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Abstract: As the largest freshwater lake in China, Poyang Lake is an internationally important
wetland and the largest migratory bird habitat in Asia. Many sub-lakes distributed in the lake
basin are seasonal lakes, which have a significant impact on hydro-ecological processes and are
susceptible to various changes. In this study, using multi-source remote sensing data, a continuous
time-series construction method of water coverage suitable in Poyang Lake was developed. That
method combined the downscaling of the MNDWI (modified normalized difference water index)
with the ISODATA (iterative self-organizing data analysis technique algorithm), and its accuracy can
be up to 97% in the months when Landsat 8 is available or 87% when it is unavailable. Based on that
method, the increasing variation in water coverage was observed in the sub-lakes of Poyang Lake
during 2013–2020 to be within a range of 200–690 km2 normally. The center of the sub-lakes always
remained inundated (>80% inundation frequency), while the surrounding areas were probably kept
dry for seven months (except for June to September). The dominant influencing factors of water
coverage variations were different in different hydrological periods (wet season and dry–wet season:
discharge; dry season: temperature and wind speed; wet–dry season: temperature and precipitation).
In addition, “returning farmland to lakes” affected the increase in the water area in the sub-lakes.
This study is helpful for the management of water resources and the protection of migratory birds in
the Poyang Lake region.

Keywords: Poyang Lake; sub-lake; water coverage extraction; downscaling; spatio-temporal analysis;
influencing factors

1. Introduction

Poyang Lake is the largest freshwater lake in China, and it is also the only member of
the World Network of Lakes for Life in China and one of the first wetlands included in the
list of internationally important wetlands [1–3]. Due to the uneven sediment deposition
in the lake basin over a long period of time, when the water level recedes during the
dry season, the water surface is separated from the main lake body, naturally forming
many lakes within lakes (“sub-lakes”) with special hydrological processes and ecological
characteristics. The topographical features and hydrological processes of these sub-lakes
provide superior habitats for the development of wetland ecosystems, are important
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habitats and food sources for wintering migratory birds, and play an irreplaceable role
in maintaining the integrity of the wetland ecosystem and species diversity of Poyang
Lake [4,5]. Research on the water surface changes at Poyang Lake has been of wide interest
to many scholars [6–8]. Hu et al. [9] provided statistics on the number and area of the
sub-lakes in the Poyang Lake basin, analyzed the distribution and landform characteristics
of the sub-lakes, and revealed the level of relationship between the sub-lakes and Poyang
Lake. Taking the sub-shaped lakes (Bang Lake and Sha Lake) of Poyang Lake as the research
object, Li et al. [10] conducted a comprehensive analysis of the transformation relationship
and exchange flux of groundwater in the sub-lakes using hydrological, thermodynamic,
and hydrodynamic methods. Wu et al. [11] used water level observation data to explore
the water level change and hydrological exchange process at Poyang Lake and three typical
saucer lakes; the study showed that the main lake and the saucer lake show strong seasonal
and spatial correlations between water level changes and hydrological exchange processes.
Liu et al. [12], based on long-term remote sensing images, analyzed the spatio-temporal
variation characteristics of seasonal lakes and their influencing factors and ecological effects.
Wang et al. [13], taking the free connected sub-lake Bang Lake and locally controlled sub-
lake Dahuchi Lake of Poyang Lake as a case, and based on the remote sensing cloud
computing platform of the Google Earth Engine (GEE), used the pixel binary model to
estimate aquatic vegetation coverage from 2000 to 2019, and analyzed the temporal and
spatial differentiation characteristics.

Currently, many water extraction methods have been proposed by researchers, such
as the single-band method, image classification method, band ratio method, density seg-
mentation method [14] and spectrum method [15], among which the single-band method
and band ratio method are widely used due to their simplicity and relatively reliable re-
sults [16,17]. However, the accuracy of the traditional single-band and band ratio methods
depends on the threshold selection and is susceptible to subjective influence. Nowadays,
the single-band method and band ratio method are beginning to be combined with the
ISODATA method [18–20], Otsu method [21,22] and random forest [23–25], which greatly
reduce the influence of subjective experience on the extraction of water bodies. In addition,
there are limitations to the spatial and temporal continuity of a single remote sensing
sensor, and in recent years, researchers have proposed a number of downscaling methods
that use low-resolution remote sensing data to decompose water surface information for
water body extraction. Wu et al. [26] proposed a new downscaling method based on the
normalized difference water index (NDWI)’s statistical regression algorithm in 2015, which
is very feasible for small-scale lake water surface extraction; however, compared to the
direct extraction of water surfaces by medium and high-resolution satellites, its accuracy
still needs to be improved.

