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Abstract: The second-generation spaceborne LiDAR-Ice, Cloud and Land Elevation Satellite-2
(ICESat-2) carries the Advanced Topographic Laser Altimeter System (ATLAS), which can penetrate
a certain depth of water, and is one of the important means to obtain the water depth information
of nearshore water. However, due to the influence of the atmospheric environment, water qual-
ity and color, the system itself and other factors, the photon point cloud introduces survey noise,
which restricts the survey accuracy and reliability of nearshore water depth. Therefore, in this study,
we presented a photon denoising algorithm for layered processing of submarine surface. Firstly,
rough denoising of the original photon data was completed by smoothing filtering. Then, elevation
histogram statistics were carried out on the photon data, two peaks of the histogram were fitted
by a double Gaussian function, and the intersection of two curves was then taken to separate the
water surface and underwater photons. The surface photons were denoised by the DBSCAN clus-
tering algorithm. Then according to the distribution characteristics of underwater signal photons,
a single-photon point cloud filtering bathymetric method was proposed based on improved local
distance statistics (LDSBM), which was used for fine denoising of underwater point cloud data.
Finally, the Gaussian function was used to fit the frequency histogram, and the signal photons were
screened to extract the water depth information. In this study, 13 groups of the ATL03 dataset from
the Xisha Islands, the St. Thomas and the Acklins Island were used for denoising. The denoising
results were compared with the signal photons manually marked and the signal photons extracted by
the official built-in method (OM). The experimental results showed that, compared with the official
method results of ATL03, the LDSBM had a higher F value (comprehensive evaluation index), with
an average of more than 96.70%. In conclusion, the proposed underwater single-photon point cloud
filtering bathymetric method was superior to the traditional algorithm and could recover terrain
information accurately.

Keywords: ICESat-2/ATLAS; the improved local distance statistics; nearshore bathymetry; photon
denoising; laser depth sounding

1. Introduction

Nearshore area bathymetric surveys are important for marine surveying and mapping.
In the early bathymetry, surveys were completed by manual fieldwork using ship-borne
beam bathymeter, which was low in efficiency and unable to meet the dynamic change
monitoring needs [1,2]. With the rapid development and progress of remote sensing
technology, it had gradually replaced the traditional methods on account of its efficiency
and independence of time, climatic conditions and other restrictions. However, this method
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was extremely limited by the resolution of image data, resulting in low accuracy [3]. On
the other hand, Light Detection and Ranging (LiDAR) had been developing rapidly since
its emergence and its features, such as high speed, strong anti-interference ability and high
accuracy, had brought new breakthroughs to the bathymetric surveys. Nevertheless, this
method was neither economical nor feasible for areas in need of periodic monitoring [4].

In 2018, the United States launched the new generation of Ice, Cloud and Land
Elevation Satellite-2 (ICESat-2) that carries the Advanced Topographic Laser Altimeter
System (ATLAS) with the ability to respond to a single photon that can detect weak signals,
greatly improving the detection range and ability. Compared to the Geoscience Laser
Altimeter System (GLAS) carried by the first generation of Ice, Cloud and land Elevation
Satellite (ICESat), ATLAS was significantly advantageous in low energy, high repetition
frequency and narrow pulse, resulting in extremely high accuracy of 3D point cloud data
obtained [5]. To be specific, ATLAS laser emits the laser pulses at a frequency of 10 kHz,
and can obtain single-photon data with high density and small footprint (the light spot
diameter is about 17 m, and the spacing along the same track is about 0.7 m [6]). In addition,
ATLAS uses the laser pulse in the green band of 532 nm with a strong penetration ability to
a depth at most of 38 m in near-shore waters [7]. Upon emission, the pulse is then divided
into six light beams and arrayed into three pairs of light beams. Each pair consists of one
strong light beam and one weak light beam, with the light beams about 90 m apart within
the beams and the different beams are about 3 km apart. Therefore, ICESat-2/ATLAS
has unique advantages and broad application prospects in large-scale lake water level
monitoring on account of its small footprint, multi-beam and high-frequency sampling.
For example, Xu et al. [8] built a correlation between ICESat-2 laser points for multi-phase
Sentinel-2 images on GEE using a linear regression model to generate the shallow water
bathymetric chart and verified using LiDAR data, and the results showed RMSE was 1.08 m.
Babbel et al. [9] established and tested a standardized method flow of ICESat-2 and satellite
image fusion inversion bathymetry, and the RMSE was 0.96 m and 1.54 m upon using
Sentinel-2 and Landsat 8 for validation, respectively.

