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Abstract: In order to improve the efficiency and adaptability of cognitive radar jamming decision-
making, a fusion algorithm (Ant-QL) based on ant colony and Q-Learning is proposed in this paper.
The algorithm does not rely on a priori information and enhances adaptability through real-time
interactions between the jammer and the target radar. At the same time, it can be applied to single
jammer and multiple jammer countermeasure scenarios with high jamming effects. First, traditional
Q-Learning and DQN algorithms are discussed, and a radar jamming decision-making model is
built for the simulation verification of each algorithm. Then, an improved Q-Learning algorithm is
proposed to address the shortcomings of both algorithms. By introducing the pheromone mechanism
of ant colony algorithms in Q-Learning and using the ε-greedy algorithm to balance the contradictory
relationship between exploration and exploitation, the algorithm greatly avoids falling into a local
optimum, thus accelerating the convergence speed of the algorithm with good stability and robustness
in the convergence process. In order to better adapt to the cluster countermeasure environment in
future battlefields, the algorithm and model are extended to cluster cooperative jamming decision-
making. We map each jammer in the cluster to an intelligent ant searching for the optimal path, and
multiple jammers interact with each other to obtain information. During the process of confrontation,
the method greatly improves the convergence speed and stability and reduces the need for hardware
and power resources of the jammer. Assuming that the number of jammers is three, the experimental
simulation results of the convergence speed of the Ant-QL algorithm improve by 85.4%, 80.56%
and 72% compared with the Q-Learning, DQN and improved Q-Learning algorithms, respectively.
During the convergence process, the Ant-QL algorithm is very stable and efficient, and the algorithm
complexity is low. After the algorithms converge, the average response times of the four algorithms
are 6.99× 10−4 s, 2.234× 10−3 s, 2.21× 10−4 s and 1.7× 10−4 s, respectively. The results show that
the improved Q-Learning algorithm and Ant-QL algorithm also have more advantages in terms of
average response time after convergence.

Keywords: cognitive electronic jamming decision-making; reinforcement learning; ant colony algorithm;
cooperative jamming decision-making

1. Introduction

Electronic warfare (EW) plays an important role in modern warfare [1]. With the
improvement in technologies such as artificial intelligence (AI) and software radio, radars
and jammers with cognitive capabilities have been developed significantly [2–8]. These
new technologies have rendered traditional EW means inadequate for adapting to the
modern battlefield environment. For example, a cognitive radar has strong anti-jamming
and target detection capabilities. Therefore, conventional jammers are unable to create
effective jamming against them.
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1.1. Cognitive Electronic Warfare

Cognitive electronic warfare (CEW) is widely believed to have a more significant role
in future warfare [9–11]. The task of CEW can be broken down into three steps. First,
the jamming system identifies the operating state of the reconnaissance target based on
its radar signal. Then, by evaluating the effectiveness of the current jamming action, the
jamming system establishes the optimal correlation between the target radar states and the
current jamming techniques. Finally, based on the optimal jamming strategy generated, it
guides the subsequent scheduling of jamming resources and implements jamming [9].

CEW is a combination of cognitive concepts and EW technology, in which cognition is
a process that mimics human beings in information processing and knowledge application.
The progress of cognitive technology is due to the development of AI technology. In the
1980s, AI technology was proposed and applied to EW in order to enhance the agility and
adaptability of EW operations [12–14]. However, the research results were not publicly
available due to security concerns. Up until 2010, DARPA released projects such as Blade,
CommEex and ARC [4–7], following which the application of AI in EW developed rapidly.
Reinforcement learning (RL) is known as the hope of real AI and is one of the most active
research areas in AI [15,16]. It focuses on how agents change based on the state of their
environment and decide what actions to take to maximize the cumulative reward. As shown
in Figure 1, the development of CEW technology over the past few decades has benefited
from the advancement and integration of multiple technologies. As a key component
of CEW, radar jamming decision-making methods can be divided into two categories:
traditional radar jamming decision-making methods and cognitive radar jamming decision-
making methods.

Figure 1. The development path of CEW.

1.2. Traditional Radar Jamming Decision-Making Methods

The traditional radar countermeasure model is shown in Figure 2. The jamming
system is only fixed according to the basic parameters of reconnaissance and an a priori
radar database to call the jamming style of the jamming resource base. The system is unable
to adjust the jamming method based on the jamming effect and environmental information,
which would lead to inefficient jamming.

Currently, traditional radar jamming decision-making methods mainly include the
following: game theory-based methods, template-matching-based methods and inference-
based methods. David et al. [17] proposed a framework that uses game theory principles
to provide an autonomous decision-making for appropriate electronic attack actions for
a given scenario. Gao et al. [18] established a profit matrix based on the principle of
minimizing losses and maximizing jamming gains and used a Nash equilibrium strategy
to solve for the optimal jamming strategy. They relied on the establishment of the profit
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matrix, which is only applicable to radar systems with constant parameter characteristics.
Sun et al. [19] proposed an electronic jamming pattern selection method based on D-S
theory. Li and Wu [20] proposed an intelligent decision-making support system (IDSS)
design method based on a knowledge base and problem-solving units. The method has
wide applicability but relies too much on posterior probability and has poor real-time
performance. Ye et al. [21,22] proposed a cognitive collaborative jamming decision-making
method based on a swarm algorithm, which finds the global optimal solution through the
process of searching for quality resources using a swarm. There are many similar population
intelligence algorithms, such as genetic algorithms [23,24], ant colony algorithms [25],
differential evolutionary algorithms [26–28] and water wave optimization algorithms [29].
All these algorithms can be useful for solving jamming decision-making models, but the
autonomy, real time use and accuracy cannot fully meet the requirements of CEW. These
algorithms are mainly applicable to radars with constant feature parameters and rely
heavily on adequate a priori information.

