
Citation: Wang, B.; Zhou, M.; Cheng,

W.; Chen, Y.; Sheng, Q.; Li, J.; Wang,

L. An Efficient Cloud Classification

Method Based on a Densely

Connected Hybrid Convolutional

Network for FY-4A. Remote Sens.

2023, 15, 2673. https://doi.org/

10.3390/rs15102673

Academic Editors: Javaan Chahl,

Huajian Liu, Asanka Perera and

Ali Al-Naji

Received: 22 February 2023

Revised: 3 May 2023

Accepted: 19 May 2023

Published: 21 May 2023

Copyright: © 2023 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

remote sensing  

Article

An Efficient Cloud Classification Method Based on a Densely
Connected Hybrid Convolutional Network for FY-4A
Bo Wang 1 , Mingwei Zhou 1, Wei Cheng 2,3,*, Yao Chen 1, Qinghong Sheng 1, Jun Li 1 and Li Wang 4

1 College of Astronautics, Nanjing University of Aeronautics and Astronautics, Nanjing 210016, China;
wangbo_nuaa@nuaa.edu.cn (B.W.); zhoumingwei98@nuaa.edu.cn (M.Z.); sz2115802@nuaa.edu.cn (Y.C.);
qhsheng@nuaa.edu.cn (Q.S.); jun.li@nuaa.edu.cn (J.L.)

2 State Key Laboratory of Geo-Information Engineering, Xi’an 710054, China
3 Beijing Institute of Applied Meteorology, Beijing 100029, China
4 Space Optoelectronic Measurement & Perception Laboratory of BICE, Beijing 100094, China;

d634388045@163.com
* Correspondence: chengw@mail.iap.ac.cn

Abstract: Understanding atmospheric motions and projecting climate changes depends significantly
on cloud types, i.e., different cloud types correspond to different atmospheric conditions, and
accurate cloud classification can help forecasts and meteorology-related studies to be more effectively
directed. However, accurate classification of clouds is challenging and often requires certain manual
involvement due to the complex cloud forms and dispersion. To address this challenge, this paper
proposes an improved cloud classification method based on a densely connected hybrid convolutional
network. A dense connection mechanism is applied to hybrid three-dimensional convolutional neural
network (3D-CNN) and two-dimensional convolutional neural network (2D-CNN) architectures to
use the feature information of the spatial and spectral channels of the FY-4A satellite fully. By using the
proposed network, cloud categorization solutions with a high temporal resolution, extensive coverage,
and high accuracy can be obtained without the need for any human intervention. The proposed
network is verified using tests, and the results show that it can perform real-time classification tasks for
seven different types of clouds and clear skies in the Chinese region. For the CloudSat 2B-CLDCLASS
product as a test target, the proposed network can achieve an overall accuracy of 95.2% and a recall of
more of than 82.9% for all types of samples, outperforming the other deep-learning-based techniques.

Keywords: CNN; FY-4A; cloud classification; spectral features; dense connection

1. Introduction

In the field of atmospheric and meteorological systems, cloud research has become
essential. Clouds have a significant impact on the global atmospheric radiation balance as
they reflect short-wave radiation and absorb and emit long-wave radiation, which in turn
affects the Earth’s temperature [1,2]. An accurate and automated cloud classification has
been used in many climatic, hydrological, and atmospheric applications. The diversity of
cloud types is reflected in the structural patterns observed in clouds, and cloud types have
a profound influence on the radiative effects of the Earth’s surface–atmosphere system [3,4].
Furthermore, geosynchronous meteorological satellite radiation scanners have become
widely used meteorological observation tools, particularly due to the narrow observation
range of polar-orbiting satellites and lengthy gaps between observations in the same region.
Moreover, their ability to provide all-weather continuous large-scale observation is crucial
for the continuous monitoring of cloud changes [5]. Therefore, developing a fast, precise,
and autonomous cloud classification approach based on satellite data is essential [6].

According to the 2017 updated guidelines for cloud observation from the Earth’s
surface published by the World Meteorological Organization (WMO) [7], clouds can be
grouped into three main categories, including low, middle, and high clouds, and into
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ten genera, such as cumulonimbus (Cb), cumulus (Cu), stratocumulus (Sc), stratus (St),
nimbostratus (Ns), altocumulus (Ac), and altostratus (As). However, the accuracy of classi-
fication depends on an observer’s expertise and requires them to collaborate and rely on
their professional knowledge to identify the correct cloud types based on macrostructure
characteristics. Due to the subjective nature of manual classification, the classification
results can be impacted. Research on cloud identification and categorization using satellite
data has improved alongside advancements in satellite observation technologies [8,9]. The
International Satellite Cloud Climate Project (ISCCP) has developed the standard for cloud
classification based on satellite and ground data. Cloud types can be divided into nine
categories based on cloud top pressure and cloud optical thickness [10,11]. Powerful satel-
lites such as CloudSat, Cloud-Aerosol Lidar, and Infrared Pathfinder Satellite Observations
(CALIPSO) can characterize three-dimensional (latitude, longitude, and altitude) cloud
structures [12,13]. The cloud profiling radar (CPR) on CloudSat and the Cloud–Aerosol
Lidar with Orthogonal Polarization (CALIOP) on CALIPSO can detect cloud particles at
various altitudes, providing a vertical overlap structure for cloud layers [14,15]. CloudSat’s
and CALIPSO’s cloud products have been extensively updated for over a decade and
have frequently been used as benchmarks for validation and comparison purposes due to
their widely recognized high quality [16,17]. However, limited coverage by polar-orbiting
satellites in the same area and long intervals between observations make it challenging
to observe daily cloud variability. Remote sensing investigations benefit from the supe-
rior temporal resolution and wider coverage of geostationary meteorological satellites.
Bankert et al. analyzed and compared the explicit and implicit physical algorithm results
for cloud type classification using GOES (Geosynchronous Orbiting Environmental Satellite)
data [18]. The Japanese Aerospace Exploration Agency (JAXA) created a cloud classification
system based on the ISCCP method for the Himawari-8 geosynchronous satellite, which
is highly consistent with MODIS data [19,20]. The National Satellite Center of the China
Meteorological Administration divides the FY-4A satellite’s cloud classification scheme into
six categories: water, cold water, mixed, ice, cirrus, and overlap. However, the CLT’s cloud
classification products contain fewer cloud types, and therefore an effective classification
algorithm based on the ISCCP cloud classification scheme is urgently required.