For subsequent use, the currently available product ATL03 in ICESat-2 requires to
denoise the data before using photon data due to small photon energy and vulnerability
to noise. Neuenschwander et al. [10] proposed a method named Differential, Regressive,
and Gaussian Adaptive Nearest Neighbor, (DRAGANN), and according to the feature that
the distribution of signal photons distribution was more dense than that of noise photons
and was used to generate product ATL08. Chen et al. [11] proposed a method named
Adaptive Variable Ellipse Filtering Bathymetric Method (AVEBM) which took the change
characteristic of photon density in the water column with the increase of the water depth
into account. They used SDB data to verify, and the experiment results showed that the
bathymetric accuracy RMSE could reach 0.79 m. However, the AVEBM did not take the
neighborhood direction factor into account, leading to discontinuities in the denoising
result. Xie et al. [12] had improved the self-adaption Density-Based Spatial Clustering
of Applications with Noise (DBSCAN) to extract the signal photon and used the proper
outlier detection algorithm to remove the abnormal photon and improved the accuracy.
Hsu et al. [13] first obtained the histogram of the elevation distribution of ICESat-2 along
the orbit profile, and then used the second-order Gaussian distribution to fit the histogram,
so as to separate the sea surface and sea bottom photons. The median filter was used to
filter the noise photons iteratively. Finally, the water depth was measured after refraction
correction and tide correction. Wang et al. [14] proposed a denoising method based on the
adaptive elevation difference threshold (AEDTA). Compared with the clustering method
of ordering points to identify the clustering structure (OPTICS), AEDTA extracted more
reliable signal photons. Wang et al. [15] utilized interval estimate and modified OPTICS
to extract the signal photons, which improved the accuracy of extraction in underwater
terrain. Zhang et al. [16] proposed a pre-pruning quadtree isolation (PQI) method with
changing threshold, which achieved a 92.71% F1 score.
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Since the ICESat-2 laser reaches the water bottom penetrating through the surface,
the photon density reflects from the water surface is much greater than that at the bottom.
And because of the water quality and environment differences, the water bottom photon
conditions in different areas differ. In addition, with the increase of water depth, the density
of water bottom photons gradually decreases. There is no obvious rule in the distribution of
signal photons so the way to effectively extract water bottom signal photons is the premise
of whether ICESat-2/ATLAS data can be used for nearshore bathymetry. In this paper,
a water bottom photon filtering bathymetric method based on improved local distance
statistics (LDSBM) that was divided into two steps, specifically coarse denoising and fine
denoising, to retain as many water bottom signal photons as possible. Taking the islands
and reefs of the Xisha Islands in the South China Sea, the St. Thomas and the Acklins
Island as the experiment areas, the ways to extract water bottom signal photons were
explored and compared to ICESat-2/ATL03 official built-in method (OM) extraction results
and manually marked validation photons to verify the accuracy and effectiveness of the
algorithm in this paper.

2. Materials and Methods
2.1. Experiment Areas

In order to fully verify the accuracy of extracting water bottom photons using the
LDSBM, seven islands from three different regions were selected to experiment in this
study. As shown in Figure 1a, the first experiment region of this paper is located in Xisha
Islands within the South China Sea. The Xisha Islands, with flat terrains and vast sea areas,
is the largest archipelago in the South China Sea, consisting of more than 40 islands, islets
and reefs. Finally, five islands in the South China Sea (Huaguang Reef, Jinyin Island, Yin Yu,
Quanfu Island and Shanhu Island) are selected as the experimental area of this paper. The
waters in these areas are clear with low sand contents so the permeability depth of sunlight
can at most reach 30 m in such waters, which is suitable for carrying out the experiment of
ICESat-2 water bottom denoising and shallow-water optical depth detection. The second
region, as Figure 1b shows, is the second-largest island of the US Virgin Islands in the
eastern Caribbean Sea. The third region, as Figure 1b shows, is the surrounding waters
around the Acklins Island and Long Cay in Southeastern Bahamas.
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Figure 1. Geographic Location of the Experiment Areas. (The locations of the Xisha Islands are shown
in (a), and the locations of the Acklins Island and the St. Thomas are shown in (b).

2.2. ICESat-2 ATL03 Data

The ATL03 photon data track of the experiment areas is shown as Figure 2, and
ATL03 data can be downloaded from EarthData (https://search.earthdata.nasa.gov/search,
accessed on 10 December 2022). It is the secondary product of the ICESat-2 product and
further processes the ATL02 data of the L1 product with the help of accurate pointing and
other auxiliary data to generate useful information, including the orbital distance, elevation,
longitude, latitude, photon propagation time, and confidence of each photon event. ATL03
dataset contains six beams, including three strong beams and three weak beams whose

https://search.earthdata.nasa.gov/search
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energy ratio of 4:1 [17], which are labeled as GT1L, GT1R, GT2L, GT2R, GT3L and GT3R,
respectively. Photon point cloud data with strong beams usually have high signal-to-noise
ratio and sounding ability than with weak beams. In this study, the strong beam data of
these thirteen sets of data were used for experiments.
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Figure 2. Laser Track Map of the Experiment Areas.