Therefore, considering the frequent rainfall in the Poyang Lake basin, satellite data
are often unavailable at medium and high resolutions. Thus, this study develops a kind
of construction method using multi-source remote sensing data to keep the time series
continuous. This method can be used for the water surface information extraction of sub-
lakes, combined with the downscaling model based on the MNDWI and the water body
extraction method based on the ISODATA. This study constructs the time series data of the
water coverage of sub-lakes at the month scale from 2013 to 2020, and analyzes the spatial
and temporal variation in water area. Finally, the influencing factors of water area change are
analyzed, which is important for the comprehensive understanding of the water resources of
Poyang Lake and the effective guidance on migratory bird protection work in Poyang Lake.

2. Study Area and Data
2.1. Study Area

Poyang Lake is the largest freshwater lake in China, located in South China. Poyang
Lake is a seasonal lake connected to the Yangtze River with a drastic variation in water
levels and coverage in different hydrological seasons. The water level of Poyang Lake
changes drastically; during the dry season, the lake basin breaks away from the main
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lake body and its beach is exposed, forming many sub-lakes. Due to the uniqueness of
the sub-lake’s topography and lake’s hydrological rhythm, the hydrological process is
very complicated. Sub-lakes usually have the characteristics of small area and scattered
distribution, mainly located in the east, south and west of Poyang Lake, such as Bang Lake,
Linchong Lake, Dahuchi, and Dacha Lake [27,28] (Figure 1). Among them, the Bang Lake
has a large area, is largely in its natural state, has an abundance of migratory birds, and
is the core conservation depression of the Poyang Lake National Nature Reserve, so it is
the most representative. At the same time, it allows convenient observation, so Bang Lake
was selected as the verification area. The climate in Poyang Lake is a semitropical monsoon
climate with a continuous period of precipitation in the wet season. The sub-lakes have the
largest vegetation biomass and the richest species diversity in Poyang Lake’s wetland. At
the same time, they also provide a superior habitat for migratory birds and play a pivotal
role in maintaining the ecosystem function of Poyang Lake’s wetland.
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2.2. Data
2.2.1. Remote Sensing Data

In this study, Landsat 8 data and MODIS data were used for the construction of time
series information for the water area of the sub-lakes, and GF-1 data were used as validation
data for the extraction results. The land use classification data for analyzing human activity
factors are GlobeLand30 data. The data involved in this paper are shown in Table 1.

Table 1. Study data.

Data Name Parameter Spatiotemporal Resolution Data Use

Remote
sensing data

Landsat 8
b3: 0.53–0.59 µm

16 d, 30 m Modeling, constructionb5: 0.85–0.88 µm
b6: 1.57–1.65 µm

MODIS
b4: 0.545–0.565 µm

1 d, 500 m Modeling, construction
b6: 1.628–1.652 µm

GF-1
panchromatic: 0.45–0.90 µm 4 d, 2 m (panchromatic);

Validationb2: 0.52–0.59 µm 4 d, 8 m (Multispectral)
b4: 0.77–0.89 µm

GlobeLand30 Land use data 1 a, 30 m Analysis of influencing factors

(1) Landsat 8 data

The Landsat remote sensing data used in this study were Landsat 8 OLI, atmospheric
apparent reflectance data for 2013–2020 (https://earthexplorer.usgs.gov/, accessed on
13 July 2021), with a spatial resolution of 30 m. The selection criteria for the images were
coverage of the study area and good quality (the cloud cover in the study area is less than
2%), with a total of 65 scenes, of which 45 scenes were used for water surface information
extraction in Landsat in the available months, and 20 scenes were used for the construction
of the downscaling model.

(2) MODIS data

The MODIS data used in this study are MOD09 apparent reflectance data from 2013–
2020 (http://ladsweb.nascom.nasa.gov, accessed on 29 December 2021). The selection
criteria for the images were coverage of the study area and good quality (The cloud cover
in the study area is less than 2%), with a total of 66 scenes, of which 20 scenes of them were
used for the construction of downscaling model and 46 scenes of them were used for the
reconstruction of the time series.

(3) GF-1 data

The GF-1 satellite is the first satellite of the High Resolution Earth Observation System
in China, and the data used in this study were acquired by PMS, which has panchromatic
image with a spatial resolution of 2 m and multispectral image with a spatial resolution
of 8 m (https://scene.thxpace.com/image/#/search, accessed on 23 September 2021). In
this study, the 2 m fused image of GF-1 on 19 November 2015 (Landsat8 available) and
16 March 2014 (Landsat8 unavailable), which are similar dates to the date of the image used
for water surface information construction, were selected as the validation data for the time
series reconstruction method in this study. Based on the validation reference, 300 points
were randomly selected as validation points within the study area.

