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Abstract: In SAR image registration, most existing methods consider the image registration as a two-
classification problem to construct the pair training samples for training the deep model. However,
it is difficult to obtain a mass of given matched-points directly from SAR images as the training
samples. Based on this, we propose a multi-class double-transformation network for SAR image
registration based on Swin-Transformer. Different from existing methods, the proposed method
directly considers each key point as an independent category to construct the multi-classification
model for SAR image registration. Then, based on the key points from the reference and sensed
images, respectively, a double-transformation network with two branches is designed to search for
matched-point pairs. In particular, to weaken the inherent diversity between two SAR images, key
points from one image are transformed to the other image, and the transformed image is used as
the basic image to capture sub-images corresponding to all key points as the training and testing
samples. Moreover, a precise-matching module is designed to increase the reliability of the obtained
matched-points by eliminating the inconsistent matched-point pairs given by two branches. Finally, a
series of experiments illustrate that the proposed method can achieve higher registration performance
compared to existing methods.

Keywords: synthetic aperture radar; SAR image registration; Swin-Transformer; double-transformation
network

1. Introduction

Due to the special characteristics of synthetic aperture radar (SAR) [1], SAR image
processing has been widely used in many fields [2,3]. In particular, some applications [4–8],
such as SAR image change detection [4], SAR image fusion [5,6], open set recognition [9],
etc., require the simultaneous processing of two or more SAR images. However, SAR
images are generally obtained by different sensors under different conditions (such as
time, viewpoint, noise). This leads to some differences among these images. Therefore,
the registration of two or more SAR images becomes indispensable and significant. SAR
image registration [10–12] is used to match two SAR images by exploring the geometric
transformation model between them, where two images are called the reference image
and the sensed image. At present, many registration methods [13–17] have been pro-
posed to achieve the registration of two SAR images, and they can be simply divided into
the traditional registration methods [13,18,19] and the deep-learning-based registration
methods [12,20–23]. Due to the prominent performance of deep learning, the deep-learning-
based method of SAR image registration has recently received more attention compared to
traditional methods.
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In general, a registration-model-based deep learning is designed from the perspec-
tive of the two-classification problem, where the pair of matched-points and the pair of
non-matched-points are considered as the positive category and the negative category,
respectively, [12,16,21,22,24]. Therefore, in order to achieve better registration performance,
it is expected that a mass of matched-point and non-matched-point pairs could be given
and then fed to the deep model. However, compared to non-matched-point pairs, it is
difficult to obtain many reliable matched-point pairs directly from two SAR images, which
also limits the performance of the deep model.

Interestingly, we find that each point in an SAR image is essentially different and
independent from others. This essential characteristic leads us to a worthwhile thought:
why did we not directly consider multiple key points as multiple classes to construct a
multi-classification deep model for SAR image registration, instead of a two-classification
deep model? Recently, Mao et al. [25] proposed an adaptive self-supervised SAR image
registration method, which utilized each key point as an independent instance to train
the self-supervised deep model and then compared the latent features of each key point
with other points to search for the final matched-point pairs. Therefore, inspired by these,
we aim to design the SAR image registration method from the perspective of multiple
classification (discriminating multiple key points), where each key point is considered
as an independent class, abandoning the idea of constructing a two-classification model
(discriminating matched and non-matched pairs).

Noticeably, for the SAR image registration model, we know that its purpose is to find
K matched-points (ρ∗) between m key points (ρR) on the reference image and n key points
(ρS) on the sensed image. Given ρR = {pr

1, pr
2, . . . , pr

m} and ρS = {ps
1, ps

2, . . . , ps
n}, if pr

i ∈ ρR
and ps

j ∈ ρS are a pair of matched-points, it means that they are from the same location in
two images, and the image information corresponding to them should also be consistent.
In brief, the mathematical description of three sets is given as

ρ∗ = ρR ∩ ρS, but ρR 6= ρS, (1)

where ρ∗ 6= ∅ and ρ∗ = {p∗1 , p∗2 , . . . , p∗K}, K ≤ min{m, n}. Therefore, if each key point is
considered as a class, the set of matched-points P∗ is equivalent to the set of overlaps between ρR
(with m classes) and ρS (with n classes). This means that there are some overlapping classes
in all classes, when each key point is considered as an independent class to construct the
multiple classification model.

As we know, in a learning model, the categories of training and testing sets are
generally consistent, whereas in SAR image registration, only overlapping key points
between reference and sensed images are consistent, since these points are matched-points,
and the rest of key points should be different. In the other words, if all key points (m + n
points) are considered as classes, our real independent classes should be m + n− K (not
m + n), but K is unknown and must be obtained by the model. Between m classes and
n classes, there are only K same classes, and meanwhile there are (m + n− K) different
classes. It brings a difficult problem: determining how to construct a multi-classification
model based on (m + n) given key points for SAR image registration.

Based on the above analyses, in this paper, we propose a double-transformation
network for SAR image registration from the perspective of multi-classification, which
mainly includes a coarse-matching-module-based double network and a precise-matching
module. Considering that there are overlapping points between key points from reference
and sensed images, the proposed method first constructs two multi-classification sub-
networks, respectively, based on key points from two images, to seek coarse matched-
points. In each sub-network, key points from one image are used as classes to train a
multi-classification network; meanwhile, key points from another image are used as the
testing set, where Swin-Transformer is used as the basic network. Then, with two multi-
classification sub-networks, the prediction of m key points can be obtained by the training
model with n key points, and the predictions of n key points are obtained by the other
training model with m key points. Since only partial points are matched between key points
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(classes) from two images, this means that the predictions of two models are inaccurate,
but some predictions should be consistent. Therefore, secondly, a precise-matching module
is designed to seek these consistent predictions from the results of two models as matched-
points. Then, the registration transformation is obtained based on the obtained matched-
points. In addition, to weaken the effect of inherent differences between two SAR images,
a strategy is used to convert key points from the sensed image into the reference image by an
initial transformation matrix, and the reference image is used as the base image to capture
the sub-image of each key point. Finally, experimental results illustrate that the proposed
method can achieve higher registration performance than the state-of-the-art methods.