Figure 2. Architecture of traditional radar countermeasure.

1.3. Cognitive Radar Jamming Decision-Making Methods

A CEW system can be defined as an Observe, Orient, Decide and Act (OODA) cycle
with an adaptation capability (i.e., AI). Figure 3 shows the working process of a typical
OODA. The jammer first reconnoiters and sorts out the target signals from the threat
environment system, then measures the parameters and identifies the target state. After
the jammer adapts to the target state change, jammer evaluates the jamming efficiency,
schedules jamming resources and optimizes jamming parameters to achieve effective
jamming. The biggest difference between CEW and EW is that CEW and the environment
can form a closed-loop system.

The cognitive intelligence of the agent is reflected in the process from cognition to
memory, judgment, imagination and expression of the result. The cognitive radar jamming
decision-making model is shown in Figure 4. Its characteristics are as follows:

(1) Observe: The agent is able to perceive relevant information about the external envi-
ronment and to obtain relevant information.

(2) Orient: The agent can use existing knowledge to guide thinking activities based on
the perceived information.

(3) Decide: The agent is able to learn independently, interact with the external environ-
ment and adapt to changes in the external environment.

(4) Act: The agent is able to make autonomous decisions in response to changes in the
external environment.

In the increasingly complex and changing electromagnetic environment, jamming and
anti-jamming techniques are emerging. During countermeasures, the position between
the radar and jammer dynamically changes, and power and distance greatly influence the
effectiveness of different jamming styles. In this case, it is difficult to establish a one-to-
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one mapping between the specific working state of the radar and the available jamming
techniques. At the same time, with the rapid development of new weapons and equipment,
many new systems and multifunctional radars have emerged, and the jamming decision-
making methods relying on a priori information and template matching are completely
unable to adapt to current battlefield environments. Therefore, the research on intelligent
radar jamming decision-making methods adapted to CEW has received much attention.
CEW is a game process between two intelligences: the jammer and the radar. The research
in this paper focuses on the countermeasure decision-making algorithm of the jammer.

Figure 3. Typical OODA.

Figure 4. Cognitive electronic jamming decision-making model.

Cognitive radar jamming decision-making has received extensive attention and devel-
opment in recent years. Cognitive radar jamming decision-making is the ability to establish
the best correspondence between radar and jamming styles in radar countermeasure sys-
tems through threat target awareness. Radar jamming decision-making based on the RL
algorithm has been the focus of research in recent years. The RL algorithm generates the
optimal strategy by continuously interacting with the environment [30,31].

The Q-Learning algorithm is a typical time-series differential RL algorithm based
on model-free learning. It enables the system to learn autonomously and to make cor-
rect decisions in real time without considering environmental models or prior knowl-
edge [32]. Therefore, compared with traditional jamming decision-making methods, Q-
Learning algorithm-based jamming decision-making methods can realize learning while
fighting, which is expected to be a major research direction and future trend. Q-Learning
is currently widely used in robot path planning [33,34], nonlinear control [35,36] and re-
source allocation scheduling [37,38] and has yielded specific results in recent years for
radar jamming decision-making. Xing et al. [39,40] proposed applying the Q-Learning
algorithm to radar countermeasures for the problem of unknown radar operating modes.
The jamming system continuously monitors the state of the radar target, evaluates the
effectiveness of the jamming, and feeds the results to the jamming decision-making module.
Li et al. [41] suggested using Q-Learning to train the behavior of radar systems to achieve
effective jamming and to adapt to various combat scenarios. Zhu et al. [10,42,43] proposed
applying the Q-Learning algorithm to radar jamming decision-making for a particular
multifunctional radar model and discussed the effect of prior knowledge and various
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hyperparameters on the convergence of the algorithm. From the simulation experimental
results, it is known that by adding prior knowledge and adjusting the hyperparameters,
the algorithm can improve the convergence speed and stability, and increase its robustness.
Li et al. [44] designed a radar confrontation process based on the Q-Learning algorithm and
verified the convergence of Q-values and the performance improvement in the algorithm
through simulations using prior knowledge. Zhang et al. [45] proposed the DQN algorithm
applied to radar jamming decision-making research for efficiency degradation caused
by the increase in the number of target radar states. By comparing with the simulation
experiments of the Q-Learning algorithm, this method can better learn the effect of jam-
ming in an actual battlefield autonomously and carry out jamming decision-making for
multifunctional radars.

The Q-Learning algorithm also has its shortcomings when applied. First, the practical
application of Q-Learning relies on several hyperparameters in the algorithm. Most of the
existing results use a fixed exploration factor. When the exploration factor is large, the
algorithm will explore sufficiently during the early stage and reach the optimal solution
nearer quickly. However, it does not reach the convergence value effectively and oscillates
at the optimal solution attachment, creating a difficult convergence situation. When the
exploration factor is small, the algorithm does not explore sufficiently during the early stage
and tends to fall into the local optimum during the later stage. Therefore, ensuring both
exploration sufficiency and the stability of convergence using a fixed exploration factor
is difficult. There are also no fixed rules for the learning rate and discount factor, which
are generally set to fixed values by researchers through experience. When the learning
rate is large, the algorithm is vulnerable to a learning risk early on. When the learning
rate is small, the algorithm converges slower in the later stages. Secondly, the algorithm
encounters problems such as slow and unstable convergence during the convergence
process, which seriously affects the decision-making effect of the intelligent systems. There-
fore, it is necessary to improve the Q-Learning algorithm in order to improve the accuracy
and efficiency of the Q-Learning algorithm applied to radar jamming decision-making.
Li et al. [32] proposed an improved Q-Learning algorithm that introduced the Metropolis
criterion of a simulated annealing algorithm, which effectively solved the local optimum
problem in the radar jamming decision-making process. Meanwhile, a stochastic gradient
descent with the warm restarts method is used for the learning rate in the algorithm, which
reduces the oscillations in the late iteration and improves the depth of convergence.