Due to data discontinuity, it was extremely difficult to extract the effective data con-
taining water bottom photons. Therefore, massive land data was ruled out and only the
data containing nearshore waters was selected. In the experiment of this paper, thirteen
groups of effective ATL03 datasets were eventually selected, with six groups of data cross-
ing Shanhu Island, four groups crossing Huaguang Reef, Jinyin Island, Yin Yu and Quanfu
Island, two groups crossing the Acklins Island and one group crossing the St. Thomas
respectively. Table 1 lists the thirteen-track dataset information including the name of the
ATL03 dataset, local acquisition time, beam num used and photon reference.

Table 1. Information of the ATL03 Datasets adopted in this Experiment.

Name of the ATL03 Dataset Local Acquisition Time Beam No. Used Photon Reference

ATL03_20181022073835_03620101_005_01 15:38 GT1R 5,525,850~5,531,700
ATL03_20190222135159_08570207_005_01 21:51 GT3L 611,220~620,235
ATL03_20190524093136_08570307_005_01 17:31 GT2L 9,873,740~9,884,740
ATL03_20190721183749_03620401_005_01 02:37 GT2L 1,169,050~1,171,420
ATL03_20191020141751_03620501_005_01 22:17 GT1R 1,759,220~1,760,930
ATL03_20191020141751_03620501_005_01 22:17 GT2R 1,380,710~1,383,610
ATL03_20200119095733_03620601_005_01 17:57 GT1R 5,316,850~5,328,140
ATL03_20200119095733_03620601_005_01 17:57 GT3R 5,489,800~5,504,320
ATL03_20200419053723_03620701_005_01 13:37 GT1R 11,042,060~11,061,510
ATL03_20220114231625_03621401_005_01 07:20 GT3L 4,621,580~4633590
ATL03_20181122060325_08340107_005_01 14:03 GT1R 1,645,587~1,648,704
ATL03_20190211025118_06820207_005_01 10:51 GT1L 417,804~420,731
ATL03_20190603091752_10100301_005_01 17:17 GT3R 344,236~348,241
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3. Research Methods

Because of the characteristic that the photon counting LiDAR system is sensitive to the
single photon, it can rapidly collect accurate land data. However, its sensitivity to the single
photon will cause various noise effects on the point cloud data [18], which severely affects
the subsequent use of ICESat-2 data. Therefore, the key issue to be solved to efficiently and
accurately apply the photon counting LiDAR data is the extraction of signal photons.

The LDSBM workflow used in this paper is shown in Figure 3. Firstly, the five-point
weighted motion average method was used to coarse denoise the original photon data and
then divided such data after coarse denoising into water surface photons and water bottom
photons for denoising respectively. In addition, the DBSCAN clustering algorithm was
used to denoise the water surface photons. In terms of the water bottom photons, the KD
tree was firstly built to accelerate the referencing speed and the RANSAC algorithm was
next used to fit the weighted direction. Moreover, the local distance statistics formula was
improved, weighted in the directions of terrain trend, and then the frequency histogram
was conducted with the Gaussian fitting. Accordingly, the thresholds were set to extract
the water bottom signal photons. Finally, visual recognition and the verification method
based on the confusion matrix conducted the accuracy evaluation.
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3.1. Photon Coarse Denoising

In order to reduce data redundancy and improve operational efficiency while reducing
the impact of accidental errors, through the elevation histogram statistics of the original
single-photon laser point cloud, the motion-weighted average method was adopted to
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carry out the smooth filtering on the elevation distribution histogram. The filtering formula
is shown as below,

Hi,smooth = a1 · Hi−2 + a2 · Hi−1 + a3 · Hi + a4 · Hi+1 + a5 · Hi+2 (1)

where Hi,smooth refers to the statistical value of the first columnar component of the elevation
histogram after smooth filtering. Hi refers to the ith column component in the histogram,
where i ∈ {1, 2, . . . , N}. a1, a2, a3, a4 and a5 refer to the five parameters of motion weighted
average method, where a1 = a5 = 0.0625, a2 = a4 = 0.25 and a3 = 0.375.

3.2. Photon Fine Denoising

Due to the large difference between the density of water surface photons and water
bottom photons, it was required to adopt different denoising methods for the two kinds
of photons. The height histogram statistics were carried out for the photon after coarse
denoising, and the two peaks of the histogram were fitted with a double Gaussian function.
The elevation of the intersection point of the two Gaussian curves was taken as the threshold
for the separation of those two kinds of photons. The water surface photons and water
bottom photons were denoised separately.

3.2.1. Fine Denoising of Water Surface Photon

In terms of the characteristics of water surface photons, such as large density and
concentrated distribution of signal photons, and significant density difference between
noise photons and signal photons, the Density-Based Spatial Clustering of Applications
with Noise (DBSCAN) clustering method was used for denoising. It was believed in this
algorithm that the points connected by density should be classified into one same point set
(i.e., cluster) while the outliers not classified should be named as noise points. The DBSCAN
clustering algorithm is executed in accordance with the steps provided in Appendix A.