Compared with most existing methods, the contributions of the proposed method are
listed as follows:

• We utilize each key point directly as a class to design the multi-class model of SAR
image registration, which avoids the difficulty of constructing the positive instances
(matched-point pairs) in the traditional (two-classification) registration model.

• We design the double-transformation network with the coarse-to-precise structure,
where key points from two images are, respectively, used to train two sub-networks
that alternately predict key points from another image. It addresses the problem that
the categories are inconsistent in training and testing sets.

• A precise-matching module is designed to modify the predictions of two sub-networks
and obtain the consistent matched-points, where the nearest points of each key point
are introduced to refine the predicted matched-points.

The rest of this paper is organized as follows. Section 2 first shows related works.
Second, Section 3 introduces the detail of the proposed method. Then, Section 4 shows the
corresponding experimental results and analysis to verify the performance of the proposed
method. Finally, Section 6 shows the conclusion of this paper.

2. Related Works
2.1. The Attention Mechanism

As we know, people can receive a lot of information every day via various ways, whereas
most people do not pay attention to all information, and they only selectively absorb a small
amount of useful or interesting information. This ability is generally called attention. Inspired
by the way human attention works, the researchers proposed the attention mechanism [26,27].
At present, the attention mechanism is widely used in natural language processing [28,29],
image classification [30,31], object detection [32,33], etc.

Simply speaking, the attention mechanism selects the more critical information of the
current target task by calculating the degree of correlation between the various samples.
In general, the attention mechanism generates three vectors from the input vector, namely,
the query vector Q (Q = [q0, q1, . . . , qm]), key vectors K (K = [k0, k1, . . . , km]), and the value
vector V (V = [v0, v1, . . . , vm]). The attention mechanism is achieved by the following
three steps.

First, the similarity of each key in the query vector Q and the key vector ki is calculated
by the formula [26,27]

si = sim(Q, ki), (2)

where si expresses the similarity of the ith key, i = 1, 2, 3, . . . , m. Here, the common
similarity function can be used, such as Euclidean distance, the cosine similarity, etc. Then,
the estimated similarity si is normalized by the softmax function to obtain the weight αi
of the query vector and each key. Finally, the following formula is used to calculate the
result of the weighted sum of all the elements in the weight α and the value vector V as the
attention vector zi [26,27], shown as follows:

zi =
m

∑
i=1

αiVi. (3)
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In short, the attention mechanism works by calculating the weights between the query Q
and the corresponding key K, and then a weighted sum of all values in V is followed as the
final output.

2.2. The Transformer Model

Recently, Transformer [34] has been paid more attention due to its effectiveness, which
mainly utilizes the self-attention mechanism to extract internal features and promote the
performance of the network model. In general, there are encoder and decoder modules in
the model of Transformer. In the encoder, the multi-head attention mechanism is the most
important part, which allows the model to learn multiple feature representation spaces.
In the decoder module, besides using the multi-head attention mechanism, the masked
multi-attention mechanism is designed to hide the predicted information and meanwhile
ensure that the results are predicted based on the known information each time.

For the tasks of computer vision and natural language processing, many studies [34–36]
have illustrated the effective performance of Transformer. Vaswani et al. [34] introduced
attention mechanism to solve machine translation and parsing tasks, which achieved good
results. Devlin et al. [35] proposed a brand new linguistic representation model, which
caused a stir in the NLP field, with the best results in many tasks in NLP. Thereafter,
a wide variety of Transformer variants [37–39] were proposed. Dosovitskiy et al. [39]
proposed Vision Transformer (ViT), which directly used the original Transformer structure
and generated the sequence data of image blocks by cutting the image. The ViT model
is directly used for image classification tasks, and can attain excellent results compared
to state-of-the-art CNNs, whereas, when the ViT model is applied in vision tasks, there
are still two main problems: one is that the feature size extracted by ViT is fixed, and the
another is the that the computational complexity is high for the input image with large size.

The model of Swin-Transformer [40] was proposed by the Google team in 2021, which
improves the ViT model [39] and further demonstrates the powerful performance of trans-
former in a series of visual tasks. Compared with ViT, Swin-Transformer achieves a
layer-by-layer processing mechanism similar to the convolutional neural network, which
reduces feature size gradually using patch merging to obtain multi-scale feature repre-
sentations. In addition, it introduces locally aggregated information by performing the
self-attention mechanism in the window [40], which is calculated by

Attention(Q, K, V) = Softmax(
QKT
√

d
+ B)V. (4)

The feature size of Q, K, and V is n× d, where n is the number of token vectors in a window.
B is relative position bias, which is calculated by the relative position between the current
patch index and the reference patch index.