1.4. Research Focus

In today’s battlefield environment, multi-function radars are usually phased-array
radars, which can simultaneously detect and identify targets in multiple states and di-
rections. Using a single jammer as the jamming side is not effective in containing the
radar’s threat. Additionally, a single jammer’s RL process will be slow when facing a radar
operating in multiple states simultaneously. The longer it takes for the jammer to reach
convergence, the higher the probability of the opposing radar detecting and destroying it.
Therefore, clustered multiple jammers can achieve collaborative radar jamming decision-
making with shared information. The clustered multiple jammers method has several
advantages over using a single jammer, including the following:

(1) Convergence speed: Multiple jammers can converge more rapidly with target radars
in multiple operating states during countermeasures, reducing the probability that
individual agents will be detected and destroyed.

(2) Coverage area: Multi-functional radars operate in different states and orientations.
Multiple jammers respond to the target radar in different orientations on the basis of
information sharing.

(3) Hardware and power limitations: When jamming a single radar using a cluster of
jammers, UAVs are often used as carriers for jammers. A single jammer requires
higher requirements for power and hardware resources to implement effective jam-
ming. Single-function jammers are overwhelmed by powerful multifunctional radars
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during confrontation and can be limited by distance, power and destruction. More-
over, a single jammer is often unable to operate in multiple states simultaneously
due to its size and poor antenna isolation, among other reasons. Therefore, multiple
jammers form clusters based on information sharing in order to achieve a greater
advantage in an actual battlefield.

In response to the above problems, a radar jamming decision-making method Ant-QL
based on the improved Q-Learning and ant colony algorithm is proposed in this paper. The
algorithm includes the following:

(1) Explore strategy: The ε-greedy algorithm is introduced to change the search factor,
thus balancing exploration and exploitation in the algorithm. This method ensures
that the larger exploration factors can be fully explored during the early stage and
the smaller exploration factors can reach the convergence state smoothly during the
later stage of the algorithm.

(2) Pheromone mechanism: The Q-Learning algorithm converges slowly and tends to
fall into local optima. To address the above problems, this paper introduces the
pheromone mechanism of the ant colony algorithm into the Q-Learning algorithm
to form an improved Q-Learning algorithm. The optimization process of the ant
colony algorithm simulates the pheromone released by ants to explore the optimal
solution. By combining Q-Learning with pheromones, not only is the reward value
learned during the interaction between the agent and the environment but also the
pheromone matrix for the transition between states is obtained. The pheromone as a
path guide for the agent will make the convergence time of the agent shorter, while
avoiding running into the local optimum.

(3) Termination conditions: In the convergence algorithm based on pheromone and
Q-Learning during iteration, we use the Q-value convergence rule as the highest
priority termination condition and the limit of the number of iterations as the next
highest priority termination condition. After reaching the termination state, the
algorithm outputs the optimal policy and the agent reaches the optimal state. In an
actual battlefield environment, the jammer maximizes savings in terms of jamming
resources and performs effective jamming.

(4) Advantages of cluster confrontation: We extend the confrontation between jam-
mers and target radars to a cluster confrontation scenario to achieve the goal of
collaborative jamming decision-making by multiple jammers against multifunctional
radars. Cluster adversarial helps to reduce the need for hardware and a power
system of individual jamming systems. Additionally, effective cooperative jamming
can suppress a target radar in multiple airspace/time/frequency domains at the
same time. During the adversarial process, the method reduces the convergence
time, thus reducing the probability of the jammers being destroyed. At the same
time, clustered jammers are more conducive to achieving effective countermeasures
and ensuring our dominance in the radar countermeasure process.

(5) Termination conditions for cluster adversarial: Determining the termination state
in the learning process of a cluster jammer is crucial. In this paper, we assume that
each jammer works independently, and when all the jammers have completed one
round of iterations, information such as the Q-value matrix and pheromones are
shared, and the shared information of all the jammers is updated. This method
can greatly accelerate the iteration speed and effectively improve the stability and
robustness of the algorithm.

In this paper, we construct a multifunctional radar state transfer model with the num-
ber of states at 16 and the number of jamming modes at 10, drawing on the multifunctional
radar model provided by [46]. We propose an improved Q-Learning algorithm and an
Ant-QL algorithm based on the ant colony algorithm. The conventional Q-Learning al-
gorithm and DQN algorithm are simulated under the same decision-making model and
used as comparison methods. After that, we perform simulation experiments on the im-
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proved Q-Learning algorithm and Ant-QL algorithm and compare them with the basic
methods. The simulation results show that the new methods are useful for improving the
autonomous learning efficiency of the jammer, shortening the response time of intelligent
decision-making and greatly enhancing the adaptability of the jamming system.