Currently, there exist four fundamental cloud categorization techniques, namely,
threshold approaches, split-window methods, texture-based methods, and statistical meth-
ods. The most popular cloud classification techniques, such as the split-window and
threshold approaches, use data on reflectance, bright temperature, brilliant temperature
difference, and sub-bedding type to identify the cloud type [21,22]. Nevertheless, these
approaches may face failure in certain circumstances due to the intricacy of cloud systems,
such as solar flare zones and high-latitude deserts, where fluctuations in brightness temper-
ature differences can cause misinterpretations [23]. Since these approaches consume much
information by employing all available bands, traditional mathematical and statistical
methods, such as clustering and histogram methods, could be preferable to the threshold
methods for cloud classification and detection [24,25]. However, applying them to indi-
vidual clusters with significant overlap can be challenging. Furthermore, texture-based
approaches have been evolved to determine the structure of various cloud types, but they
fail to exploit long-term continuous observational data [26,27]. Additionally, K-means and
support vector machine (SVM) approaches have been utilized for cloud classification tasks
as a result of technological advancements, and they have obtained remarkable classification
outputs [28,29]. However, the classification process neglects the cloud’s integrity, which
impacts the classification outcome.

Many high-performance image-processing-based techniques have emerged, enabling
the handling of massive amounts of data to become simpler and more effective. This
development has significantly accelerated the advancement of deep learning. Furthermore,
deep learning-based techniques have improved the accuracy and efficiency of cloud catego-
rization tasks significantly. Artificial neural networks (ANNs) and convolutional neural net-
works (CNNs) have played vital roles in cloud classification techniques. Taravat et al. [30]
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achieved remarkable classification results by employing sky camera data and ANNs in
their investigation of automatic cloud classification methods. Furthermore, Liu et al. [31]
employed ANN models to classify FY-2C (Fengyun-2C) satellite photos and compared their
results with those obtained using principal component analysis (PCA) and support vector
machine (SVM). It should be noted that only the information within the current pixel can
be considered in the above-mentioned ANN approaches. Zhang et al. [31] applied CNN
models to recognize and categorize clouds in ground-based image data. The CNN models
employ convolution to gather feature information in an image’s spatial domain, but they
neglect both spectral channel dimension information and pixel-by-pixel cloud categoriza-
tion. Jiang et al. [32] proposed an improved network based on U-Net and attained excellent
cloud classification results on FY-4A (Fengyun-4A) data. Nevertheless, there are still some
deficiencies, including poor network classification performance due to the dispersed and
fragmented cloud morphology of the Ci, Ac, and other types, and confusion caused by
the similar morphologies of Cu, Sc, and other clouds. Hence, there is still room for further
improvement in this field.

To solve the aforementioned problems, a densely connected hybrid convolutional
network (DCHCN) for cloud classification is proposed in this paper. Considering the
characteristics of the FY-4A satellite data, three-dimensional (3D) and two-dimensional (2D)
convolutional layers are used to mine the spatial–spectral features of the data. Combining
the advantages of both convolutions, a hybrid convolution structure was constructed to
better extract spatial and spectral features. Additionally, dense connections are constructed
to create shortcuts between the front and back layers, which facilitates the back-propagation
of the gradient during the training process. By connecting the features of channels, the dense
connection technique enables the reuse of features and further improves the classification
accuracy. The long time series of FY-4A observations are modeled, and the FY-4A L1-level
data are classified pixel-by-pixel into eight categories using the ISCCP cloud classification
scheme. The cloud classification products obtained from CloudSat are utilized to evaluate
the classification outcome.

The remaining sections of this article are organized as follows. The FY-4A data,
CloudSat data for inspection, and data preprocessing are introduced in Section 2. The CNN
network, dense connection, and proposed DCHCN methods are discussed in Section 3.
The classification results of the datasets and the analysis are presented in Section 4. The
article is concluded in Section 5.

2. Data
2.1. FY-4A Data

The advanced geostationary radiation imager (AGRI) carried by the FY-4A outper-
forms the visible infrared spin scanning radiometer (VISSR) carried by the Fengyun-2
(FY-2) family of spacecraft in terms of coverage, observation accuracy, observation time,
and the number of accessible channels. The AGRI has 14 channels ranging from visible to
infrared and covering the region from 80.6◦N to 80.6◦S and from 24.1◦E to 174.7◦W [33].
The AGRI performs a full scan mode interval of roughly 15 min. It is capable of observing
the spectral data of 14 channels, which have various atmospheric features depending on
their parameters. Table 1 contains the channel type, central wavelength, and spectral
bandwidth for each channel. An example of cloud data from the 14 channels of the FY-4A
satellite AGRI detector is presented in Figure 1.
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Table 1. FY-4A satellite parameters.