Moreover, the Shifted-Window Multi-head Self-Attention (SW-MSA) module is also
proposed, which is the improvement of the Window Multi-head Self Attention (W-MSA)
module, and each Swin-Transformer block contains one W-MSA module and one SW-
MSA module. The SW-MSA module can achieve the information interaction between
windows while retaining the ability of reducing the computational complexity in the
W-MSA module [40], shown as follows:

O(W-MSA) = (
h
k
∗ w

k
) ∗ (4k2C2 + 2k4C2) = 4hwC2 + 2k2hwC2, (5)

where h and w represent the length and width of the input image, and k is the length of
Shifted-Window. In the Wwin-Transformer model, the width of the input image is k ∗ k
rather than h ∗w; thus, there are (h/M) ∗ (w/M) windows to calculate. Due to the excellent
performance of Transformer in image classification, this paper applies Swin-Transformer as
the basic classification model to construct the multi-classification registration model for
SAR images.
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3. The Proposed Method

In this paper, we propose a multi-class double-transformation network of SAR image
registration, where each key point is directly considered as an independence-class to
construct the multi-classification model, named STDT-Net. The framework of STDT-Net is
shown in Figure 1, which mainly includes two parts: the multi-class double-transformation
networks based on multiple key points, and the precise-matching module to optimize the
obtained pairs of matched-points. In the following, we will introduce each part in detail.

…

…
𝜑𝑆−𝑅

Reference Image 𝑰𝑹

Sensed Image 𝑰𝑺

…

…

Block
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𝜑𝑅−𝑆

Figure 1. The framework of the proposed method.

3.1. The Multi-Class Double-Transformation Networks

In the proposed method, each key point in SAR images is considered as one cate-
gory to construct the multi-classification model for SAR image registration. As we know,
a pair of matched-points between two images are essentially located at the same coor-
dinates. This means that two matched-points should belong to the same category and
the non-matched-points should belong to different categories. Based on this, a double-
transformation network is designed from the perspective of multiple classification to seek
the coarse matched-points, which is composed of two branches, respectively, named the
R-S sub-network and the S-R sub-network. In particular, the R-S sub-network uses the key
points ρR as the training set and the key points ρS as the testing set, and the S-R sub-network
uses the key points ρS as the training set and the key points ρR as the testing set.

3.1.1. Constructing Samples-Based Key Points

For a classification model, the first crucial part is to construct the training and testing
samples for the learning model. In order to construct the training and testing samples with
multiple classification, two preparations need be implemented.

First, we use the SAR-SIFT algorithm [13] to detect key points from two SAR im-
ages, respectively. By SAR-SIFT algorithm, m key points are obtained from the refer-
ence image, ρR = {pr

1, pr
2, . . . , pr

m}, and n key points are obtained from the sensed image,
ρS = {ps

1, ps
2, . . . , ps

n}. Then, the obtained key points are used as the centers to capture
sub-images as training and testing samples.

In order to weaken the inherent diversities between two SAR images, a new strat-
egy [25] is applied to transform key points from one image to the other image and then
capture all sub-images (corresponding to all key points) from one same image. Here,
a simple method is applied to obtain the initial transformation matrix as a rough registra-
tion. An example is given below to illustrate the details of constructing samples for two
sub-networks. The R-S dataset corresponds to the R-S sub-network, and the S-R dataset
corresponds to the S-R sub-network.
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For the R-S date, the m key points (ρR), detected from the reference image, are used as
the centers to capture sub-images of size s× s from the reference image. Here, a sub-image
corresponds to one sample. In addition, data enhancement is applied to enlarge training
samples, mainly including the combination of rotation, brightness, cropping, etc., and each
training sample is enhanced by t times. Thus, based on ρR, a training set (DR

tr) is obtained,
including m ∗ t training samples with m classes, where each class corresponds to a key
point in ρR and of t augmented samples (sub-images).

Then, for the testing samples, n key points (ρS), detected from the sensed image,
are used to construct their corresponding samples. In particular, to weaken the inherent
diversities between two SAR images, we transform ρS into the reference image by an initial
transformation matrix (the initial transformation matrix TR-S can be given by one simple
existing method; here, we use SAR-SIFT to obtain the initial transformation matrix) (TR-S)
and obtain their transformed key points (ρ̃R

S ), where the transformation is given by

ρ̃R
S = TR-S(ρS), (6)

where ρ̃R
S = { p̃r

s1, p̃r
s2, . . . , p̃r

sn}. Instead of ρS, the transformed points (ρ̃R
S ) are used as the

centers to capture sub-images from the reference image as the testing samples, where the
size of each sub-image is s× s. This give a testing set (DS̃

ts) containing n testing samples,
where each sample corresponds to a key point in ρ̃R

S .
Similarly, for the S-R data, the n key points (ρS) from the sensed image are used to

obtain their corresponding training samples. With data enhancement, the training set (DS
tr)

is obtained, including n ∗ t training samples with n classes, where each class corresponds to
a key point in ρS and of t samples (sub-images). Then, the m key points (ρR) of the reference
image are transformed to obtain their transformed points (ρ̃S

R), shown as

ρ̃S
R = TS-R(ρR), (7)

where ρ̃S
R = { p̃s

r1, p̃s
r2, . . . , p̃s

rm}. Then, the transformed points (ρ̃S
R) are used as the centers

to capture m sub-images as testing samples. The testing set (DR̃
ts) is obtained, including

m testing samples, where each sample corresponds to a key point in ρ̃S
R. Differently, all

sub-images are captured from the sensed image for the S-R dataset, whereas all sub-images
are captured from the reference image for the R-S dataset.

3.1.2. Multi-Class Double-Transformation Networks

In the proposed method, each key point is considered as a category to construct the
multiple classification model. If m key points (ρR) from the reference image are used as
the training categories and n key points (ρS) from the sensed image are used as the testing
samples, the training model will be trained based on m categories, and the n testing samples
will be predicted into m categories by the training model. Obviously, this brings a category
inconsistency problem, since only matched-points belong to the same category. Specifically,
except for matched-points between ρR and ρS, samples in the testing set should not be from
any categories of the training set.