The rest of the paper is structured as follows. Section 2 details the traditional RL
algorithm and the cognitive radar jamming decision-making model. Section 3 describes
the improved Q-Learning and Ant-QL algorithms in detail. Section 4 gives the simulation
experiments and the analysis of the results of four algorithms. Finally, Section 5 discusses
some conclusions drawn from this study and some future research hotspots and approaches
in this area.

2. Radar Jamming Decision-Making Model
2.1. Multifunctional Radar Signal Model

The phased array radar system is a typical multifunction radar. By modulating the
antenna array units and the programmable devices inside the radar, various waveforms can
be generated to achieve search, tracking and guidance functions. Viseneski et al. proposed
a multilevel multifunction radar signal model [47,48]. As shown in Figure 5, the model is
divided into three layers: radar word layer, radar phrase layer and radar sentence layer.
Among them, the radar word layer is a fixed arrangement of a limited number of radar
pulses and is the most basic signal unit. A limited number of radar words then form
radar phrase, and the arrangement of radar phrases is fixed. With specific arrangement
rules, radar phrases affect the multifunction radar’s operational performance in different
environments. Finally, radar phrases form radar sentences, which are highly symbolic
forms of the radar signal sequence.

Figure 5. Multifunctional radar signal model.

2.2. Reinforcement Learning

RL is a machine learning method that studies the optimal behavioral strategies that an
intelligent body learned by interacting with its environment. The method takes correspond-
ing actions to adapt to the environment by observing the data sequences obtained from
the interaction between the agent and the environment, and its essence is to learn optimal
sequential decisions. The concept of RL was first proposed by Minsky in 1954 and has
gradually become a research hotspot in machine learning, which is widely used in various
real-world applications such as intelligent control and decision analyses.

As shown in Figure 6, Q-Learning, as the most applied classical RL algorithm, works
in a process that can be mapped to the cognitive radar jamming decision-making process.

The Q-Learning algorithm maps the state St obtained by the agent to the radar state
SRt detected by the jamming system; the optional action set A is mapped onto the set Ajam
of scheduling schemes for different jamming resources of the jamming system; the optional
action a is mapped to the jamming action ajam; the reward r given by the environment
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is mapped to the evaluation value rjam of the jamming effectiveness; and the meaning of
the Q(SRt, ajam) function indicates the sum of the discounts obtained in the future after
choosing the jamming action ajam in the current radar state SRt.

In recent years, many excellent RL algorithms have been used for radar jamming
decision-making, such as Q-Learning, DQN, Double DQN and A3C [32,42–46,49]. Most of
these studies are based on Q-Learning and DQN algorithms. Through different modeling
methods and parameter optimization, these results have verified the effectiveness and
adaptability of these two classical methods.

Figure 6. Mapping of RL to radar jamming decision-making.

2.2.1. Q-Learning Algorithm

Q-Learning is a time-series differential reinforcement learning algorithm. The specific
flow of the algorithm is Algorithm 1. In the algorithm, at denotes the value of the action
taken by the agent at the current moment, st denotes the state of the current environment,
α denotes the learning rate, γ is the discount factor and ε is the exploration factor. At each
cycle, the agent updates Q(s, a) via Equation (1).

Algorithm 1 Q-Learning algorithm workflow.

1: Initialize Q(s, a), the number of iterations is N, the learning rate is α, the discount factor
is γ, the exploration factor ε, and the maximum number of single iterations is T

2: The reward value and number of each iteration, and the converged Q(s, a) matrix.
3: for n = 1→ N do
4: Get the initial state s.
5: for t = 1→ T do
6: Select the action a in the current state s based on Q using the ε− greedy strategy.
7: Get the feedback r, s

′
from the environment.

Q(s, a)← Q(s, a) + α[r + γmaxa′Q(s
′
, a
′
)−Q(s, a)] (1)

8: s← s
′

9: end for
10: end for
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2.2.2. DQN Algorithm

One drawback of Q-Learning is that its Q-table will become very large when the
number of states in the state space is very high. DQN combines Q-Learning with a neural
network, which fits the state-behavior value function of the current system. The algorithmic
flow of DQN is Algorithm 2. DQN has two very important modules: experience replay and
target network, which can help DQN achieve stable and excellent performance. Experience
replay is a process of storing the data (state, action, reward and next state) in a replay buffer
for each quaternions obtained and training the Q-network by sampling a random number
of data from the replay buffer. Experience replay can break the correlation between samples
and make the samples satisfy the independence assumption. Additionally, it improves the
efficiency of the samples. The target network uses two sets of Q networks.

(1) The original training network, Qw(s, a), is used to calculate Qw(s, a) in the original
loss function 1

2 [Qw(s, a)− (r + γmaxa′Qw−(s
′
, a
′
)]2 and is updated using the normal

gradient descent method.
(2) The target network, Qw−(s, a), is used to calculate the (r + γmaxa′Qw−(s

′
, a
′
) term in

the original loss function, 1
2 [Qw(s, a)− (r + γmaxa′Qw−(s

′
, a
′
)]2, where w− denotes

the parameter in the target network. If the parameters of the two networks are the
same, the problem of insufficient stability will occur. In order to make the update
target more stable, the target network is not updated at every step. Specifically, the
target network uses an older set of parameters from the training network, and the
training network Qw(s, a) is updated at each step of training, while the parameters
of the target network are only synchronized every C steps, i.e., ω− ← ω. Doing so
makes the target network more stable relative to the training network.

Algorithm 2 DQN algorithm workflow.