Channel Number Channel Type Central Wavelength Spectral Bandwidth

1
VIS/NIR

0.47 µm 0.45–0.49 µm
2 0.65 µm 0.55–0.75 µm
3 0.825 µm 0.75–0.90 µm

4
Shortwave IR

1.375 µm 1.36–1.39 µm
5 1.61 µm 1.58–1.64 µm
6 2.25 µm 2.1–2.35 µm

7
Midwave IR

3.75 µm 3.5–4.0 µm (high)
8 3.75 µm 3.5–4.0 µm (low)

9 Water vapor 6.25 µm 5.8–6.7 µm
10 7.1 µm 6.9–7.3 µm

11

Longwave IR

8.5 µm 8.0–9.0 µm
12 10.7 µm 10.3–11.3 µm
13 12.0 µm 11.5–12.5 µm
14 13.5 µm 13.2–13.8 µm
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2.2. Cloudsat Data for Inspection

To collect cloud observations, CloudSat was equipped with a cloud profiling radar
(CPR), which is a 94-GHz (3.2-mm) sky-bottom radar with a high spatial resolution [34–36].
The CloudSat Data Processing Centre (DPC) offers a range of CloudSat products, such as
2B-GEOPROF and 2B-CLDCLASS, which ensure the quality of data evaluation checks and
have been utilized in numerous studies over the years [37].

The 2B-CLDCLASS data provide information about the cloud type at each altitude,
with the cloud scenario variable in the 2B-CLDCLASS data obtained from the CloudSat
satellite allowing for evaluation of the classification results. Each CPR point in these data
contains 125 vertical bins; each with a cloud scenario value that identifies the cloud type.
Due to the geostationary nature of the FY-4A satellite, it has been challenging to obtain
information about the vertical structure of clouds, and previously obtained data only refer
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to the tops of clouds, making the top cloud types the primary focus. Therefore, the cloud-
type data in 2B-CLDCLASS must be preprocessed to obtain single-layer cloud information
before being used for top cloud evaluation. Cloud types can be identified only when there
are multiple layers with more than two successive levels of the same cloud type. The Dc
and Ns cloud types are usually difficult to locate in the topmost layers. When the Dc and
Ns cloud types appear in a multilayer cloud, the cloud type is identified as Dc or Ns to
distinguish it from other types more clearly and render presentation of the single-layer
cloud results easier.

2.3. Data Preprocessing

The 2018–2019 FY-4A AGRI full-disc 4000-m resolution L1 data were preprocessed
using data processing techniques, such as cropping, projection conversion, calibration, and
spatiotemporal matching, and were used as training data. The data preprocessing process
is illustrated in Figure 2. First, the study region was cut, and the column and row numbers
of the data were translated to the latitude and longitude values. The selected range was
the portion of the territory of China between 0◦ and 60◦N and 70◦E and 140◦E. The study
area is illustrated in Figure 3. The FY-4A full-disk observations were transformed into the
corresponding latitude and longitude projections to match the cloud-type data, and the
transformed data were interpolated to grid points with a spatial resolution of 0.04◦ × 0.04◦.
Then, the visible channel was calibrated to reflectance and the infrared channel to bright
temperature according to the calibration factors provided by the FY-4A.
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Data obtained from the CloudSat’s 2B–CLDCLASS product during the period 2018–2019
were selected to produce cloud type labels for the FY-4A satellite input data. Since the
CloudSat is a polar-orbiting satellite, when the CloudSat data are used for result verification,
it is necessary to match the CloudSat data spatially and chronologically with the FY-4A
satellite data. When the CPR point and the AGRI point were within 0.04◦ of each other
and when the AGRI point scan time and the CPR scan time were within 15 min from each
other, the points were considered prospective matches of the CPR points. The prospective
match points were narrowed down to one, and the closest point to the CPR point was
selected as a match. This match point was disregarded, and a new matching procedure
was initiated if the selected AGRI point data were invalid. Finally, 15,780-pixel samples
were obtained, and the precise number of samples for each of the eight categories of clouds
(i.e., clear sky, cirrus, altostratus, altocumulus, stratocumulus, cumulus, nimbostratus, and
deep-convection) is presented in Table 2.

Table 2. Sample distribution of the dataset.

Category Name Number of Samples

1 Clear sky 6447
2 Cirrus 2553
3 Altostratus 3260
4 Altocumulus 723
5 Stratocumulus 530
6 Cumulus 540
7 Nimbostratus 1550
8 Deep-convection 177

3. Methods

In this section, the classic techniques, including the 2D-CNN, 3D-CNN, and dense
connection, are presented first, and then the proposed DCHCN method is described
in detail.

3.1. Superiority of Proposed Module

A CNN is a popular network used for image classification tasks. By performing
convolution and pooling, CNN can automatically recognize the spatial features of an image,
extracting feature data from various depths by stacking layers [38]. The standard CNN
network is a 2D-CNN, and this network was initially created to recognize 2D images. The
2D-CNN structure is shown in Figure 4.
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Figure 4. Basic 2D-CNN structure.