DBSCAN clustering algorithm needs two main parameters, namely the radius (Eps)
and the minimum points in the neighboring area (MinPts). The parameter, MinPts, is
calculated using the self-adaption formula proposed by Ma et al. [19]. The parameter, Eps,
is set with different values according to day and night. The Eps is set to 2 m in the daytime
when photon data is dense, and 4 m in the night when photon data is sparse.

SN1 = πRa
2N1/hl (2)

where N1 refers to the total photon number, h refers to the elevation range, and l refers to
the range scope along the track.

SN2 = πRa
2N2/h2l (3)

As for the photons with the difference between elevation and minimum elevation
not more than 5 m, the expected photon number is of SN2 is calculated. In the formula,
N2 refers to the photon involved in the calculation and h2 = 5, and thus the formula to
calculate MinPts is shown as below,

MinPts = (2SN1 − SN2)/ ln(2SN1/SN2) (4)

If the finally calculated MinPts is less than 3, then MinPts = 3.

3.2.2. Fine Denoising of Water Bottom Photon

In ICESat-2 single-photon laser point cloud, the density of signal photons in the
terrain trend direction, is apparently larger than that in the vertical terrain trend direction.
Therefore, in this study, when using local distance statistics as the threshold to distinguish
signal photons from noise photons, a weight factor ρ was added in the terrain trend
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direction to make the photons in the terrain trend direction to be more likely classified as
signal photons. The Euclid distance formula is shown as below,

Di,j =
√(

xi − xj
)2

+
(
yi − yj

)2 (5)

where Di,j refers to the Euclid distance between point i and j. i and j refer to any two points
in the single-photon point cloud. xi and xj refer to the distances along track of point i and j
in the horizontal direction, respectively. yi and yj refer to the elevation values of point i
and j in the vertical direction.

The modified distance formula is shown as below,

DNi,j =



√(
Di,j·cos

(
sp − sr

))2·ρ +
(

Di,j·sin
(
sp − sr

))2 sp ∈ I
∣∣∣∣I I I, sr ≥ 0√(

Di,j·cos
(
sp + sr

))2·ρ +
(

Di,j·sin
(
sp + sr

))2 sp ∈ I I
∣∣∣∣IV, sr ≥ 0√(

Di,j·cos
(
sp + sr

))2·ρ +
(

Di,j·sin
(
sp + sr

))2 sp ∈ I
∣∣∣∣I I I, sr < 0√(

Di,j·cos
(
sp − sr

))2·ρ +
(

Di,j·sin
(
sp − sr

))2 sp ∈ I I
∣∣∣∣IV, sr < 0

(6)

where DNi,j refers to the weighted distance value of point i and j in the terrain trend
direction. Di,j refers to the Euclid distance between point i and j. ρ refers to the weight
factor in the terrain trend direction. After the experiment for several times, when ρ is 0.01,
the aggregation of point cloud data reaches the peak in the terrain trend direction, and the
effect to distinguish noise photon and signal photon is the best. Thus, in this paper, ρ is 0.01.
sp refers to the slope between point i and j. sr refers to the slope of terrain trend direction
in the interval where point i and j are located. I, II, III and IV refer to the quadrants. The
definitions of sp and sr are shown in Figure 4.
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Figure 4. Slope definition diagram. The point i and point j are located in the [a, b] range, the yellow
arrow refers to the straight line direction obtained by using the RANSAC method to fit all points in
the [a, b] range, the green arrow refers to the along-track direction, and the blue arrow refers to the
direction from point i to point j. sr is the angle between the yellow arrow and the green arrow, and sp

is the angle between the blue arrow and the green arrow.

According to the formula above, the steps of ICESat-2 point cloud denoising algorithm
are shown as below,

(1) Build the KD tree indexes for the water bottom photons so as to improve the index-
ing speed and then search the nearest K points around each point. The KD tree is
constructed according to the steps provided in Appendix B.
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(2) Divide the intervals in the along-track direction according to 20 m for the water
bottom photons and carry out RANSAC (Random Sample Consensus) straight-line
fitting on all the photons in each interval. The basic idea of the RANSAC algorithm
is given in Appendix C. The fitted straight line slope is the slope of the terrain trend
direction in this interval sr and it is weighted in this direction.

(3) According to the modified distance formula, the average values of the local distance
sum of the nearest K points from each point DMi are counted.

DMi = ∑K
n=1 DNi,j/K (7)

(4) Because there are many fine sands in the water bottom area near the sea surface,
ATL03 single-photon data will penetrate to the bottom through fine sands in this area,
with obvious layering. Thus, it is required to remove the water bottom photons in
shallow water areas. According to the elevation of water bottom point cloud data,
the distribution histogram is built to divide the point cloud data into N intervals
according to the equal elevation interval and count the total number of photons in
each elevation interval. The average value of the elevation histogram is calculated
and then look through the histogram to find the most elevation sections continuously
larger than the average value for DBSCAN clustering denoising.