1: Initialize network Qw(s, a) with random network parameters ω.
2: Copy the same parameter ω− ← ω to initialize the target network Qw′ .
3: Initialize the experience replay pool R.
4: for ε = 1→ E do
5: Get the initial state of the environment s1.
6: for t = 1→ T do
7: Select the action at according to the current network Qw(s, a) with ε − greedy

strategy.
8: Execute action at, get reward rt, and the environment state changes to st+1.
9: Store (st, at, rt, st+1) into the replay pool R.

10: Randomly select N samples (si, ai, ri, si+1)i=1,...,N from R.
11: Compute yi = ri + γmaxaQω−(si+1, a) with the target network.
12: Minimize the target loss L = 1

N Σi(yi−Qw(si, ai))
2, and use it to update the current

network Qω.
13: Update the target network.
14: end for
15: end for

2.3. Confrontation Decision-Making Model

We use a multifunction radar as the target radar and a jammer with RL algorithm as
the core to form a radar countermeasure model. The state transfer matrices of the target
radar are the core of the decision model. In this paper, the state transfer matrices are set to
empirical values. The radar operating state and threat level in the model we set are both
16. When the radar operating state is 0, the threat level is 0, indicating a shutdown state;
when the radar operating state is 15, the threat level is 15, indicating that the radar is in a
destroyed state.

For a cognitive radar jamming decision-making system, the reward function is an
important measure of the learning process. The reward value obtained according to the
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jamming function determines the decision capability of the jammer. Since the ultimate
goal of the jammer is to improve the radar jamming performance. The evaluation of radar
jamming effectiveness is closely related to the change in threat level. The specific calculation
equation of the reward function, Equation (2), is expressed as follows. In the equation, min
means that the radar is in the terminated state, and the reward value obtained by the jammer
is 50. TL represents the change in threat level when the radar is in the non-terminating
state si, i 6= min.

r =

{
50, min

TL, si → min
(2)

3. Improved Cognitive Electronic Jamming Decision-Making Method
3.1. Q-Learning Algorithm with Pheromone Mechanism

The jammer determines the difference in the threat level of the target by detecting
changes in the working state of the enemy’s radar before and after the implementation of
jamming. The jamming decision-making system learns the best jamming strategy through
the jamming effect. Both the Q-Learning and DQN algorithms have real-time learning
capabilities. Among them, the Q-Learning algorithm, as the core basic algorithm in RL,
iterates in real time by building a Q-table and finally obtains a converged Q-value table.
The disadvantage of the Q-Learning algorithm is that the hyperparameters, especially the
variation in the exploration factor, have a great impact on the convergence. Usually, the set-
ting of hyperparameters for the algorithm is empirically dependent. Q-Learning algorithms
are less efficient when learning for large-scale states, and during radar confrontation, longer
convergence times mean higher chances of being detected and destroyed. Additionally, the
Q-Learning algorithm explores the suboptimal states repeatedly during the iterative process
due to the certain randomness of action selection and the limited update magnitude of the
Q-table elements. Due to the presence of neural networks, the DQN algorithm can cope
better with the goal of a large state size. However, the complexity of the DQN algorithm is
much greater than that of Q-Learning, including the hyperparameters of the network and
the learning time. At the same time, the DQN algorithm suffers from an overestimation
problem, which has a significant negative effect on the actual jamming decision-making.
We have to improve the DQN algorithm to solve the overestimation problem, and the
complexity and hyperparameters of the improved DQN algorithm will be improved. These
situations are not favorable for our application in practice.

In this paper, we propose the Ant-QL algorithm to address the shortcomings of the
existing typical Q-Learning and DQN algorithms. We introduce the pheromone mechanism
of the ant colony algorithm in the Q-Learning algorithm. As a bio-inspired algorithm, the
ant colony algorithm finds a path from the starting point to the end point that meets the
conditional constraints by simulating the process of ants foraging for food.

The essence of the cognitive radar jamming decision-making problem is that the
jammer responds more effectively to the state transfer of the target radar. Ant colony
algorithms are mostly used in problems such as optimization functions and path finding.
As shown in Figure 7, the core pheromone in the ant colony algorithm can be mapped to
the Q-value table in the Q-Learning algorithm. The Q table is initialized with s ∗ a storage
cells, where s is the number of states and a is the number of actions. Figure 7a shows the
structure of the Q-table. A pheromone table is generated according to the structure of the
Q-table, as shown in Figure 7b. During the iteration, the agent leaves pheromones in the
pheromone table. As the pheromones are continuously updated, the strategy provided by
the pheromone matrix to the agent becomes closer and closer to the optimal strategy.
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(a)

(b)

Figure 7. Structure of Q-table and pheromone table. (a) Structure of the Q table; (b) structure of the
pheromone table.

The process of the Q-Learning algorithm based on a pheromone mechanism is show
in Algorithm 3. The improved Q-Learning algorithm first initializes the Q matrix and all
algorithm parameters. The agent first obtains the initial state from the environment. The
agent performs an action to feed back to the environment. After the agent obtain the reward
and the next state from the environment, the Q matrix is updated according to Equation (3),
where τij is the pheromone value of the two states before and after the transfer. After
each iteration, the jammer performs a global pheromone update. After several iterations,
the distribution of pheromones becomes closer to the optimal path distribution. The
pheromone update process is shown in Equation (4), where τij(t) represents the pheromone
value located at position ij in the matrix at moment t, τij(t + 1) represents the pheromone
value at the same position at the next moment and ∆τij(t) is the pheromone change value.
The calculation process of ∆τij(t) is shown in Equation (5), and the pheromone increase is
obtained using the reward value and the number of iterations obtained from each loop.