(4) GlobeLand30 data

For resolution reasons, the land use classification data were GlobeLand 30 data (www.
globallandcover.com/, accessed on 27 March 2022), which are global land cover data
developed in China with a spatial resolution of 30 m [29,30]. At present, the data versions
for 2000, 2010 and 2020 have been published, so we chose 2010 and 2020 as the years for
our land use change study. The overall accuracy of GlobeLand30 V2010 data is 83.50%, and
the Kappa coefficient is 0.78; the overall accuracy of GlobeLand 30 V2020 data is 85.72%,

https://earthexplorer.usgs.gov/
http://ladsweb.nascom.nasa.gov
https://scene.thxpace.com/image/#/search
www.globallandcover.com/
www.globallandcover.com/
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and the Kappa coefficient is 0.82. The data were used to analyze changes in land use types
between different years.

2.2.2. Ground Observations

Ground observations were used to analyze the influence of natural factors on the
change in water area. The meteorological data were derived from Poyang Station which is
one of the standard meteorological stations of China. The data obtained from the station
mainly included the daily temperature, wind speed and precipitation. The discharge data
were derived from the Hydrology Bureau of Jiangxi Province (http://www.jxssw.gov.cn/,
accessed on 23 December 2022). Due to the limitations of the data provider, the time period
of the data is 2014–2017 and 2019. The station used is the Waitan Station which monitors
the discharge from the Ganjiang River into the lake, including the daily discharge data.

3. Methods
3.1. Reconstruction Methods for Continuous Time Series

Firstly, for the months when Landsat 8 was available, the MNDWI was calculated using
Landsat data. Secondly, for the months when Landsat 8 was unavailable due to cloud and
rain, MODIS data were used to calculate the MNDWI at a high spatial resolution of 30 m
using a downscaling model. The main steps of this method are the following: (1) in order
to ensure a match between different resolution data, the low-resolution MNDWI image was
resampled to the same resolution as that of the high-resolution MNDWI image via the nearest
neighbor method; (2) based on each pixel, a linear regression model was established between
the resampled MNDWI value and the corresponding high-resolution MNDWI value; (3) the
low-resolution MNDWI values used to supplement the unavailable Landsat8 were considered
independent variables, and the established regression model was used for downscaling to
obtain higher-resolution MNDWI results; the ISODATA based on the MNDWI was used to
extract the water surface of the sub-lake. Using that method, we could construct the time
series dataset of water coverage in sub-lakes at a spatial resolution of 30 m at the month scale
from 2013 to 2020. The flowchart of our method is shown in Figure 2.
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3.2. Water Surface Extraction Method in Available Months for Landsat 8

The water index, MNDWI, which has a better suppression effect on residential and
soil noise, was used for the water area extraction of the sub-lakes [31]. The equation is
as follows:

MNDWI =
Green − SWIR
Green + SWIR

(1)

where Green is the reflectance of the green band; SWIR is the reflectance of the short-
wavelength infra-red band.

For the months when Landsat 8 was available, water extraction was performed using
the ISODATA based on this index. That method is an unsupervised classification algorithm
that continuously splits and merges by introducing parameters, and iterates based on
parameters such as initial cluster centers and a set number of categories to eventually
obtain a more desirable classification result, which can reduce the subjectivity of threshold
determination [18–20].

3.3. Water Surface Extraction Method in Unavailable Months for Landsat 8

In the months when Landsat data were unavailable, we considered the downscaling
method proposed by Wu et al. [11]. based on NDWI to obtain a higher resolution from
low-resolution data. The equation of NDWI is as follows:

NDWI =
Green − NIR
Green + NIR

(2)

where Green is the reflectance of the green band; NIR is the reflectance of the near-
infrared band.

The NDWI mainly takes advantage of the strong absorption of water in the NIR band
and the strong reflectance of vegetation. It extracts the water information in images by
suppressing vegetation and highlighting water, and the effect is better. However, since the
reflectivity of the green band is much higher than that of the NIR band, when using the
NDWI to extract water, only vegetation was considered while ignoring the two important
features of buildings and soil, so the results of extracting water were often confused with
soil and building information. The MNDWI uses SWIR instead of NIR, which has a good
suppression effect on noise in residential areas and soil. Therefore, a downscaling model
based on the MNDWI was established by combining Landsat and MODIS data in adjacent
months. Firstly, based on Landsat (30 m) and MODIS (500 m) satellite images, a linear
regression model based on the MNDWI was established using the downscaling method;
it was applied to MODIS_MNDWI (500 m) from 2013 to 2020 for downscaling to obtain
Downscaled_MNDWI with a spatial resolution of 30 m. The equation of the downscaled
method is as follows:

MNDWIFine
i,j,t = ai,jMNDWICoarse

i,j,t + bi,j (3)

where MNDWIFine
i,j,t and MNDWICoarse

i,j,t , respectively, represent the MNDWI value of a high-
resolution image and the MNDWI value of a low-resolution image at time t and the pixel
position (i, j); ai,j and bi,j are correlation regression coefficients.