(5) Conduct the frequency statistics on the average distance DMi, and produce the
frequency histogram hDM with 0.1 as the spacing. Conduct the Gaussian curve fitting
on hDM, and search the final elevation section n whose frequency is lower than µ/2
with the peak value of hDM as the average value µ of the Gaussian curve based on
the Gaussian curve half-width and full-height theorem. sigma refers to the difference
between the abscissa of the elevation section n + 1 and the average value µ. The
average distance threshold is set to be the sum of the average value µ and t-fold sigma.
Those whose average distance is larger than the threshold shall be noise photon while
the rest shall be water bottom signal photons.

sigma = xn+1 − µ (8)

where sigma refers to the variance of the Gaussian curve. xn+1 refers to the abscissa
corresponding to the n + 1 th elevation section. µ refers to the average value of the
Gaussian curve.

3.3. Accuracy Evaluation

Referring to the remote sensing image classification accuracy evaluation method [20],
the visual recognition and verification method based on the confusion matrix were used to
evaluate the signal photons extracted by the denoising method in this paper. In the visual
recognition, whether there was an obvious classification error between water bottom signal
photons and noise photons was mainly manually judged. The verification method based
on the confusion matrix referred to the evaluation by statistical comparison of attribute
information of the labeled water body signal photons and signal photons extracted by the
LDSBM using manually labeled water signal photons.

Three quantitative indicators were used to evaluate the denoising accuracy of the
LDSBM, namely the recall rate (R), precision (P) and comprehensive evaluation index (F),
where R refers to the proportion of the total number of signal photons correctly determined
to the original photons. P refers to the ratio of the total number of signal photons correctly
determined to the extracted signal photons. F refers to the harmonized average of recall
rate and accuracy rate.

R = TP/(TP + FN) (9)

P = TP/(TP + FP) (10)

F = 2PR/(P + R) (11)
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where TP refers to the total number of photons that the signal photons extracted by the
LDSBM and the manually labeled signal photons were all effective water body signal
photons. TN refers to the total number of photons that were judged as noise by the LDSBM
and by artificial labeling. FN refers to the total number of photons that were judged as
noise by the LDSBM and are judged as signals by artificial labelling. FP refers to the total
number of photons that were judged as signals by the LDSBM and were judged as noise by
manually marked.

4. Data Processing and Results
4.1. Point Cloud Denoising Experiment

In order to understand more clearly how the LDSBM algorithm was conducted with
photon separation and threshold selection, and ATL03_20190222135159_08570207_005_01
data is used therein as the example in this section to demonstrate the specific workflow.

4.1.1. Threshold Selection for Photon Separation

The GT3L beam data of ATL03_20190222135159_08570207_005_01 was screened to
intercept the terrain range containing nearshore waters and separate the surface and bottom
photons in this part. All photon elevations were statistically generated to generate the
frequency histogram, which was fitted by the Gaussian curve twice, and the intersection
point of the two curves was taken as the threshold of separation. In this paper, Origin
software (https://www.originlab.com/, accessed on 10 December 2022) was used for the
Gaussian curve fitting to complete the above operations. The point of intersection of two
Gaussian curves is shown in Figure 5.

Remote Sens. 2023, 15, x FOR PEER REVIEW 9 of 18 
 

 

𝑅 = 𝑇𝑃 (𝑇𝑃 + 𝐹𝑁)⁄  (9) 

𝑃 = 𝑇𝑃 (𝑇𝑃 + 𝐹𝑃)⁄  (10) 

𝐹 = 2𝑃𝑅 (𝑃 + 𝑅)⁄  (11) 

where 𝑇𝑃 refers to the total number of photons that the signal photons extracted by the 

LDSBM and the manually labeled signal photons were all effective water body signal pho-

tons. 𝑇𝑁 refers to the total number of photons that were judged as noise by the LDSBM 

and by artificial labeling. 𝐹𝑁 refers to the total number of photons that were judged as 

noise by the LDSBM and are judged as signals by artificial labelling. 𝐹𝑃 refers to the total 

number of photons that were judged as signals by the LDSBM and were judged as noise 

by manually marked. 

4. Data Processing and Results 

4.1. Point Cloud Denoising Experiment 

In order to understand more clearly how the LDSBM algorithm was conducted with 

photon separation and threshold selection, and ATL03_20190222135159_08570207_005_01 

data is used therein as the example in this section to demonstrate the specific workflow. 

4.1.1. Threshold Selection for Photon Separation 

The GT3L beam data of ATL03_20190222135159_08570207_005_01 was screened to 

intercept the terrain range containing nearshore waters and separate the surface and bot-

tom photons in this part. All photon elevations were statistically generated to generate the 

frequency histogram, which was fitted by the Gaussian curve twice, and the intersection 

point of the two curves was taken as the threshold of separation. In this paper, Origin 

software (https://www.originlab.com/) was used for the Gaussian curve fitting to com-

plete the above operations. The point of intersection of two Gaussian curves is shown in 

Figure 5. 