Q(s, a)← Q(s, a) + α[r + γmaxa′Q(s
′
, a
′
)−Q(s, a) + τij] (3)

τij(t + 1) = τij(t) + ∆τij(t) (4)

∆τij(t) =
rewards
counts

(5)

Algorithm 3 Improved Q-Learning algorithm.

1: Initialize Q(s, a), the number of iterations is N, the learning rate is α, the discount factor
is γ, the exploration factor ε, and the maximum number of single iterations is T

2: Initialize the pheromone matrix.
3: The reward value and number of each iteration, and the converged Q(s, a) matrix.
4: for n = 1→ N do
5: Get the initial state s.
6: for t = 1→ T do
7: Select the action a in the current state s based on Q and pheromone matrix using

the ε− greedy strategy.
8: Get the feedback r, s

′
from the environment, and then update Q according to

Equation (3).
9: end for

10: Update the pheromone matrix.
11: end for
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3.2. Ant Colony Q-Learning Algorithm

In practical counter scenarios, it is difficult for a single jammer to have multi-antenna,
wide range and high power jamming capabilities due to size and power limitations. The
jammer is usually in a single orientation and frequency band during the countermeasure
against the target radar, so it is difficult for it to perform jamming in multiple directions
and in multiple frequency bands simultaneously. Additionally, the decision algorithm
process for a single jammer means that no matter how it is optimized, a single jammer
has a high chance of being detected and destroyed by the target radar compared with
cooperative multi-machine jamming decision-making. Compared with traditional meth-
ods, the improved Q-Learning algorithm can converge to the optimal point faster and
smoother and can effectively avoid becoming trapped in a local optimum. We can consider
the Q-Learning algorithm with a pheromone mechanism as a single optimality-seeking
intelligence (ant); then, the algorithm, when extended to a cluster, can be considered as a
multi-intelligence (ant colony) algorithm. Multiple agents perform separate adversarial
and decision-making processes in multiple working directions of the target radar; then,
the radar jamming decision-making efficiency of the multi-agent remains relatively low.
In this paper, we propose a multi-agent collaborative decision-making method based on
information sharing. The method becomes simple in terms of hardware and power require-
ments and only requires the jammer to be able to cooperate in a single direction to achieve
high-power suppression jamming. The target radar is usually considered to be able to
perform a simultaneous operation in multiple dimensions and multiple frequency bands,
but its state transition matrix is all consistent in the face of jamming. This is the key to the
ability of multiple agents to cause effective cooperative jamming in decision-making.

The flow of the cooperative jamming decision-making algorithm for multiple jammers
is shown in Figure 8. The initialization process includes the parameters of the Q-Learning
algorithm, the pheromone matrices and the number of agents. Here, the agents represent
the jammers, and the number of agents is also the number of jammers. After all jammers
complete one round of iterations, the increments in Q matrices (pheromone matrices)
of some jammers with better effects are selected as shared information. The Q-matrices
(pheromone matrices) of the less effective jammers are zeroed out and set as shared infor-
mation. There are two differences in multi-machine jamming decision-making compared
with single-machine jamming decision-making. The first is that the pheromone increase is
calculated independently for each jammer, as shown in Equations (6) and (7). The evap-
oration mechanism of a pheromone needs to be considered in multi-machine jamming
decision-making, and ρ in Equation (6) is the volatilization factor. After several iterations,
the algorithm can reach convergence faster and more stably. It should be noted that multiple
jammers have different exploration steps at each round of iterations. During the simulation
experiments, the Q matrix and the pheromone matrix stop updating after the jammer with
a small number of exploration steps reaches the termination state. The jammer uses the
existing Q matrix and pheromone matrix as a guide to interact with the environment. After
all the jammers reach the termination state in this round, the algorithm selects the optimal
agent in this round.

τk
ij(t + 1) = (1− ρ)τk

ij(t) + ∆τk
ij(t) (6)

∆τk
ij(t) =

rewardsk

countsk (7)
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Figure 8. Ant-QL algorithm flow chart.

4. Simulation Experiments and Results Analysis

There will be various states of the radar during operation, such as search, tracking,
identification, guidance, etc. There are also various jamming actions that can be performed
by the jammer, such as noise FM jamming, false target jamming and distance dragging
jamming. The state of a radar operation is denoted as si, i = 0, 1, . . . , 15. The state of a
jamming operation is denoted as ai, i = 0, 1, . . . , 9. States s1, s2 and s3 represent the three
search states. States s4, s5, s6 and s7 represent the four tracking states. States s8, s9, s10
and s11 represent the four identification states. States s12, s13 and s14 represent the three
guidance states. For the convenience of modeling, state s0 is set as the shutdown state and
state s15 is set as the destroyed state in this paper. The jamming mode a0 represents noise
amplitude modulation jamming. The jamming mode a1 represents noise FM jamming.
The jamming mode a2 represents noise modulation jamming. The jamming mode a3
represents dexterous noise jamming. The jamming mode a4 represents dense dummy
target suppression jamming. The jamming mode a5 represents distance deception jamming.
The jamming mode a6 represents velocity deception jamming. The jamming mode a7
represents angle deception jamming. The jamming mode a8 represents distance–velocity
deception jamming. The jamming mode a9 represents distance–angle deception jamming.
The state transfer matrix is the working core of the target radar. Similar to Refs. [42,43], the
state transfer matrices in this paper are set to empirical values. Additionally, the state of the
radar and the threat level are positively correlated. During the simulation, the state transfer
matrices are set with small fluctuations. When the target radar is subjected to some kind of
suppression jamming, the table of transfer probability of radar operating state is shown in
Table 1. When the target radar is subjected to false target jamming, the state transfer matrix
is shown in Table 2. The state transfer matrices of the target radar when subjected to other
jamming are not listed in this paper.
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Table 1. State transfer matrix of the radar under some suppression jamming.