Finally, based on the MNDWI images, the ISODATA was used to extract the water area.

3.4. Inundation Frequency Method

For the same area, the relative value of the inundation ratio is used to describe the
variation of the lake surface in different periods, which can prevent the uncertainty caused
by a single observation. Therefore, in order to analyze the annual spatial variation of
the water surface of sub-lakes accurately, based on the obtained extraction results of
water surface information, the inundation frequency (IF) is used to describe the spatial
distribution and variation characteristics of the water surface. The expression of IF is
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F(m) =
1

Nm
∑Nm

t=1 wm,t × 100% (4)

F(y) =
1

12 ∑12
m=1 F(m)× 100% (5)

where F(m) and F(y) represent the monthly average and annual average inundation fre-
quency, respectively; m represents a certain month in a year; y represents a certain year; Nm
represents the total number of days covered by remote sensing images in month m; wm,t
represents the water coverage state of the pixel, generally using 0 for no water and 1 for
water. For land, IF is 0%; for perennial lake areas, IF is 100%; for seasonal lakes, the value
of IF ranges from 0 to 100%, with higher values indicating longer inundation in a certain
time period.

3.5. Analysis Method of Influencing Factors
3.5.1. Multiple Linear Regression Analysis

Multiple linear regression analysis predicts or estimates the dependent variable via
the optimal combination of multiple independent variables, which is more effective and
more realistic than using only one independent variable for prediction or estimation [32].
Before the establishment of a multiple regression model, the data should be normalized.
The normalization method used in this study was linear normalization (Max-Min) [33–36].

3.5.2. Dynamic Analysis of Land Use

The dynamic degree of land use (K) represents the change rate of a certain land use
type in a certain period of time; the larger the value of this indicator, the more intense
the degree of land use change, and the smaller the value, the slower the change [37]. The
equation for land use dynamic degree is as follows:

K =
At2 − At1

At1

·1
t

(6)

where At1 and At2 represent the area of a certain land use type in the starting and ending
years of the study, respectively, in km2; t represents the number of years between the
start year and the end year, in a. Taking the vector area of each sub-lake as the center, a
buffer zone is established within 1 km, and the land use in 2010 and 2020 is classified.
On this basis, statistics on the land use types in the buffer zone are determined, and the
dynamic degree of land use (K) is calculated. In order to more intuitively reflect the mutual
conversion relationship between various land use types, we used the statistical analysis
tools in ArcGIS to calculate the land use transfer matrix from 2010 to 2020.

4. Results
4.1. Accuracy Verification

In order to ensure the applicability of the water surface extraction method, the
Bang Lake was selected as the verification area. In the available months of Landsat 8,
one of the construction results (20 November 2015) was selected and compared with
the extraction results of the NDWI threshold method, MNDWI threshold method [38],
and MNDWI_ISODATA. The method used in this study to determine the threshold was
Otsu [21,22]; it is considered the best algorithm for threshold selection in image segmenta-
tion. It is simple to calculate and is not affected by image brightness and contrast, so it has
been widely used in digital image processing. The reference value is the extraction result
of the GF-1 image using the ISODATA, and the image date is adjacent. The comparison
results are shown in Figure 3.



Remote Sens. 2023, 15, 2788 8 of 19Remote Sens. 2023, 15, x FOR PEER REVIEW 9 of 21 
 

 

 

Figure 3. Extraction results from the water surface of Bang Lake. 

Using the confusion matrix method, the accuracy evaluation results obtained are 

shown in Table 2. 

Table 2. Evaluation of the accuracy of the water body extraction results. 

Sub-Lake  Extraction Methods ME/% OE/% OA/% 
Kappa  

Coefficient 

Bang Lake 

NDWI threshold 

method 
2.03 1.22 96.75 0.8981 

MNDWI threshold 

method 
3.66 0 96.34 0.8912 

NDWI_ISODATA 0.81 2.03 97.15 0.9072 

MNDWI_ISODATA 1.63 0.41 97.97 0.9368 

ME is the misclassification error, OE is the omission error and OA is the overall classification accu-

racy [39]. 