 

Figure 5. Gaussian curve fitting. 
Figure 5. Gaussian curve fitting.

https://www.originlab.com/


Remote Sens. 2023, 15, 2828 10 of 18

4.1.2. Threshold Selection for Gaussian Curve Fitting

This part explains how to set thresholds to classify photons after counting the im-
proved local distances. K was set as 8 and the intervals were divided equally by 20 m, and
the frequency histogram of the average distance DMi is shown as Figure 6. In the figure, the
frequency ordinate with an average distance of less than 4 m is scaled down to facilitate the
finding of distribution characteristics of frequency. The frequency histogram was generated
at an interval of 0.1 m, and the Gaussian curve was used to fit the frequency histogram.
With the average distance of 0.0883 m corresponding to the peak value of the histogram
as the mean value, the final elevation section whose frequency was below 0.04415 was
searched, and the difference between the average distance and mean value of the next
elevation section of the aforesaid elevation section was taken as the standard deviation.
Thus, the standard deviation of the Gaussian function was 0.1 m and the average distance
threshold was the sum of the mean value and t-fold standard deviation. The criterion for
setting the parameter t was to retain the signal photon as many as possible. According
to the selected ATL03 data, when the parameter t was set as 7, the extraction effect of the
signal photons was the best, at which the threshold was 0.7883 m.
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4.2. Denoising Results

ATL03 dataset contains not only the exact longitude, latitude and elevation values of
photons, but also an important parameter signal_conf_ph. It refers to the confidence parameter
for photon classification in the heights dataset. There are five values of each photon in the
signal_conf_ph array, which are classified into five categories (land, sea, sea ice, land ice and
inland water). The confidence value ranges from 0 to 4. The higher the value is, the more
accurate the classification is. Therefore, the photon data of signal_conf_ph ≥ 3 [21,22] was
selected in this paper as the signal photon background classification threshold.

The first column data is the water bottom original photons, the second column data
is manually marked signal photons, the third column data is signal photons extracted by
the official built-in denoising method and the fourth column data is the signal photons
extracted by the LDSBM are displayed in Figures 7 and 8, respectively. In the figure,
green dots are water surface photons, red dots are signal photons extracted by various
methods, and blue dots are original photons. It can be seen from the figure that the official
built-in denoising method can extract flat shallow signal photons. However, with the
constant change of water depth, it is difficult to extract signal photons from the water
bottom by official method, and it may even identify the noise photons as signal photons,
which severely affects the data use. The LDSBM is weighted in the terrain trend direction,
making the photons in the terrain trend direction more aggregated and more inclined to
be identified as signal photons. The LDSBM can accurately extract the signal photons at
different depths. In the thirteen groups of data, the shallow photon data can be correctly
extracted by both the LDSBM and the OM. As for deep data, the LDSBM can extract the
signal photons more comprehensively and accurately by the LDSBM compared to the
official method.

In Figures 7 and 8, the order from 1 to 13 is shown according to the sequence of ATL03
datasets in Table 1. In terms of the data of groups 2, 3, 6, 7, 8, 9 and 10, because there are
many fine sands in the shallow water and the soil is loose, the 532 nm laser will penetrate
into the deeper water through the fine sand gaps, forming obvious layering, and the area
within this range needs to be processed according to step (4) of the LDSBM. Among the
seven groups of data, the official method is unable to process the layering data (which
is defined as two layers in this paper, including the upper layer data of real terrain and
the lower layer data of virtual terrain), the lower layer noise photons are identified as
signal photons by mistake. Meanwhile, the LDSBM conducts special processing on the
layering data, and the lower layer photons are identified as noise photons. However, in
the data of groups 3, 8 and 10, the LDSBM is faced with the problem of determining a
small number of signal photons as noise photons for the part with the lowest elevation
in the upper layer data, ensuring that the signal photons extracted by the LDSBM are
consistent with the manually labeled signal photons to the maximum extent. The existence
of some water surface photons in the data of groups 1, 2, 3, 7, 9, 10 and 13, is because when
separating water surface and water bottom photons, some photons are at the junction of
the threshold and are not completely distinguished. However, such existence does not
affect the denoising processing of water bottom photons.
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Figure 8. Comparison of fine denoising results of the St. Thomas and the Acklins Island (the green
points refer to water surface photons, the red points refer to signal photons extracted by all methods,
blue points refer to the original photons).