In the 2D-CNN structure, an input image is first convolved using a convolution kernel
in the convolution layer. The output of the convolutional layer is then fed to the next layer
after being processed using a non-linear function. This process can be expressed as follows:

Fl = f
(

Fl−1 ×W l + bl
)

, (1)

where f (·) denotes the non-linear activation function, which enhances the network’s ability
to handle non-linear data; Fl−1 is the input feature map of layer (l− 1), and Fl is the output
feature map of layer l; W l denotes the convolution filter, and bl is the deviation of the
output feature map.

The input feature map is downscaled in the pooling layer to minimize the amount of
necessary space. A fully connected layer and a SoftMax classifier have typically been used
to determine the final result after several stacked convolution and pooling layers.

The 3D high-level properties of visual data cannot be extracted using the 2D-CNN
even though this network can handle 2D graphics well. The 2D-CNN alone is not able to
extract good discriminating feature maps from the spectral dimensions. The main reason is
the fact that multispectral satellite data are volumetric data and have a spectral dimension
as well.

A 3D-CNN model shares many characteristics with a 2D-CNN model but uses 3D
convolutional kernels to extract spatial and spectral channel properties from the 3D input
data. Similarly, a deep 3D-CNN is more computationally complex. A comparison of the
3D-CNN and 2D-CNN structures is presented in Figure 5.
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The above analysis indicates that using only 2D-CNN or 3D-CNN had some limita-
tions, such as the lack of channel relationship information and a complex model. These
proposed shortcomings were partially overcome by combining 2D-CNN and 3D-CNN in
a hybrid convolutional model. Using the hybrid model, both spectral and spatial feature
maps can be fully exploited to achieve optimal classification performance. Table 3 shows
the OA and runtime of the 2D-CNN, 3D-CNN, and hybrid convolutional model with the
same network parameters, evaluating the benefits and drawbacks of each model.

Table 3. The OA and runtime of the 2D-CNN, 3D-CNN, and hybrid convolutional model with the
same network parameters.

2D-CNN 3D-CNN The Hybrid Convolutional Model

OA 87.35 90.85 92.01
Runtime (s) 192.6 338.7 252.8

However, simply stacking convolutional layers does not bring out the best in the
network, nor does it make the network deep enough to obtain a better feature map.
Huang [39] presented a dense connectivity method and a densely linked convolutional
network (DenseNet) model. The main characteristic of dense connections is reusing features
by linking them to a channel. As a result, the performance of the model is improved, while
requiring fewer computational resources and settings. In the DenseNet, every layer has a
direct connection to every layer below it. As a result, the feature maps from all preceding
layers are transferred to the lth layer. The specific process can be expressed as follows:

xl = Hl([x0, x1, · · · , xl−1]), (2)

where [x0, x1, · · · , xl−1] refers to the concatenation of the feature maps generated in the
zeroth layer and xl is the output.

The dense connection mechanism of the DenseNet model is illustrated in Figure 6.
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3.2. Proposed DCHCN Method

The flowchart of the proposed DCHCN method is shown in Figure 7, where it can
be seen that the proposed method includes three main components: a 3D-CNN, which is
used to extract spatial–spectral information; a hybrid convolutional layer, which includes
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a 2D-CNN and a 3D-CNN with dense connections; and a fully connected layer, which
is used for classification. A detailed explanation of the proposed method is presented in
the following.
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3.2.1. Using the 3D-CNN for Extracting Spatial–Spectral Features

Convoluting a 3D kernel with 3D data results in a 3D convolution. Two 3D convolu-
tion layers are used in the proposed method to extract spatial–spectral information. The
activation value of the spatial position (x, y, z) in the jth feature map of the ith layer in the
3D convolution is given by

qxyz
ij = f (∑

m

H

∑
h=1

W

∑
w=1

R

∑
r=1

khwr
ijm q(x+h)(y+w)(z+r)

(i−1)m + bij), (3)

where qxyz
ij denotes the pixel value at position (x, y, z) in the jth feature map of layer i; the

3D convolution kernel size is H ×W × R; m denotes the index of the feature map in layer
(i − 1); khwr

ijm denotes the weight of the mth feature map in layer (i− 1) of the 3D convolution

kernel; q(x+h)(y+w)(z+r)
(i−1)m denotes the pixel value at position (x + h, y + w, z + r) in the mth

feature map of layer (i − 1); bij is the bias term; and f (·) is the activation function.
As shown in Figure 8, it is assumed that the original dataset can be represented as

I ∈ RH×W×C, where H and W denote the length and width of the images in the dataset,
respectively, and C is the number of channels of the data in the spectral channel; the number
of spectral channels of the data used in this study is 14. In the proposed method, two 3D
convolutional layers are used to obtain the joint features containing the spectral information.
The spatial–spectral feature extraction steps are as follows:

(1) To satisfy the 3D-CNN input data format, the original dataset needs to be chunked.
Each pixel in the original dataset is traversed, and each pixel is centered to obtain
an image block with a size of w× w× c , where w is the width of the image block,
i.e., the window size, and c is the number of channels. The label of the input block is
equivalent to the label of the center pixel, and the resulting input block is represented
by X ∈ Rw×w×c;
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(2) For an input block with a size of {w × w × c}, the output with a size of
{(w− 2)× (w− 2)× (c− 4)} is obtained by processing the data using eight 3D con-
volution kernels with a size of {3× 3× 5}. The first layer of 3D convolution is used
to filter the joint spatial spectral features and remove the channels that may contain
noise. The second 3D convolution layer consists of 16 convolution kernels with a
size of {3 × 3 × 3}, extracts the features further, and has an output with a size of
{(w− 4)× (w− 4)× (c− 6)}. After two 3D convolutions, the extraction process of
3D features is initially completed. The step size of the above-mentioned convolution
layers is one;

(3) To prevent the network from overfitting and to improve the convergence speed, a
batch normalization (BN) layer and a ReLU function are added after each convolution
to enhance model robustness.
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3.2.2. Hybrid Convolutional Layers with Dense Connections

The 2D-CNN alone is not able to extract good discriminating feature maps from
the spectral dimensions. Solving the cloud classification problem using wind cloud data
requires extracting both the spectral information hidden in multiple bands and the spa-
tial information.