s0 s1 s2 s3 s4 s5 s6 s7 s8 s9 s10 s11 s12 s13 s14 s15

s0 0.18 0.28 0.25 0.19 0.1 0 0 0 0 0 0 0 0 0 0 0

s1 0.12 0.28 0.25 0.15 0.1 0.1 0 0 0 0 0 0 0 0 0 0

s2 0.1 0.2 0.15 0.25 0.2 0.1 0 0 0 0 0 0 0 0 0 0

s3 0.1 0.2 0.15 0.25 0.2 0.1 0 0 0 0 0 0 0 0 0 0

s4 0 0 0 0.05 0.2 0.25 0.3 0.2 0 0 0 0 0 0 0 0

s5 0 0 0 0.05 0.15 0.2 0.35 0.25 0 0 0 0 0 0 0 0

s6 0 0 0 0.03 0.1 0.15 0.2 0.48 0 0 0 0 0 0 0 0

s7 0 0 0 0 0.02 0.15 0.2 0.1 0.33 0.2 0 0 0 0 0 0

s8 0 0 0 0 0 0 0.02 0.08 0.15 0 0.3 0.3 0.15 0 0 0

s9 0 0 0 0 0 0 0 0.05 0.15 0 0 0.3 0.3 0.2 0 0

s10 0 0 0 0 0 0 0 0 0.2 0 0 0.3 0.25 0.25 0 0

s11 0 0 0 0 0 0 0 0 0.15 0 0.2 0.2 0.25 0.25 0.05 0

s12 0 0 0 0 0 0 0 0 0 0 0 0.2 0.15 0.3 0.2 0.15

s13 0 0 0 0 0 0 0 0 0 0 0 0.1 0.15 0.25 0.2 0.3

s14 0 0 0 0 0 0 0 0 0 0 0 0 0.1 0.2 0.2 0.5

s15 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1

Table 2. State transfer matrix of the radar under false-target jamming.

s0 s1 s2 s3 s4 s5 s6 s7 s8 s9 s10 s11 s12 s13 s14 s15

s0 0.3 0.4 0.2 0.1 0 0 0 0 0 0 0 0 0 0 0 0

s1 0.1 0.1 0.3 0.2 0.2 0.1 0 0 0 0 0 0 0 0 0 0

s2 0.1 0.1 0.1 0.3 0.2 0.2 0 0 0 0 0 0 0 0 0 0

s3 0 0.1 0.1 0.2 0.4 0.2 0 0 0 0 0 0 0 0 0 0

s4 0 0 0 0.2 0.2 0.1 0.4 0.1 0 0 0 0 0 0 0 0

s5 0 0 0 0 0.1 0.2 0.3 0.4 0 0 0 0 0 0 0 0

s6 0 0 0 0 0.1 0.1 0.2 0.4 0.2 0 0 0 0 0 0 0

s7 0 0 0 0 0 0.2 0.2 0.2 0.2 0.2 0 0 0 0 0 0

s8 0 0 0 0 0 0 0 0 0.1 0.2 0.3 0.3 0.1 0 0 0

s9 0 0 0 0 0 0 0 0 0.1 0.2 0.3 0.3 0.1 0.2 0 0

s10 0 0 0 0 0 0 0 0 0 0.1 0.2 0.3 0.2 0.2 0 0

s11 0 0 0 0 0 0.05 0 0 0.15 0 0.1 0.2 0.2 0.25 0.05 0

s12 0 0 0 0 0 0 0.1 0 0 0.2 0 0.1 0 0.3 0.15 0.15

s13 0 0 0 0.2 0 0 0.15 0 0 0.15 0 0 0 0.15 0.2 0.15

s14 0 0 0 0 0 0 0.15 0 0 0.25 0 0 0.1 0.2 0.2 0.1

s15 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1
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The parameters of the jammer with the Q-Learning algorithm are set as follows: the
learning rate α is 0.05, the discount factor γ is 0.7 and the initial value of the exploration
factor ε is 0.99 and decreases with the number of simulation steps at a decay rate of 0.0003.
The parameters for the DQN algorithm are set as follows: the learning rate α is 0.01, the
discount factor γ is 0.9, the initial value of exploration factor ε is 0.99,and the decreasing
decay rate is 0.0003 with the number of simulation steps. The network in the DQN is a
three-layer fully connected network, and the capacity of the replay buffer is set to 2000.
The improved Q-Learning algorithm adds the pheromone-related parameters. The number
of jammers for cluster jamming decision-making is assumed to be 3, i.e., three jammers
collaborate with each other for jamming decision-making. All simulations are performed
for 20,000 iterations. In this paper, the condition to end each round of iterations is that the
radar state is transferred to the termination state or the number of explorations reaches
200. In the simulation experiments, we use the number of state transfers and the reward
value in a single iteration as the quantitative evaluation criteria. It can be seen from the
simulation results of multiple times that the convergence processes of both are completely
synchronized and can confirm the convergence process with each other. The criterion for
determining convergence in this paper is to divide every 10 iterations into groups. The
average of the cumulative reward value and the number of state transfers is calculated for
each group. The mean values between two adjacent groups are compared separately. We
determine that the agent has reached convergence when the mean value of reward values
in each group is less than −120 and the difference between the means of two adjacent
groups is not greater than 15.