Compared to the other three methods in Table 2, the MNDWI_ISODATA method has 

a lower misclassification error and omission error, and has the highest overall accuracy 

and Kappa coefficient, which makes it suitable for the extraction of the sub-lake. 

In order to evaluate the accuracy of the downscale method based on the MNDWI, 

taking Bang Lake as the verification area, the data construction results on 14 March 2014 

were selected, and the GF-1 water surface extraction results of the nearby date were used 

for verification. The results were compared with those of MODIS and downscaled MODIS 

based on the NDWI (Downscaled_MODIS_N), and the extraction result is shown in Fig-

ure 4. 

Figure 3. Extraction results from the water surface of Bang Lake.

Using the confusion matrix method, the accuracy evaluation results obtained are
shown in Table 2.

Table 2. Evaluation of the accuracy of the water body extraction results.

Sub-Lake Extraction Methods ME/% OE/% OA/% Kappa Coefficient

Bang Lake

NDWI threshold method 2.03 1.22 96.75 0.8981
MNDWI threshold method 3.66 0 96.34 0.8912

NDWI_ISODATA 0.81 2.03 97.15 0.9072
MNDWI_ISODATA 1.63 0.41 97.97 0.9368

ME is the misclassification error, OE is the omission error and OA is the overall classification accuracy [39].

Compared to the other three methods in Table 2, the MNDWI_ISODATA method has
a lower misclassification error and omission error, and has the highest overall accuracy and
Kappa coefficient, which makes it suitable for the extraction of the sub-lake.

In order to evaluate the accuracy of the downscale method based on the MNDWI,
taking Bang Lake as the verification area, the data construction results on 14 March 2014
were selected, and the GF-1 water surface extraction results of the nearby date were
used for verification. The results were compared with those of MODIS and downscaled
MODIS based on the NDWI (Downscaled_MODIS_N), and the extraction result is shown
in Figure 4.

Compared to the water surface extraction results of the original MODIS images
(Table 3), those of the MODIS’s downscaled base on the MNDWI showed a significant
improvement in the misclassification error and omission error, especially the omission error.
At the same time, the overall accuracy of the water surface extraction increased from 73%
to 87% and the Kappa coefficient improved from 0.46 to 0.75; it also outperformed that of
the downscaled MODIS based on the NDWI, and the results were accurate and reliable.

Table 3. Precision evaluation of MODIS and downscaled MODIS water surface extraction results.

Data Type ME/% OE/% OA/% Kappa Coefficient

MODIS 10.81 16.22 72.97 0.4599
Downscaled_MODIS 7.21 5.11 87.39 0.7476

Downscaled_MODIS_N 12.61 9.01 78.38 0.5673
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4.2. Characteristics of Temporal Variation in the Water Area of a Sub-Lake

Figure 5 shows water area information data from 2013 to 2020. The water surface area
showed a slightly increasing trend, and the range of water surface area change was between
141.23 km2 and 763.03 km2. The maximum and minimum values were found in July 2016
and February 2015, with the maximum water area being about 5.4 times the minimum
water area. Compared to other years, the trend in lake area in 2013 was relatively flat, with
the water area in autumn (September to November) being lower than the value for the
same period in all years, and the maximum water area for the year was the smallest of all
years, so it is presumed that a severe drought may have occurred in that year. From April
to August in 2016, the sub-lake remained in a high water state in that all water areas were
more than 662 km2, which was a high level compared to that of other years, presumably
due to extreme weather conditions or the back-up of the Yangtze River floods; the water
area in August 2018 was the smallest of all Augusts, being only 238.15 km2, which was
more unusual; in September and October 2020, the water surface area of the sub-lake was
much higher compared to that of the same period in previous years, indicating that extreme
precipitation events were likely to have occurred in that year.

Figure 6 shows the highest, lowest and average values of the lake’s water area from
2013 to 2020. The average annual water surface area of the lake from 2013 to 2020 showed a
trend of expansion, with values varying from 346.28 km2 to 493.50 km2. Among them, the
change in the maximum water area value is relatively flat and exhibits an upward trend
overall, with the highest water area exceeding 600 km2 every year. Among the maximum
values of the water area in different years, the area value in 2016 is the largest and the area
in 2013 is the smallest, at 763.03 km2 and 606.66 km2, respectively, while the maximum is
about 1.26 times the minimum. The minimum values also changed, becoming more flat,
showing an overall increasing trend, with the minimum water area being below 259.05 km2

each year. Among the minimum values of water area in different years, 2017 had the
maximum area of 259.05 km2, which is approximately 1.83 times the minimum area of
141.23 km2 in 2015.
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Figure 6. Interannual variation in the water area of the sub-lake from 2013 to 2020.