However, for the satellite cloud classification problem, it is desired to capture both the
spectral information encoded in multiple bands and the spatial information. The 3D-CNN
kernel can extract spectral–spatial features from data simultaneously, but this significantly
increases the computational complexity.

To overcome the disadvantages of using only 2D-CNN or 3D-CNN, this study pro-
poses to combine both networks, leveraging their spectral and spatial feature maps and au-
tomatic image-data-feature-learning power to improve accuracy. As illustrated in Figure 9,
dense connections are implemented in both 2D-CNN and 3D-CNN to facilitate feature
reuse and enhance performance. The steps involved in cloud classification using the hybrid
convolutional layers with dense connections are described below:

(1) The 3D densely connected block includes three convolutional layers, each of which is
convolved in 3D. Each layer has a convolutional kernel with a size of {3× 3× 3} and
uses a BN layer and a ReLU function for non-linear transformation between layers
to avoid overfitting problems. For the {s× s× p} input, the size of the convolutional
layers’ output is guaranteed to be the same by setting the padding to 1 to ensure that
the output of each layer can be passed to all subsequent layers. The input is first
processed by 16 convolutional kernels with a size of {3× 3× 3}, and the output is fed
to the next layer by splicing it with the input using the concatenate operation (the
channel splicing method). To reduce the number of parameters of the 3D densely
connected block, the number of output channels is set to 16 for each layer;

(2) The output obtained using the 3D densely connected block is obtained by screening
and capturing the spectral feature information, and the spatial feature map is obtained
using 2D convolution. The dimensionality is reduced using the reshape operation to
facilitate 2D convolution. The input of size {s× s} is passed through 32 convolution
kernels with a size of {3× 3} to extract the spatial features, and the output with a size
of {(s− 2)× (s− 2)} is obtained to construct the input size that can be fed to the 2D
densely connected block;
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(3) The 2D densely connected block has three 2D convolutional layers, each of which has
a convolutional kernel with a size of {3× 3}, using the BN layer and ReLU function
for non-linear transformation between layers to avoid the overfitting problem. For
the {(s− 2)× (s− 2)} input, the output size of the convolutional layers is guaranteed
to be the same by setting the padding to one and thus ensuring that the output of
each layer can be passed to all subsequent layers. First, the input is passed through
32 convolutional kernels with a size of {3× 3}, and the obtained output is input to the
next layer by splicing it with the input performing the concatenation operation (the
channel splicing method). For a better exploration of spatial features, the number of
output channels is set to 32 for each layer.
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3.2.3. Fully Connected Layers for Classification

A SoftMax classifier is employed to classify clouds after flattening the output 2D
feature map to a one-dimensional structure and processing it through three fully connected
layers. The output layer has the same number of nodes as the number of cloud categories.
Table 4 summarizes the layer type, output mapping dimensionality, and parameter count
of the proposed model.

Table 4. Detailed information on the layer structure and parameters of the proposed model.

Layer Type Output Shape Parameter

Input_1 / (43, 43, 14, 1) 0
Conv3d_1 3 × 3 × 5 Conv3D (41, 41, 10, 8) 368
Conv3d_2 3 × 3 × 3 Conv3D (39, 39, 8, 16) 3472

Dense Block 3d_1 [3 × 3 × 3 Conv3D] × 3 (39, 39, 8, 16) 41,520
Reshape_1 Reshape (39, 39, 128) 0
Conv2d_1 3 × 3 Conv2D (37, 37, 32) 36,896

Dense Block 2d_1 [3 × 3 Conv2D] × 3 (37, 37, 32) 55,392
Flatten_1 Flatten (43,808) 0
Dense_1 Dense (256) 11,215,104

Dropout_1 Dropout (256) 0
Dense_2 Dense (128) 32,896

Dropout_2 Dropout (128) 0
Dense_3 Dense (8) 1032

In this way, each pixel point corresponds to a probability vector that represents the
category that the current pixel belongs to. The category of the pixel point is determined by
the probability of the current pixel performing the pixel-by-pixel cloud classification.

3.3. Model Training

The 2018–2019 FY-4A AGRI full-disk 4000-m resolution L1 data were labeled utilizing
2018–2019 CloudSat’s 2B-CLDCLASS product data. The data were divided into training
and test sets in a 7:3 ratio with the elimination of unreliable and missing data through the
preprocessing methods outlined in Sections 2.2 and 2.3. The dataset was created using
data with intervals greater than half an hour to avoid minor cloud shifts and reduce model
accuracy caused by short intervals. The time range of the dataset ranged from 00:00 UTC to
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09:00 UTC with 11,046 samples in the training dataset and 4734 samples in the test dataset.
The cube-shaped input data for FY-4A were created using small, overlapping cubic blocks
with labels assigned to the central pixels. A total of 120 training epochs were conducted
using the Adam optimizer. The model was trained in batches of 14 × 43 × 43.

