0.003537 · SWH − 0.001278 ·U − 0.000309 · SWH2+
0.000017 ·U2 + 0.000176 · SWH ·U)

(A1)
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