Hence, we design a double-transformation network that directly constructs two
branches to train the multi-classification registration model, rather than a single branch
network. In the proposed method, one branch is trained based on samples correspond-
ing to m key points from the reference image, and the other is trained based on samples
corresponding to n key points from the sensed image. Based on this, two datasets are
constructed for two branches: the R-S data (for the R-S data, its training set DR

tr contains
m ∗ t samples with m classes, and its testing set DS̃

ts contains n samples), {DR
tr, DS̃

ts}, and the
S-R data (for the S-R data, its training set DS

tr contains n ∗ t samples with n classes, and its
testing set DR̃

ts contains m samples), {DS
tr, DR̃

ts}, and the details are given in Section 3.1.1.
Then, two multiple classification branches (sub-networks) are, respectively, constructed
to find the matched-point pairs between reference and sensed images, defined as the R-S



Remote Sens. 2023, 15, 2927 7 of 20

branch (NetR) and the S-R branch (NetS), respectively. Here, the Swin-Transformer [40]
is used as the basic learning network, as it has achieved the remarkable performance in
many applications.

In the R-S branch, since m key points are used as the categories of the multi-classification
model, n testing samples are predicted into m categories, and a testing sample xs

j is given a
predicted class by NetR, shown as

PredR(xs
j ) = i, i = {1, . . . , m}, (8)

where PredR(.) expresses the prediction result, and xs
j ∈ DS̃

ts, j = {1, . . . , n}. If a testing
sample xs

j is predicted as the ith category, it means that its corresponding key point (pSj) is
possibly matched to the ith key point (pRi). Therefore, according to the prediction results,
we can obtain a candidate set φr

i of matched-points for the ith key point (pr
i ) in ρR, shown as

φr
i = {(pr

i , p̃s
i1), (pr

i , p̃s
i2), . . . , (pr

i , p̃s
iLi
)}, (9)

where Li is the number of all testing samples that are predicted as the jth category. p̃r
il

corresponds to the lth testing sample (xs
l ) which is predicted as the jth category by NetR,

shown as PredR(xs
l ) = i, where l = {1, . . . , Li}. Therefore, we obtain all candidate sets

{φr
1, φr

2, . . . , φr
m} of matched-points for all key points ρR. Note that φs

j is an empty set if any
testing samples are not predicted as the jth category.

Meanwhile, in the S-R branch, n key points are used as the categories of the multi-
classification model, and m testing samples are predicted into n categories. A testing sample
xr

i is given a predicted class by NetS, shown as

PredS(xR
i ) = j, j = {1, . . . , n}. (10)

Similarly, if the sample xr
i is predicted as the jth category, it means that its corresponding

key point (pRi) is possibly matched to the jth key point (pRj). Therefore, according to the
prediction results, we can also obtain n candidate sets of matched-points for n key points
in ρS, shown as {φs

1, φs
2, . . . , φs

n}, where

φs
j = {(ps

j , p̃r
j1), (ps

j , p̃r
j1), . . . , (ps

j , p̃r
jLj
)}, (11)

where p̃s
jl corresponds to the lth testing sample (xr

l ) that is predicted as the jth category by
NetS, shown as PredS(xr

l ) = j, where l = {1, . . . , Lj}.
As we know, the matched-points should be one-to-one, but the size Li (or Lj) of an

candidate set is not equal to 1, since several testing samples are predicted to be in the same
category. Based on this, we measure the similarities between the sub-image (corresponding
to a key point pr

i ) and all sub-images (corresponding to its Li candidate matched-points),
and then the most similar matched-points are selected as the final coarse matched-points
obtained by two branches, defined as φR-S and φS-R, respectively, shown in Figure 1.

3.2. The Precise-Matching Module

After obtaining the coarse matched-point pairs, a precise-matching module is designed
to search for the more accurate and consistent matched-point pairs between two images,
which utilizes the near-points of each key point to assist in estimating the matched-point
pairs between the reference and sensed images. The details of the precise-matching module
are introduced as follows.

According to [16], it is known that sub-images corresponding to different key points
may be similar. Therefore, we first re-find eight near-points around each key point in the
testing set. These near-points are located at the top left, top, right, left, left, right, bottom left,
bottom and right, respectively, around the key point with k pixels, and eight near-points
are used as centers to capture their corresponding sub-images of size s× s. Then, eight



Remote Sens. 2023, 15, 2927 8 of 20

sub-images are used as new testing samples and predicted by the training model to obtain
the matched-point pairs of eight near-points. A simple example is shown in Figure 2.