Figure 10 illustrates the production of the input image blocks in the training set. A
total of 14 channels of images from FY-4A (simplified as RGB images in the figure) were
spatiotemporally matched with CloudSat satellite data to obtain matching points and
assigned labels. Using the matched points as the central pixel, their neighbors were taken
to form the input image block of the training set, and the labels of the image block were
consistent with those of the central pixel.
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Figure 10. Image data for model training. The two diagrams on the left show the raw FY-4A data and
the matching points with the corresponding colored boxes marked with the label positions, selected
according to the color scale in the legend. The figure on the right shows a zoomed-in example of the
training set data from the left figure.

4. Result and Analysis

This section analyzes the effects of two main parameters, namely the spatial size of the
input block, and the number of spectral channel dimensions of the output feature map of
the 3D-CNN, of the proposed DCHCN on its classification performance. The experimental
results of the proposed method and several state-of-the-art methods are presented and
analyzed. The three metrics OA (overall accuracy), AA (average accuracy) and Kappa
(kappa coefficient) are used in this paper to analyze and evaluate the performance of the
model. OA indicates the ratio of the number of samples correctly predicted by the model
to the total number of samples, AA denotes the average of the model’s prediction accuracy
for each category, and Kappa indicates the agreement between the model prediction results
and the actual classification results, taking into account the random classification.



Remote Sens. 2023, 15, 2673 13 of 19

4.1. Experimental Configuration

The Windows 10 operating system was used in all tests. The tests were conducted
on computers with a 12th Gen Intel(R) Core (TM) i5-12400F CPU and an Nvidia GeForce
RTX3060 Ti GPU using PyTorch 1.2.0 deep learning framework and Python 3.9. The number
and distribution of training and test dataset samples are presented in Table 5.

Table 5. Data distribution of the training and test datasets.

Category Name Number of Training Samples Number of Test Samples Number of Samples

1 Clear sky 4513 1934 6447
2 Cirrus 1787 766 2553
3 Altostratus 2282 978 3260
4 Altocumulus 506 217 723
5 Stratocumulus 371 159 530
6 Cumulus 378 162 540
7 Nimbostratus 1085 465 1550
8 Deep-convection 124 53 177

Acc. 11,046 4734 15,780

4.2. Analysis of Parameter Effects on Model Performance
4.2.1. Spatial Size Effect

The spatial size of the input block defines the amount of spatial feature information
in the input block, and, in CNNs, the effective feature information can significantly affect
the classification performance. Therefore, in this study, the spatial size of the input block
was analyzed experimentally. In this experiment, the spatial size of the input block was set
to {31 × 31, 37 × 37, 43 × 43, 49 × 49, 55 × 55}. The experimental results are presented in
Figure 11a.
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Figure 11. Classification results obtained under different experimental conditions: (a) Classification
results obtained at different spatial sizes; (b) classification results obtained for different spectral
dimensions of the output. In (b) it can be seen that, starting from four spectral dimensions, the OA
reached the maximum for eight spectral dimensions. With a further increase in the spectral dimension
based on eight spectral dimensions, the OA started to decrease. This indicated that with the increase
in spectral dimension number, the noise information also increased gradually, which affected the
acquisition of spectral feature information and led to a decrease in classification accuracy. According
to the experimental results, the number of spectral channel dimensions of the 3D-CNN output feature
map was set to eight.
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As shown in Figure 11a, the OA value gradually increased when the spatial size in-
creased from 31 to 43, but as the spatial size continued to increase, OA showed a decreasing
trend. The increase in spatial size could improve the spatial feature information obtained
by the network to a certain extent, but a too-large spatial size could reduce the classification
performance of the network. Additionally, a too-large size could lead to the introduction
of other types of pixels and even cause noise. Therefore, to achieve the best classification
results, a size of {43 × 43} was selected for the input block of the network.

4.2.2. Spectral Dimension of the 3D-CNN Output Feature Map

The input data were processed using the 3D-CNN to extract the spectral–spatial
features first, before the data entered the hybrid convolution layer. The output feature
map of the 3D-CNN could affect the final feature information obtained using hybrid
convolution and thus affect the classification results. Therefore, the effect of the spectral
channel dimension of the 3D-CNN output feature map was examined experimentally by
changing the 3D-CNN convolution kernel size. In this experiment, the output feature map’s
spectral channel dimensions of the 3D-CNN were set to {4,6,8,10,12}. The experimental
results are presented in Figure 11b.

4.3. Results, Analysis, and Comparison of Different Cloud Classification Models

A variety of deep learning networks were selected for the comparison experiments.
The proposed DCHCN model was compared with the 2D-CNN, 3D-CNN, HybridSN, UNet,
and U2Net models. All models in the comparison experiments were trained and tested
on the same training and test datasets. In addition, for all models the training included
120 epochs, and the same parameters, including the optimizer type, loss function, and
learning rate, were used in the training process to obtain the final classification models. The
eight cloud types are labeled in the following order: Clear sky, Ci, As, Ac, Sc, Cu, Ns, and
Dc. The performance of the six models in the cloud classification task was tested separately,
and their performances are presented in Table 5.