Figure 7 shows the monthly average water area from 2013 to 2020, the smallest water
area in January and February, and the largest water area in July. Among them, the average
water area in spring (March–May) is 366.86 km2; in summer (June–August), it is 604.64 km2;
in autumn (September–November), it is 423.10 km2; in winter (December–February), it is
246.44 km2, and the water area in summer is more than twice that in winter. The sub-lake
water area shows a clear seasonal variation (following a single-peak distribution). In the
first half of the year, due to the increase in precipitation in the basin, the monthly average
water area increased slowly; it reached a peak in July (about 690 km2), and then declined
rapidly, and by December, the water area was below 290 km2. Generally speaking, the
relatively low value of water area occurs at the beginning, middle and end of the year.
At this time, it generally reaches the minimum value of the year and the range of change
is small.
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Figure 7. Monthly average water area of the sub-lake from 2013 to 2020.

4.3. Spatial Variation Characteristics of the Water Area of the Sub-Lake

The distribution of the multi-year surface inundation frequency of the sub-lakes shows
that the sub-lakes in the southern region, such as Linchong Lake, are less inundated
and remain exposed for longer than are those in the northern region, such as Dahuchi
(Figures 8 and 9). The frequency of water surface inundation in many sub-lakes varies
dramatically within the year and shows a clear pattern of spatial variation and seasonal
characteristics. The frequency of water surface inundation during the wet season (June to
August) is four to five times higher than that during the dry season (December to February).
During the wet season, both large and small sub-lakes are full of water and integrated with
the main lake body; during the dry season, the sub-lakes exist independently of each other,
except for some water in the center of the sub-lake, while the other parts are in a state
of depletion. In general, the areas with a frequency of inundation of more than 80% are
mainly artificial lakes (reservoirs), Dahuchi, Dacha Lake and other perennial water areas;
those with a frequency of inundation in the range of 50% to 80% are mainly the edges of the
sub-lakes, which are usually covered by water from June to August each year; the area with
a frequency of inundation in the range of 20~50% is located between the edge of the lake
and the center of the lake, which are exposed in February to May each year; the areas with
a frequency of inundation of less than 20% are mainly the lake area outside the perennial
water area, which is dry for seven months of the year.
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5. Discussions
5.1. Natural Factors

In order to explore the influence of different natural factors on the water area in differ-
ent seasons, according to the monthly average inundation frequency in Figure 9, Poyang
Lake is divided into the wet season (June–August), dry season (December–February), wet–
dry transition season (September–November) and dry–wet transition season (March–May).
In the wet season and the transition season, the precipitation, temperature, wind speed and
discharge are considered independent variables, and the area of the sub-lake is considered
the dependent variable to establish a multiple regression model. In the dry season, consid-
ering that the sub-lakes are separated from the main lake body and there is no interaction
between the water volume of the Yangtze River and that of the five rivers [38], the discharge
has little impact on the water area and the discharge is not regarded as the influencing
factor. Accordingly, precipitation, temperature and wind speed are used as independent
variables, and the area of the dish-shaped lake is used as the dependent variable to establish
a multiple regression model.

The regression model equation for the water area of the sub-lake in the wet season
is as follows: water area = 0.10 × precipitation + 0.36 × temperature + 0.38 × wind speed +
0.60 × discharge. Obviously, precipitation has little impact on water area. Temperature
and wind speed have a greater impact on changes in water area, and discharge has the
greatest impact on the area of the sub-lake. This phenomenon is possibly related to the
fact that the wet season is the main flood season of the Yangtze River and that the water
intrusion of the Yangtze River to Poyang Lake has increased the discharge into the lake [40].
The regression model equation for the water area of the sub-lake in the dry season is as
follows: water area = 0.07 × precipitation + 0.33 × temperature + 0.46 × wind speed. In the
dry season, obviously, there is a greater impact of the temperature and wind speed on
the water area. The regression model equation for the sub-lake water area in the wet–dry
season is as follows: water area = 0.66 × precipitation + 0.79 × temperature − 0.24 × wind
speed − 0.24 × discharge. Obviously, during the wet–dry transition season, precipitation and
temperature are the main factors of changes of the sub-lake water area [41]. The regression
model equation for the sub-lake water area in the dry–wet transition season is as follows:
water area = 0.10 × precipitation + 0.19 × temperature − 0.007 × wind speed + 0.63 × discharge.
The discharge plays an important role in the change in the water area and is the main
source of the volume of the sub-lake during the wet–dry transition season.

From the equations of the four periods, it can be seen that the water area of the
sub-lakes in the wet season and the dry–wet transition season is mainly affected by the
discharge, in the dry season it is mainly affected by temperature and wind speed, and in
the wet–dry transition season it is mainly affected by temperature and precipitation.