𝑝𝑗
𝑠 → 𝒙𝑗

𝑠

Ƹ𝑝𝑗
1 → ෝ𝒙𝑗

1 Ƹ𝑝𝑗
2 → ෝ𝒙𝑗

2 Ƹ𝑝𝑗
3 → ෝ𝒙𝑗

3

Ƹ𝑝𝑗
4 → ෝ𝒙𝑗

4 Ƹ𝑝𝑗
5 → ෝ𝒙𝑗

5

Ƹ𝑝𝑗
6 → ෝ𝒙𝑗

6 Ƹ𝑝𝑗
7 → ෝ𝒙𝑗

7 Ƹ𝑝𝑗
8 → ෝ𝒙𝑗

8

𝑃𝑟𝑒𝑑(ෝ𝒙𝑗
2)𝑃𝑟𝑒𝑑(ෝ𝒙𝑗

1) 𝑃𝑟𝑒𝑑(ෝ𝒙𝑗
3)

𝑃𝑟𝑒𝑑(ෝ𝒙𝑗
4) 𝑃𝑟𝑒𝑑(ෝ𝒙𝑗

5)

𝑃𝑟𝑒𝑑(ෝ𝒙𝑗
6) 𝑃𝑟𝑒𝑑(ෝ𝒙𝑗

7) 𝑃𝑟𝑒𝑑(ෝ𝒙𝑗
8)

𝑃𝑟𝑒𝑑(𝒙𝑗
𝑆)

𝑁𝑒𝑡𝑅

Figure 2. A visual example of eight near-points around a key point from the sensed image with k
pixels, where k = 5 and the predictions are obtained by the R-S branch (NetR).

Second, for the pairs of coarse matched-points, we compare the matched-point pair of
each key point in the testing set with the matched-point pairs of its eight near-points. If the
predicted category of a key point is more than 50% consistent with the predicted categories
of its eight near-points, we consider the prediction of that key point to be absolutely
accurate. The consistency is calculated by

Cons(ps
j ) = ∑8

t=1 I(PredR(x̂t
j) = PredR(xS

j )), (12)

where xS
j expresses the sub-image corresponding to the key point ps

j , and x̂t
j is the sub-image

corresponding to the tth near-point of ps
j . In contrast, if the consistence between a key

point and its near-points is less than 50%, we consider that the prediction of this point may
be slightly biased, and then delete its matched-point pair from r pairs of matched-points.
By this processing, the obtained matched-point pairs are updated by eliminating some
incorrect matched-point pairs. Specifically, φR-S is updated as φ

′
R-S, and φS-R is updated

as φ
′
S-R.
Then, based on the matched-point pairs φ

′
R-S and φ

′
S-R, we merge the results obtained by

two sub-networks to search for the overlapping pairs {(pr
i , ps

j )}. The overlapping pair (pr
i , ps

j )
are actually the consistent matched-points between two images. Therefore, the condition
for two points to match is that they satisfy

PredR(ps
j ) = i and PredS(pr

i ) = j, (13)

where i is the class corresponding to pr
i in the R-S branch, and j is the class corresponding

to ps
j in the S-R branch. If ps

j is predicted to be the ith category (corresponding to pr
i ) by

NetR, and meanwhile pr
i is predicted to be the jth category (corresponding to ps

j ) by NetS,
it means that two points, ps

j and pr
i , are matched.

Moreover, since we use an initial registration to transform key points from one image
to another in the process of sample construction, this may bring some bias in capturing
sub-images based on the transformed point. Therefore, after obtaining the overlapping
pairs of matched-points, we compare each key point with its near-points to select the most
similar matched-point from nine points as the final overlapping point. Finally, the least
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squares method [25,41] is used to calculate the transformation matrix based on the final
overlapping matched-points.

4. Experiments and Analyses

In order to validate the registration performance of the proposed method, we imple-
ment experiments and analyses from four items: (1) comparing the registration performance
of the proposed method with the state-of-the-art methods; (2) the visualization on chess-
board diagrams of SAR image registration; (3) the analysis on the precise-matching module;
(4) the analysis on the double-transformation network. In the experiments, four datasets are
used to validate the registration performance of the proposed method, including Wuhan,
Australia-Yama, YellowR1, and YellowR2 datasets, and more detailed descriptions are
available in [16,25]. Four datasets are shown in Figures 3–6, respectively.

The Reference Image The Sensed Image

Figure 3. Reference and sensed images of Wuhan data. The image size is 400× 400 and the resolution
is 10 m.

The Reference Image The Sensed Image

Figure 4. Reference and sensed images of Australia-Yama data. The image size is 650× 350 pixels.

All experiments are implemented in the environment with NVIDIA GeForce RTX
2080Ti and Windows 10 with 64 GB memory and kernel Intel (R) Xeon (R) CPU E5-2605
v3 @2.30 GHz, and the frame is Pytorch. In the process of data enhancement, three
transformation are used, including scale, rotation, and contrast. Note that the parameter
settings are different for the training set and for the validation set. For the training samples,
the parameter range of scale-transformation is [0.5, 1.5], and the parameters of rotation-
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transformation are selected between 1 to 20 degrees. Contrast-transformation is set at p = 3.
For the validation sample, the parameter range of scale-transformation is [0.5, 1.5], while the
parameter of rotation-transformation is selected between 1 and 10 degrees. Meanwhile the
contrast transformation is set at p = 2. For the parameters of Swin-Transformer, the batch
size is set as 128, the feature-dim size is set as 128, and the temperature size is set as 0.5.
Referred to [40,42], the layer number of each block is set as 2, 2, 18, and 2. An AdamW
optimizer is used to train the network for 300 epochs with a cosine decay learning rate
scheduler, the initial learning rate is set as 0.001, and the weight decay is set as 0.05.

The Reference Image The Sensed Image

Figure 5. Reference and sensed images of YellowR1 data. The image size is 700× 700 pixels and the
resolution is 8 m.

The Reference Image The Sensed Image

Figure 6. Reference and sensed images of YellowR2 data. The image size is 1000× 1000 pixels and
the resolution is 8 m.

In addition, eight quantified evaluation indicators [16] are used to validate the reg-
istration performance, including RMSall , RMSLOO, Nred, Pquad, BPP(r), Skew, Scat, and φ.
Eight indicators are shown in detail as follows:

1. RMSall expresses the root mean square error of the registration result. Note that
RMSall ≤ 1 means that the performance reaches sub-pixel accuracy.