As shown in Table 6, The numbers in bold indicate the models that achieved the
best results in their category, the proposed DCHCN model obtained the highest OA,
AA, and Kappa values among all models. Although the 2D-CNN, 3D-CNN, HybridSN,
UNet, and U2Net models were designed with different network structures to obtain high
classification performance, the proposed model benefited from the combination of 2D
and 3D convolutions, which resulted in a better classification performance. The proposed
method combined spatial and spectral feature information and used dense connections to
reuse the features better, and thus could achieve better results at a lower computational cost.

Table 6. Classification results of the classification methods.

Category 2D-CNN 3D-CNN HybridSN UNet U2Net DCHCN

1 97.26 95.55 95.09 96.43 97.31 97.10
2 75.20 86.68 86.81 90.86 91.12 93.60
3 89.67 89.98 94.89 89.98 92.43 95.30
4 59.91 70.05 75.58 77.42 76.96 82.95
5 55.97 75.47 79.87 73.58 83.02 88.05
6 75.83 92.59 93.83 95.68 92.59 98.15
7 91.40 95.48 93.33 93.98 96.13 97.85
8 64.15 81.13 83.02 84.91 86.79 86.49

OA 87.35 90.85 91.95 92.16 93.49 95.20
AA 76.19 85.87 87.80 87.85 89.54 92.47

Kappa 82.76 87.78 89.22 89.50 91.30 93.60

Specifically, the 2D-CNN had the worst classification results among all models for
all classes, except for clear sky; i.e., its classification accuracy was below 60% for some
of the classes. This model also had the smallest OA, AA, and Kappa values due to the
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unavailability of spectral feature information for classification. The 3D-CNN model had
better classification results compared to the 2D-CNN model, but required more time to
obtain these results. The HybridSN model used a hybrid convolutional architecture similar
to that of the proposed method. The hybrid convolutional architecture provided high
accuracy of 3D convolution while minimizing the number of model parameters. The UNet
and U2Net used deeper 2D convolution and could extract feature information better by
using the U-shaped structure. However, purely 2D convolution with an increased depth
was still not enough to compete with the proposed method.

Moreover, in most cases, the proposed method performed better than the other meth-
ods regarding the classification accuracy for all types of clouds. Specifically, the cloud
types Ac, Sc, and Dc that had more structural changes could be easily confused with
other cloud types, so it was more difficult to classify them accurately. Still, the proposed
method performed better than the other methods on these classes. This was mainly due
to the fact that the proposed model used dense connections to connect the layers, while
the HybridSN model used hybrid convolution. By building a dense connection module,
the hidden spectral information, as well as spatial information, could be explored better,
and the useful feature information obtained from the other layers could be retained, thus
achieving accurate classification of cloud types with insignificant feature information. In
addition, compared to the UNet and U2Net models, the proposed method did not use
relatively deep convolutional layers and thus did not introduce additional time overhead
while improving the classification accuracy; the proposed method had obvious advantages
in time performance compared to the other models.

Figure 12 shows the original satellite cloud image, and Figure 13 depicts the corre-
sponding classification results of each classification method on a dataset. The satellite cloud
map data collection time used for the presentation of classification results was 5:45 a.m. on
21 May 2018. At this time, all types of clouds are represented in satellite cloud images.

Remote Sens. 2023, 15, x FOR PEER REVIEW 17 of 21 
 

 

shaped structure. However, purely 2D convolution with an increased depth was still not 

enough to compete with the proposed method. 

Moreover, in most cases, the proposed method performed better than the other meth-

ods regarding the classification accuracy for all types of clouds. Specifically, the cloud 

types Ac, Sc, and Dc that had more structural changes could be easily confused with other 

cloud types, so it was more difficult to classify them accurately. Still, the proposed method 

performed better than the other methods on these classes. This was mainly due to the fact 

that the proposed model used dense connections to connect the layers, while the Hy-

bridSN model used hybrid convolution. By building a dense connection module, the hid-

den spectral information, as well as spatial information, could be explored better, and the 

useful feature information obtained from the other layers could be retained, thus achiev-

ing accurate classification of cloud types with insignificant feature information. In addi-

tion, compared to the UNet and U2Net models, the proposed method did not use rela-

tively deep convolutional layers and thus did not introduce additional time overhead 

while improving the classification accuracy; the proposed method had obvious ad-

vantages in time performance compared to the other models. 

Figure 12 shows the original satellite cloud image, and Figure 13 depicts the corre-

sponding classification results of each classification method on a dataset. The satellite 

cloud map data collection time used for the presentation of classification results was 5:45 

a.m. on 21 May 2018. At this time, all types of clouds are represented in satellite cloud 

images. 

 

Figure 12. Original FY-4A satellite cloud image data collected at 5:45 a.m. on 21 May 2018. Figure 12. Original FY-4A satellite cloud image data collected at 5:45 a.m. on 21 May 2018.



Remote Sens. 2023, 15, 2673 16 of 19Remote Sens. 2023, 15, x FOR PEER REVIEW 18 of 21 
 

 

 

Figure 13. Classification maps obtained using classification methods on the dataset: (a) 2D-CNN; 

(b) 3D-CNN; (c) HybridSN; (d) UNet; (e) U2Net; (f) proposed DCHCN. 

The classification-result analysis showed that the classification maps obtained using 

the 2D-CNN and 3D-CNN included more misclassifications than the other models. The 

HybridSN, UNet, and U2Net classification maps provided clouds that were more frag-

mented, and they could not distinguish cloud categories Ac, As, Cu, and Ci well. This is 

because these maps could not use spectral information more accurately than the proposed 

model. Finally, the classification map obtained using the proposed method could ensure 

the integrity of cloud clusters, relatively smooth boundaries, high performance, and accu-

rate classification results. 