5. Discussion
5.1. Global Precision Discussion

In order to evaluate the performance of the LDSBM in extracting water bottom signal
photons, qualitative and quantitative methods are used to evaluate the denoising results of
experimental data. In the qualitative evaluation, visual recognition is mainly adopted to
subjectively determine whether the signal photons are obviously classified by error. In the
quantitative evaluation, the quantitative indicators, including the precision (P), the recall
rate (R) and the comprehensive evaluation index (F), are used, leading to more intuitive
and accurate evaluation results. The visual recognition can easily and intuitively identify
large differences, but is unable to measure the tiny differences. And consequently, F needs
to be introduced for quantitative analysis (Table 2). The photons extracted by the official
built-in denoising method and the LDSBM are mapped to manually labeled signal photons
and the number of effective signal photons extracted by the two methods, respectively, is
obtained. The number of manually labeled signal photons (VN) refers to the number of
photons that are manually identified as the category of signal photons. The total number
of signal photons extracted by the official built-in denoising method (ON) refers to the
number of photons whose confidence is greater than 2. The number of effective signal
photons extracted by the official built-in denoising method (OSN) refers to the number
of photons in the intersection of the ON and the VN. The total number of signal photons
extracted by the LDSBM (LN) refers to the number of photons that are judged as signal
photons in the LDSBM algorithm. The number of effective signal photons extracted by
the LDSBM (LSN) refers to the number of photons in the intersection of the LN and the
VN. The number of original photons (RN) refers to the total number of photons in the
original data.

It can be seen from Figure 9 that, in terms of the data of groups 20181022-1R,
20190211-1L, 20190524-2L and 20200419-1R, LN is more than the ON. In terms of other
data, the LN is less than the ON. In terms of the data of the aforesaid four groups, the OSN
is far less than the LSN. In terms of the data of the remaining nine groups, the OSN is also
less than the LSN, proving that the LDSBM extracts signal photons better than the official
built-in method. In addition, the LSN is close to the VN in each group, indicating that the
signal photons extracted by the LDSBM are very close to the results of manual labeling
with extremely few misextracted photons.
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Table 2. Statistical information of water bottom signal photon extraction.

ATL03 ON OSN LN LSN VN RN

20181022-1R 1505 1456 2064 1974 2140 3045
20181122-1R 612 381 338 330 381 622
20190211-1L 542 532 1248 1236 1295 1408
20190222-3L 4202 3945 3876 3845 3956 4242
20190524-2L 5007 4987 5273 5249 5308 6018
20190603-3R 1671 1506 1560 1537 1590 1784
20190721-2L 1064 986 1061 998 1046 1199
20191020-1R 653 593 601 581 599 665
20191020-2R 826 708 754 728 753 937
20200119-1R 4000 3818 3973 3883 4011 4948
20200119-3R 8164 7867 8015 7957 8090 8850
20200419-1R 7134 6851 7682 7461 7728 10,650
20220114-3L 4531 4401 4437 4433 4554 5122
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Figure 9. Statistical information chart.

Through further quantitative analysis (Table 3), the water bottom signal photon ex-
tracted by the LDSBM can obtain a higher F value with an average of 96.73%. The F value
of OM is 89.18%, which is improved by about 7.55%. As for 20181022-1R, 20181122-1R
and 20190721-2L, the effect of F after the LDSBM denoising is relatively worse. 20181022-
1R is worse in effect because the underwater terrain is complex and the noise photon in
some parts are relatively dense and are easy to be extracted by mistake. 20181122-1R and
20190721-2L are worse in denoising effect because the total number of photons in this group
of data is very small with a low signal-to-noise ratio and difficulty in denoising. The three
groups of data with the largest difference between the official algorithm and the LDSBM
harmonic average are 20181022-1R, 20181122-1R and 20190211-1L. It can be seen from
Figures 7 and 8 that the official algorithm cannot extract the photon in the relatively deep
water bottom, resulting in insufficient extraction accuracy and incomplete information. On
the other hand, there is the most similar F value by the official algorithm and the LDSBM
algorithm in group 20190721-2L because the data is high in signal-to-noise ratio. Most
photons are concentrated within −10 m and the noise photons are distributed uniformly
and sparsely, showing a significant difference in density compared to signal photons and
easy extraction. The signal photons are extracted from the original photons in the nearshore
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waters to the maximum, and the noise photons are removed. Compared to the local dis-
tance statistics, this algorithm solves the problem that photons are only more concentrated
along the track direction, and cannot be applied to complex terrain environment areas.
Under good data conditions, the official built-in denoising algorithm can effectively extract
signal photons, but may easily classify the noise photons with a large density as signal
photons by mistake. The algorithm in this paper was weighted in the terrain trend direction,
successfully distinguishing the noise photons and signal photons with high outlier density.
This algorithm can process the data with different signal-to-noise ratios, and the experiment
results prove the stability and accuracy of signal photons extracted by this algorithm and
the F value of most of the study areas can finally reach 95% (Figure 10) and above.

Table 3. Accuracy evaluation information of water bottom signal photons.