2. Nred is the number of matched-points pairs. Its value is higher, which may be beneficial
for obtaining a transformation matrix with a better performance of image registration.
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3. RMSLOO expresses the error obtained based on the Leave-One-Out strategy and the
root mean square error. For each point in Nred, RMSLOO is the average of all errors
(RMSall of Nred − 1 points).

4. Pquad is used to detect whether the retained feature points are evenly distributed in
the quadrant, and its value should be less than 95%.

5. BPP(r) expresses the bad point proportion in obtained matched-points pairs, where a
point with a residual value above a certain threshold (r) is called the bad point.

6. Skew denotes the absolute value of the calculated correlation coefficient. Note that
the Spearman correlation coefficient is used when Nred < 20; otherwise, the Pearson
correlation coefficient is applied.

7. Scat is a statistical evaluation of the entire image feature point distribution [43], which
should be less than 95%.

8. φ is the linear combination of the above seven indicators, calculated by

φ =
1
12

[2× (
1

Nred
+ RMSLOO + BPP(1.0) + Scat)

+RMSall + 1.5× (Pquad + Sknew)].
(14)

When Nred ≥ 20, Pquad is not used, and the above formula is simplified as

φ =
1

10.5
[2× (

1
Nred

+ RMSLOO + BPP(1.0) + Scat)

+RMSall + 1.5× Sknew],
(15)

and its value should be less than 0.605.

4.1. Comparison and Analysis of the Experimental Results

In this part, to validate the registration performance, we compare the proposed method
with eight existing methods: SIFT [44], SAR-SIFT [13], VGG16-LS [45], ResNet50-LS [46],
ViT-LS [39], DNN+RANSAC [12], MSDF-Net [16], and AdaSSIR [25]. In the nine compared
methods, SIFT and SAR-SIFT are two traditional registration methods. SIFT is mainly
matched by using the Euclidean distance ratio between the nearest and second-nearest
neighbors of the corresponding features. SAR-SIFT is an improvement of the SIFT method,
and it is more consistent with the SAR image characteristics. VGG16-LS, ResNet50-LS and
ViT-LS are deep-learning-based classification methods. DNN + RANSAC [12] constructs
the training sample set by using self-learning methods, and then it uses DNN networks
to obtain matched image pairs. MSDF-Net [16] uses deep forest to construct multiple
matching models based on multi-scale fusion to obtain the matched-points pairs, and then
it uses RANSAC to calculate the transformation matrix. AdaSSIR [25] proposes an adaptive
self-supervised SAR image registration method, where the registration of SAR images is
considered as a self-supervised learning problem and each key point is regarded as a
category-independent instance to construct the contrastive model for searching out the
accurate matched points.

Tables 1–4 show the registration results on the four datasets, respectively. From four
tables, it can be seen that the proposed method (STDT-Net) obtains better registration
performances compared with other methods on four datasets. Obviously, the RMSall and
RMSLOO of the proposed method are highest in six methods for all datasets, meanwhile
obtaining the lowest bad point ratio (BPP(r)), whereas the final retained key points are not
well distributed in the quadrant (Pquad). In short, the results for four datasets demonstrate
that the proposed method can improve the performance of SAR image registration by
double-transformation network based on Swin-Transformer.
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Table 1. Comparison of registration performance obtained by six methods on Wuhan data.

Methods Nred RMSall RMSLoo Pquad BPP(r) Skew Scat φ

SIFT 17 1.2076 1.2139 — 0.6471 0.1367 0.9991 0.7048
SAR-SIFT 66 1.2455 1.2491 0.6300 0.6212 0.1251 0.9961 0.6784
VGG16-LS 58 0.5611 0.5694 0.6665 0.2556 0.0389 1.0000 0.4420

ResNet50-LS 68 0.4818 0.4966 0.7162 0.2818 0.1943 0.9766 0.4489
ViT-LS 64 0.5218 0.5304 0.6101 0.2330 0.1072 1.0000 0.4296

DNN + RANSAC 8 0.6471 0.6766 – 0.1818 0.0943 0.9766 0.4484
MSDF-Net 39 0.4345 0.4893 0.6101 0.3124 0.1072 1.0000 0.4304
AdaSSIR 47 0.4217 0.4459 0.6254 0.3377 0.1165 1.0000 0.4287

STDT-Net (Ours) 78 0.4490 0.4520 0.6254 0.2277 0.1165 1.0000 0.4122

Rank/All 1/10 3/10 2/10 2/7 2/10 4/10 4/4 1/10

Table 2. Comparison of registration performance obtained by six methods on YAMBA data.

Methods Nred RMSall RMSLoo Pquad BPP(r) Skew Scat φ

SIFT 69 1.1768 1.1806 0.9013 0.6812 0.0975 0.9922 0.7010
SAR-SIFT 151 1.2487 1.2948 0.6016 0.6755 0.1274 0.9980 0.6910
VGG16-LS 112 0.5604 0.5685 0.6150 0.3621 0.1271 1.0000 0.4626

ResNet50-LS 120 0.4903 0.5064 0.5873 0.2515 0.1027 1.0000 0.4215
ViT-LS 109 0.5276 0.5371 0.7162 0.2529 0.1105 1.0000 0.4472

DNN+RANSAC 8 0.7293 0.7582 – 0.5000 0.1227 0.9766 0.5365
MSDF-Net 12 0.4645 0.4835 – 0.4000 0.1175 0.9999 0.4356
AdaSSIR 71 0.4637 0.4707 0.6013 0.4545 0.1072 1.0000 0.4504

STDT-Net (Ours) 115 0.4604 0.4732 0.6740 0.2173 0.1175 1.0000 0.4205

Rank/All 3/9 1/9 2/9 5/7 2/9 4/9 4/4 1/9

Table 3. Comparison of registration performance obtained by six methods on YellowR1 data.