The cloud map data used for the proposed classification model verification corre-

sponded to the spring season, when the probability of single-layer clouds in mainland 

China is high, especially in the southern region. According to previous macroscopic stud-

ies on cloud types in China, the probability of high clouds in the tropic regions is the 

highest, which is indicated by a large portion of high clouds, such as Ci and As, at the 

bottom of the classification map. However, in mainland China, the probability of high 

clouds in the north, especially the northeast and north of China, is higher than that in the 

south, which is indicated by a large number of high clouds, such as Ci and As, at the top 

of the classification map. In addition, in the tropical region, deep convective activity is 

more frequent, and water vapor is more abundant, which results in a higher probability 

of producing highly unstable deep convective clouds of the Dc type and extendable rain 

clouds of the Ns type. The probability of medium clouds in the southwest region is higher 

than 50%, which is mainly demonstrated in the classification chart as Sc and Ac cloud 

types in this region. However, in the sea in the south, at 20°N, the probability of medium 

clouds is very low and is thus almost not reflected in the classification chart. Due to the 

influence of water vapor, large cumulus (Cu) clouds also appear in the classification map. 

Thus, the classification map obtained using the proposed method is consistent with the 

findings of macroscopic studies in the Chinese region. 

5. Conclusions 

This paper proposes a densely connected hybrid convolutional network (DCHCN) 

for cloud classification tasks using FY-4 satellite data. The proposed DCHCN approach 

combines 3D and 2D convolutions to integrate spectral and spatial feature information, 

Figure 13. Classification maps obtained using classification methods on the dataset: (a) 2D-CNN;
(b) 3D-CNN; (c) HybridSN; (d) UNet; (e) U2Net; (f) proposed DCHCN.

The classification-result analysis showed that the classification maps obtained using
the 2D-CNN and 3D-CNN included more misclassifications than the other models. The
HybridSN, UNet, and U2Net classification maps provided clouds that were more frag-
mented, and they could not distinguish cloud categories Ac, As, Cu, and Ci well. This is
because these maps could not use spectral information more accurately than the proposed
model. Finally, the classification map obtained using the proposed method could ensure the
integrity of cloud clusters, relatively smooth boundaries, high performance, and accurate
classification results.

The cloud map data used for the proposed classification model verification corre-
sponded to the spring season, when the probability of single-layer clouds in mainland
China is high, especially in the southern region. According to previous macroscopic studies
on cloud types in China, the probability of high clouds in the tropic regions is the highest,
which is indicated by a large portion of high clouds, such as Ci and As, at the bottom of
the classification map. However, in mainland China, the probability of high clouds in the
north, especially the northeast and north of China, is higher than that in the south, which is
indicated by a large number of high clouds, such as Ci and As, at the top of the classification
map. In addition, in the tropical region, deep convective activity is more frequent, and
water vapor is more abundant, which results in a higher probability of producing highly
unstable deep convective clouds of the Dc type and extendable rain clouds of the Ns type.
The probability of medium clouds in the southwest region is higher than 50%, which is
mainly demonstrated in the classification chart as Sc and Ac cloud types in this region.
However, in the sea in the south, at 20◦N, the probability of medium clouds is very low and
is thus almost not reflected in the classification chart. Due to the influence of water vapor,
large cumulus (Cu) clouds also appear in the classification map. Thus, the classification
map obtained using the proposed method is consistent with the findings of macroscopic
studies in the Chinese region.

5. Conclusions

This paper proposes a densely connected hybrid convolutional network (DCHCN)
for cloud classification tasks using FY-4 satellite data. The proposed DCHCN approach
combines 3D and 2D convolutions to integrate spectral and spatial feature information,
which effectively improves cloud classification accuracy. Moreover, the proposed approach
employs dense connections and fully connected layers to further enhance classification
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performance. Experimental results demonstrate that the proposed method outperforms
other comparative models and attains the highest classification accuracy. These findings
confirm the efficiency and advantages of the proposed method in cloud classification using
FY-4 satellite data.

However, there are still some aspects that require further improvement. Although the
proposed method combines convolutional layers to exploit spatial and spectral features
more effectively, it is observed that network performance varies significantly with different
spatial scales or spectral dimensions of the parameters in parameter analysis experiments.
Furthermore, the optimal parameters found in the experiments may not be applicable to
other datasets, indicating the need for further research on the spatial and spectral properties
of clouds to improve network robustness. In terms of dataset, the training process is limited
by CloudSat’s running orbit and running time, which makes it challenging to incorporate
more accurate cloud classification data. Additionally, the inherent nature of satellite data
may cause CloudSat’s data to deviate from the real situation. As CloudSat does not provide
data labels over a continuous time, the study did not consider the temporal dimension.
In addition, the top height of the cloud type St is low, the distribution is scattered and
fragmented, and there is a severe problem of insufficient samples. This cloud type was
not included in this study. Therefore, in future studies, the dataset will be enhanced by
including measured data over a continuous time to improve the accuracy and aid in the
analysis. Additionally, a classification scheme for the St type will be added to further
improve cloud classification accuracy. Further improvements in the classification accuracy
of specific cloud types could eventually lead to overall improvements in the cloud type
classification of the proposed model.
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