ATL03
OM LDSBM

R P F R P F

20181022-1R 0.680 0.967 0.799 0.922 0.956 0.939
20181122-1R 1.000 0.623 0.767 0.866 0.976 0.918
20190211-1L 0.411 0.982 0.579 0.954 0.990 0.972
20190222-3L 0.997 0.939 0.967 0.972 0.992 0.982
20190524-2L 0.940 0.996 0.967 0.989 0.995 0.992
20190603-3R 0.947 0.901 0.923 0.967 0.985 0.976
20190721-2L 0.943 0.927 0.935 0.954 0.941 0.947
20191020-1R 0.990 0.908 0.947 0.970 0.967 0.968
20191020-2R 0.940 0.857 0.897 0.967 0.966 0.966
20200119-1R 0.952 0.955 0.953 0.968 0.977 0.973
20200119-3R 0.972 0.964 0.968 0.984 0.993 0.988
20200419-1R 0.887 0.960 0.922 0.965 0.971 0.968
20220114-3L 0.972 0.971 0.969 0.973 0.999 0.986
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5.2. Delamination Precision Discussion

In this paper, the water bottom signal photons were divided into two categories for
evaluation, namely the shallow photons (water bottom photons whose elevation difference
from the surface photons are greater than −2.5 m) and the deep photons (water bottom
photons whose elevation difference from the surface photons are smaller than −2.5 m).
In Figure 11a, the F value of shallow photons by the LDSBM is higher than that by the
OM. However, there is only a greater difference in the data of groups 1, 9 and 12, as the
shallow photon are relatively aggregated with slightly smaller density than the water
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surface photons but far larger density than the water bottom photons, resulting in them
being extracted easily. Moreover, the signal photons of the official algorithm adopted in
this paper are photons whose confidence is greater than or equal to 3. In the official file, 3 is
the medium confidence and the official algorithm extracts more photons but erroneously
identifies more noise photons as the signal photons. It can be seen from Figures 7 and 8
that the misidentification is heavier. In Figure 11b, most F values of deep photons by
the LDSBM are far higher than the F values by the OM. Even as for the data of groups
5, 7 and 12, the official algorithm cannot extract the signal photon, because the density
difference between signal photon and noise photon in the three groups of deep photon
data is small with scatter distribution and difficult extraction. In conclusion, in the water
bottom photon, the LDSBM algorithm is better than the OM algorithm and can accurately
restore the terrain information.
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6. Conclusions

Targeting at the difficulty in photon extraction from LiDAR signal of spaceborne
photon technology, a filtering bathymetric method based on improved local distance
statistics to extract the signal photon in nearshore waters was proposed in this paper,
namely LDSBM. Using ATL03 data crossing the South China Sea, the St. Thomas and the
Acklins Island for the experiment, a relatively good extraction effect of water bottom signal
photons was achieved. In this paper, the LDSBM algorithm was used for water bottom
signal photons extraction, which increased the weight of water bottom photons in the
terrain trend direction to improve the point cloud aggregation in the terrain trend direction
and improved the extraction accuracy of signal photons in waters with complex water
bottom terrains. In the denoising experiment process, combined with the actual distribution
characteristics of point cloud data, some empirical values were reasonably adopted and
the setting of such parameter values needed to be reasonably made according to the
characteristics of selected data. Considering that the water quality in most shallow water
areas is turbid, ICESat-2 data cannot detect the water bottom terrains penetrating through
the surface well, so the adaptability of this algorithm remains to be further studied, which
is also the difficulty in spaceborne photon counting radar sounding at present. Meanwhile,
when fitting the Gaussian curve with the distribution histogram, the parameters cannot be
set the automatically, requiring further improvement in automation of this algorithm.
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Appendix A

The DBSCAN clustering algorithm proceeds as follows:

(1) Select an unused data point p, a radius ∈ and a minimum neighboring number MinPts.
(2) Select the neighboring area with radius ∈ centered on p and mark the points in the

neighboring area as core points. If the number of points in the neighboring area is less
than MinPts, mark them as noise points.

(3) If p is the core point, extend from the point and mark all points that can be connected
by density as the same cluster. To explain the connection by density, as for the two
points, namely p and q, if q lies in the neighboring area with the radius of ∈ centered
on p, while p and q are both core points, it shall be deemed that they are connected
by density.

(4) Repeat Step 1–3 until all the points are accessed.
(5) Finally classify the points marked as one same cluster into one category and classify

the noise points as the other category.

Appendix B

The workflow of a KD tree involves recursively partitioning the data space based on
selected splitting axes and values. It begins with selecting a splitting axis and dividing
the dataset into left and right subsets. This process is repeated for each subset, creating a
hierarchical structure. During a query, the search starts at the root node and follows the
splitting axes, directing the search to the appropriate subtree based on comparisons with
the query point. Nearest neighbor search and range search operations traverse the tree to
locate the nearest neighbors or data points within a specified range.

Appendix C

The basic idea of the RANSAC algorithm is to randomly select a subset of data points
from a given dataset, fit a model to these points, and then calculate the error between the
model and the other data points. If some data points fit the model well and have an error
less than a given threshold, they are marked as “inliers”, otherwise they are marked as
“outliers”. Through multiple iterations, the model with the most inliers is selected as the
final estimated result.
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