Methods Nred RMSall RMSLoo Pquad BPP(r) Skew Scat φ

SIFT 11 0.9105 0.9436 — 0.5455 0.1055 0.9873 0.5908
SAR-SIFT 31 1.1424 1.2948 0.5910 0.7419 0.0962 1.0000 0.6636
VGG16-LS 19 0.6089 0.6114 — 0.4211 0.1061 1.0000 0.4703

ResNet50-LS 25 0.5725 0.5889 0.5814 0.6058 0.1387 1.0000 0.5102
ViT-LS 20 0.5986 0.5571 0.5821 0.5875 0.1266 1.0000 0.5118

DNN+RANSAC 10 0.8024 0.8518 – 0.6000 0.1381 0.9996 0.5821
MSDF-Net 11 0.5923 0.6114 – 0.4351 0.0834 0.9990 0.4753
AdaSSIR 20 0.5534 0.5720 0.5395 0.4444 0.1086 1.0000 0.4715

STDT-Net (Ours) 24 0.5487 0.5531 0.5486 0.4038 0.1088 1.0000 0.4610

Rank/All 3/9 1/9 1/9 2/7 1/9 6/9 4/4 1/9

Table 4. Comparison of registration performance obtained by six methods on YellowR2 data.

Methods Nred RMSall RMSLoo Pquad BPP(r) Skew Scat φ

SIFT 88 1.1696 1.1711 0.6399 0.7841 0.1138 0.9375 0.6757
SAR-SIFT 301 1.1903 1.1973 0.8961 0.8671 0.1318 1.0000 0.7390
VGG16-LS 54 0.5406 0.5504 0.6804 0.3187 0.1277 1.0000 0.4607

ResNet50-LS 70 0.5036 0.5106 0.7162 0.2778 0.1208 0.9999 0.4470
ViT-LS 67 0.5015 0.5095 0.6000 0.2925 0.1281 1.0000 0.4356

DNN+RANSAC 10 0.5784 0.5906 – 0.0000 0.1308 0.9999 0.3946
MSDF-Net 52 0.5051 0.5220 0.6112 0.7692 0.1434 1.0000 0.5215
AdaSSIR 68 0.4858 0.4994 0.6013 0.5714 0.1149 1.0000 0.4776

STDT-Net (Ours) 79 0.4808 0.4954 0.6740 0.2692 0.1134 1.0000 0.4347

Rank/All 3/9 1/9 1/9 5/7 2/9 1/9 4/4 2/9
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Compared with three compared classification networks (VGG16-LS, ResNet50-LS,
ViT-LS, DNN+RANSAC, MSDF-Net, and AdaSSIR), the proposed method (STDT-Net)
obtains a relatively large number of matching pairs (Nred) and the minimum error rate in
obtaining the correct matching pair index, and also achieves better registration accuracy
(RMSall and RMSLoo). In general, the registration accuracy is better if a method has a
large Nred and a smaller RMSall value. It is seen that, compared with other classification
networks, the obtained feature space is best when the Swin-Transformer network is used
as the basic classification model. It means that the coordinate error between the obtained
matched-points pairs is smaller, which results in the decreased proportion of bad points and
the rise of Nred indicators, meanwhile reducing the registration error. In short, the proposed
method obtains better registration performance than other compared methods.

4.2. The Visual Results of SAR Image Registration

In this part, we draw the chessboard map (CB-map) of two matched SAR images to
visually show the registration results on four datasets. Figures 7–10 show the CB-maps for
four datasets, respectively. In each figure, the chessboard mainly focuses on the overlapping
region of two image registrations, and the size of each checker is set based on the size
of each datum. Except for the overlapping region, the other regions are filled by their
corresponding images (reference or sensed image). For example, in Figure 9, the rightmost
area of the CB-map is filled by the sensed image; meanwhile, the leftmost area of the CB-
map is filled by the reference image. In order to enhance the visual effect, the contrast ratio
between reference and sensed images is increased by darkening one image or brightening
the other image.

Figure 7. Registration CB-map for Wuhan data with 400× 400.

For each chessboard map, if edges and overlapping regions are more continuous and
consistent, it illustrates that the registration result is more accurate. Obviously, it is observed
from four CB-maps that two images are matched well by the proposed method for each
data. In four CB-maps, these regions (such as river, roads, croplands, etc.) are continuous
and consistent, which illustrates that two images are accurately registered. These visual
results also validate that the proposed method can obtain more accurate registration results.
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Figure 8. Registration CB-map for YellowR1 data with 700× 700.

Figure 9. Registration CB-map for Yamba data with 350× 650.

4.3. Analyses on the Precise-Matching Module

In this part, we give an analysis of the precise-matching module to validate its effective-
ness for enhancing the registration performance. In this experiment, we show the results of
two branches (the R-S sub-network and the S-R sub-network) with precise-matching and
without precise-matching. RMSall is used as the quantitative indicator, and Table 5 shows
the experimental results. From Table 5, it is seen that the accuracy without precise-matching
is improved by using precise-matching for four datasets regardless of the R-S network or
the S-R network. It indicates that our designed precise-matching module is effective for
finding more accurate matched points.
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Figure 10. Registration CB-map for YellowR2 data with 1000× 1000.