5.2. Human Activity Factors

The changes in the sub-lake water area are not only affected by natural factors, but
also by human activities. Land use change is an important indicator that reflects human
social and economic activities [42,43]. The classification of land use in 2010 and 2020 is
shown in Figure 10. The dynamic degree of land use (K) of each land use type is calculated.
Table 4 shows the results.

Table 4. Statistics of land use types and their changes from 2010 to 2020.

Land Use Types
Year

2010 (km2) 2020 (km2)
Dynamic Degree of Land

Use (K) (%)
cropland 141.81 136.89 −0.35

forest 19.50 18.58 −0.47
grassland 54.87 24.807 −5.48

waterbody 1127.917 1169.587 0.37
urban and rural construction land 3.147 6.537 10.787

bare land 9.34 0.19 −9.80
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It can be seen from Table 4 that among the land use types in the area around the
sub-lake, the area of cropland is the largest, followed by that of grassland and forest land.
From 2010 to 2020, the area of urban and rural construction land and water area showed
an increasing trend, and urban and rural construction land is increasing at the fastest rate,
while the area of cropland, forest, grassland and bare land showed a decreasing trend, and
the area of bare land is decreasing at the fastest rate, followed by the area of grassland. The
land use transfer matrix from 2010 to 2020 was calculated (Table 5). It can be seen from
Table 5 that the cropland area has decreased by 4.92 km2, the forest land area has decreased
by 0.92 km2, the grassland area has decreased by 30.03 km2, the water area has increased
by 41.67 km2, the construction land area has increased by 3.39 km2, and the bare land are
has decreased by 9.16 km2. In the mutual conversion of various land types, the area of the
water body converted into farmland is 3.38 km2, the area of grassland converted into a
water body is 33.28 km2, the area of forest land converted into a water body is 6.27 km2,
and the area of bare land converted into a water body is 6.18 km2. The relevant data show
that due to human activities such as the reclamation of lakes and economic development,
water consumption has increased dramatically, and Poyang Lake is facing a severe situation
of water area shrinkage and ecological function degradation. On 20 October 1998, the State
Council of China introduced the policy of “returning farmland to lakes” [44–46], which
has increased the flood discharge and storage capacity of the middle and lower reaches of
the Yangtze River. However, there is still the problem of an insufficient scale of returning
farmland to lakes, and unable to solve the problem of insufficient flood storage capacity in
the middle and lower reaches of the Yangtze River. Combined with the actual background
and statistical data, it can be seen that the sub-lake water area has shown a growing trend
in the past 10 years, which is consistent with the conclusions drawn in this paper; most of
the growing water body is transformed from grassland, woodland and bare land. This is
closely related to the local policy of “returning farmland to lakes”. The policy of “returning
farmland to lakes” means that once the surrounding polders are submerged, they will no
longer be used as polders, the original cropland and forest land area will be changed into a
new lake body, and humans will no longer restore the polder.
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Table 5. Transfer matrix of land use, 2010–2020 (in km2).

2020
2010 Cropland Forest Grassland Waterbody Urban and Rural

Construction Land Bare Land Total

cropland 121.90 1.30 1.01 12.48 0.20 0.01 136.90
forest 7.06 8.71 1.94 0.85 0.02 0.01 18.59

grassland 1.22 2.16 9.82 8.59 0.03 2.90 24.72
waterbody 9.10 7.12 41.87 1105.02 0.28 6.19 1169.58

urban and rural construction land 2.51 0.22 0.22 0.97 2.61 0.00 6.53
bare land 0.02 0.00 0.01 0.01 0.00 0.15 0.19

total 141.81 19.51 54.87 1127.92 3.14 9.26 1356.51

5.3. The Potential Applicability of Our Method

Traditional time series water extraction is mostly based on a single remote sensing
sensor, which leads to limitations to spatiotemporal continuity and extraction accuracy.
In this paper, joint processing of multi-source remote sensing data is performed realize
the complementary advantages of different remote sensing data. In the research of the
extraction of time series water information in the sub-lakes, the Landsat 8 data at a high
spatial resolution and the MODIS data at a high temporal resolution are combined to realize
the fusion of different data at a high spatio-temporal resolution using the downscaling
model of the MNDWI. Then the water area is extracted via the ISODATA method based on
the MNDWI, and the time series water area of sub-lake are obtained accordingly.

Obviously, the reliability of our method for the construction of the time series water
area lies in the applicability of the water remote sensing index (MNDWI in our study) and
the performance of the extraction method (ISODATA in our study) [47–50]. Compared
to the traditional water index, as the NDWI, the MNDWI can prevent confusion around
the value of the area of buildings, soils and water [31]. At the same time, the MNDWI
inherits the ratio operation, which can eliminate the influence of terrain differences to a
greater extent. Accordingly, the MNDWI can solve the problem of easy shadow confusion
around water information [51]. Thus, our method can be used for the extraction of water
area in the mountainous region (e.g., Poyang Lake basin). However, when water turbidity
is high or water is rich in aquatic vegetation, the MNDWI also has certain limitations [52].
Similarly, our method is possibly limited in terms of the extraction of water area for turbid
or eutrophic water. Generally, our method should be revised for the different kinds of
water quality through the selection of the appropriate water remote sensing index.

Compared to the threshold method (e.g., the Otsu method), the ISODATA method
allows the obtention of more reliable performance when the distinction between the water
body and the background features is not obvious [22,53]. In order to avoid misclassification
error and omission error, when using the ISODATA method for classification, it is generally
necessary to set the number of classifications to 3 to 4 times the final number of classifica-
tions [54]. However, for larger areas and more data, the ISODATA method may become
very time-consuming [55]. Therefore, when our method is used to extract the water area at
a larger spatial scale (e.g., the national or global scale), the efficiency of our method may
be limited.

Finally, limited by the launch time of Landsat 8 satellite, the water area was extracted
after 2013 [56]. To acquire the information from before 2013, other data from the previous
satellite sensors (e.g., Landsat 5) can be introduced to our model in the future study [57].
Considering multi-source remote sensing satellites, our downscaling method can be used
in higher-resolution remote sensing imagery (such as sentinel-2) for months when optical
images are unavailable.

6. Conclusions

This paper takes Poyang Lake as the study area, and develops a time series construc-
tion method for water coverage information based on multi-source remote sensing images.
Using Landsat 8 and MODIS images, water surface information at the month scale from
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2013 to 2020 was obtained. On this basis, the spatio-temporal variation characteristics of the
sub-lakes and their influencing factors were explored, and the conclusions are as follows:

(1) For the months when Landsat 8 is available, the MNDWI is calculated using
Landsat data, and for the months when Landsat 8 data are unavailable due to cloud and
rain, MODIS data are used to calculate the MNDWI at a high spatial resolution of 30 m
using a downscaling model. Then, the ISODATA based on the MNDWI is used to extract
the water surface of the sub-lake. Using that method, we could construct the time series
dataset of water coverage in sub-lakes at a spatial resolution of 30 m at the month scale.
The time series construction method of water coverage based on multi-source remote
sensing images has a better performance than that of other methods. In the months when
Landsat data are available, the overall accuracy and Kappa coefficient are 98% and 0.94,
respectively. In the months when Landsat data are unavailable, the overall accuracy and
Kappa coefficient are 87% and 0.75, respectively.

(2) From 2013 to 2020, the water area of the sub-lake in Poyang Lake showed an
increasing trend between 2013 and 2020, with the maximum water area being more than
600 km2 and the minimum water area being less than 259 km2 each year. The sub-lake
water area shows a clear seasonal variation (following a single-peak distribution). The
frequency of water surface inundation changes dramatically during the year, and shows
obvious spatial variation and seasonal characteristics. The frequency of water surface
inundation in the wet season (June–August) is 4–5 times larger than that in the dry season
(December–February). The pattern of spatial change during the dry–wet transition season
is one in which the perennial water area gradually expands to the surrounding area, and
during the wet–dry transition season, the surrounding area gradually shrinks from the
perennial water area. During the wet season, both large and small sub-lakes are full of
water and integrated with the main lake body. During the dry season, the sub-lakes exist
independently of each other. The areas with a frequency of inundation of more than 80%
are mainly artificial lakes (reservoirs), including Dahuchi, Dacha Lake and other perennial
water areas. The areas with a frequency of inundation in the range of 50% to 80% are mainly
the edges of the sub-lakes, which are usually covered by water from June to August each
year. The area with a frequency of inundation in the range of 20~50% is located between
the edge of the lake and the center of the lake, which are exposed in February to May each
year; the areas with a frequency of inundation of less than 20% are mainly the lake area
outside the perennial water area, which is dry for seven months of the year.

(3) In the analysis of the factors influencing water area changes, among the natural
factors, the water area of the sub-lakes in the wet season and the dry–wet transition season
is mainly influenced by the discharge, in the dry season it is mainly affected by temperature
and wind speed, and in the wet–dry transition season it is mainly affected by temperature
and precipitation. In terms of human activities, the policy of “returning farmland to lakes”
is the main factor contributing to the increase in the sub-lake water area.
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