Table 5. A performance comparison (RMSall) between with and without precise-matching.

Datasets Branch Without
Precise-Matching With Precise-Matching

Wuhan R→S 0.4598 0.4579
S→R 0.4620 0.4590

YellowR1 R→S 0.5798 0.5525
S→R 0.5585 0.5535

YAMBA R→S 0.4788 0.4960
S→R 0.4858 0.4763

YellowR2 R→S 0.5253 0.5185
S→R 0.5093 0.4960

Additionally, in order to verify the effectiveness of the precise-matching module
more intuitively, we show some visual results. First, nine points were selected from the
reference of Yellow River R1 data, and the obtained matched-points corresponding to
nine points before and after using the precise-matching module are given. Then, their
corresponding sub-images are captured from the reference image. Figure 11 shows the
comparison of sub-images corresponding to nine matched-points pairs obtained by the
proposed method without precised-matching module and with precise-matching module,
where the locations of nine points in the reference image are given and the matched results
with precised-matching module are labeled in the red box. From Figure 11, it is observed
that the sub-images corresponding to the matched-points obtained by the proposed method
with the precise-matching module are more similar to the original sub-images of nine points
than without the precise-matching module. It also illustrates that the precise-matching is
effective for improving the performance of our method.
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The reference image
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Figure 11. The comparison of sub-images corresponding to matched-points obtained by the proposed
method without precised-matching module and with precise-matching module. For each point,
the left sub-image corresponds to that point, the right top sub-image corresponds to its matched-point
obtained by the proposed method without precised-matching module, and the right under sub-image
(labeled in the red box) corresponds to the matched results with precised-matching module.

4.4. Analyses on the Double-Transformation Network

In this part, we give an analysis of the proposed double-transformation network.
Figure 12 shows the comparison of the root mean square error (RMSE, RMSall) obtained by
the proposed method (with two branches) and only using one branch (the R-S network or
the S-R network) for the four datasets. From Figure 12, it is seen that the proposed method
obtains more registration results than only using the single network, which indicates that
our double-transformation network can seek more accurate matched-points between two
images compared with two single networks (the R-S network or the S-R network), since
these matched-points pairs are obtained based on two multi-classification models which
are trained in two feature spaces.

Figure 12. The comparison of the proposed double-transformation network to two single branches
(the R-S branch and the S-R branch).
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5. Discussion

Based on the above experimental results and analyses, it is demonstrated that the
proposed method can obtain more accurate registrations of SAR images than other existing
methods. According to our analyses, the reasons mainly focus on several items: First,
the proposed method utilizes key points as the independent classes to handle SAR image
registration, which effectively avoids the defects of traditional two-classification model for
SAR image registration. Compared with existing methods, it is novel to directly use key
points as independent classes to construct the multi-classification model. Additionally, key
points are easily obtained from an image, which means that there are more corresponding
training samples when there are more key points. Second, considering the categories of
training and testing sets in SAR image registration, the proposed method is designed with
a double-transformation network to construct the multi-classification model. Specially, two
sub-networks effectively achieve the complementation of obtaining predicted matched-
points, since two sub-networks are trained based on different key points (categories).
Third, a precise-matching module is designed based on the nearest points to modify the
predictions of two sub-networks and obtain more consistent matched-points. Moreover,
since the detection of key points is not key for the proposed method, a simple method is
used to detect the key points from two SAR images in our model, whereas it does not mean
that other advanced methods are not adaptive for our model. In actuality, these methods
can be used to detect the key points.

In addition, the Swin-Transformer is used as the basic network to construct the training
model of the proposed method. Therefore, we also make a classification performance
comparison of Swin-Transformer with three different basic networks, including VGG16 [45],
ResNet50 [46], and ViT [39], which may be helpful to select which basic network to use as
the basic classification model for researchers. In this part, the four networks have the same
hyperparameters and the number of training iterations, and the accuracy rate (Acc) and
the running time (Time) are used as the verifiable indicators to analyze the classification
performances of four basic networks.

Table 6 shows the experimental results of the four networks on the Yellow River R1
data and the Wuhan data, where the best results are in bold. From Table 6, it is obvious that
Swin-Transformer obtains higher accuracy rates of classification and has shorter running
times compared with the other three basic networks. It indicates that the proposed method
using Swin-Transformer as the basic classification network is more effective and more
suitable for SAR image registration.

Table 6. Quantitative comparisons of the four classification networks.

Datasets Performance VGG16 ResNet50 ViT Swin-Transformer

YellowR1 Acc (%) 87.13 89.32 89.59 92.74
Time (m) 47 38 42 31

Wuhan Acc (%) 89.26 92.71 91.10 94.83
Time (m) 19 13 28 10

6. Conclusions

In this paper, we propose a multi-class double-transformation network based on
Swin-Transformer for SAR image registration. Different from most existing methods,
the proposed method considers each key point of an SAR image as a category to construct
the multi-classification model for SAR image registration. To find the matched-points
between two images, we design a double-transformation network with two branches,
which are trained based on multiple key points, respectively, from the reference image and
the sensed image. In particular, while constructing the training and testing samples, one
image is used as the base image to capture the sub-images corresponding to the key points
by using an initial registration transformation, which can effectively weaken the inherent
diversity between SAR images. Furthermore, a precise-matching module is designed to
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search for more accurate matched-points by eliminating the inconsistent matched-points
between the results obtained by two branches. Finally, experimental results show that the
proposed method can achieve more accurate registration than the compared methods.
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