According to the convergence assessment criterion in this paper, we obtained the
following results through simulation experiments. The simulation results of the Q-Learning
algorithm are shown in Figure 9. As can be seen in Figure 9a,b, they converge at the 4800th
iteration. Figure 10 shows the simulation results of the DQN algorithm, which converges at
the 3600th iteration. Figure 11 shows the simulation results of the improved Q-Learning
algorithm, which converges at the 2500th iteration. Figure 12 shows the simulation results
of the Ant-QL algorithm, which converges at the 700th iteration. The convergence results of
the four different algorithms are shown in Table 3.

After the simulation, it can be seen that the DQN algorithm accelerates the conver-
gence speed and stability compared with the Q-Learning algorithm. However, the DQN
algorithm suffers from the computationally time-consuming feature, which makes it diffi-
cult to achieve more desirable results. Comparing Q-Learning and DQN, the convergence
speed of the improved Q-Learning algorithm is improved by 48% and 31%, respectively.
The convergence speed of the Ant-QL algorithm is improved by 85.4%, 80.56% and 72%
compared with the convergence speed of the remaining three algorithms. In addition, we
can also learn from the simulation results of these algorithms that the overall stability of
the Ant-QL algorithm is very high and the difference between groups is very small.

(a) (b)

Figure 9. Convergence process of Q-Learning algorithm. (a) Convergence process of counts; (b) con-
vergence process of rewards.
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(a) (b)

Figure 10. Convergence process of DQN algorithm. (a) Convergence process of counts; (b) conver-
gence process of rewards.

(a) (b)

Figure 11. Convergence process of improved Q-Learning. (a) Convergence process of counts; (b) con-
vergence process of rewards.

(a) (b)

Figure 12. Convergence process of Ant-QL. (a) Convergence process of counts; (b) convergence
process of rewards.

Table 3. Simulation results of algorithm convergence.

Q-Learning DQN Improve-QL Ant-QL

Counts 4800 3600 2500 700
Rewards 4800 3600 2500 700

The performance of each algorithm depends not only on the number of rounds of
convergence but also on its average response time. After the algorithms converged, we
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tested each algorithm 50 times and obtained their average response times. Table 4 shows the
average response times of the four algorithms after convergence. The DQN algorithm has
the longest average response time due to the time-consuming nature of training the network.
Compared with the Q-Learning algorithm, the improved Q-Learning algorithm reduced the
average response time by 68.38%. The Ant-QL algorithm has the fastest average response
time, which proves that the algorithm is more adaptable in electronic countermeasures.

Table 4. Simulation results of algorithm response time.

Q-Learning DQN Improve-QL Ant-QL

Response Time (s) 6.99× 10−4 2.234× 10−3 2.21× 10−4 1.7× 10−4

The simulation results prove the superiority of the Ant-QL algorithm. Compared with
Q-Learning, Ant-QL makes the iterative process of the jammer faster and more stable by
introducing pheromones while avoiding the problem of a local optimum that can occur in
the Q-Learning algorithm. Compared with DQN, Ant-QL does not overestimate during the
iterative process, and the jammer has the path guidance provided by the pheromone as
the number of iterations increases. Ant-QL is also considerably less complex than the DQN
algorithm when it comes to algorithm debugging and application. After the algorithms
converge, the average response time of the algorithms has a large impact on the performance
of the jammer. The average response time of the improved Q-Learning algorithm is faster
than that of the Q-Learning algorithm due to the advantage of pheromones in the merit-
seeking process. The average response time of the Ant-QL algorithm is faster than that of
the improved Q-Learning algorithm due to the addition of multi-machine collaboration.
These advantages not only reduce the hardware requirements of the jammer but also
increase its advantages in a real battlefield.

5. Conclusions

In this paper, we proposed an improved method combining the pheromone mecha-
nism and the Q-Learning algorithm and applied it to radar jamming decision-making. The
method not only performs Q-table updating and learning during the iterative process but
also continuously optimizes the search range of the jammer to find the optimal state transfer
and purposefully improves the convergence speed and stability. Through the simulation
results, it can be analyzed that the improved Q-Learning algorithm can avoid the local
optimum and reach convergence faster during the iterative process. The complexity and
training time of the algorithm have significant advantages over DQN, which can effectively
reduce the probability of being detected and destroyed in the actual battlefield. To better
adapt to the trend of cluster confrontation in future warfare and to effectively overcome the
hardware and power limitations of a single jammer, we extend the improved Q-Learning
algorithm with multiple machines to cope with these trends. Under the condition of infor-
mation sharing, the method introduces the idea of an ant colony and shares the information
by selecting the better jammer during each iteration. The Ant-QL algorithm for clustering
reduces the hardware and power requirements of the jammer. The simulation results show
very good convergence and stability, which will help to improve the survivability and
adaptability of these jammers. Additionally, after the convergence of each algorithm, their
average response times are discussed in this paper. The simulation results show that the
improved Q-Learning algorithm and Ant-QL algorithm have shorter average response times
compared with traditional methods.

CEW is receiving more and more attention. For cognitive radar jamming decision-
making, there is also a continuous need to explore better algorithms. RL and metaheuristic
algorithms are still a hot topic for many researchers, and new and various algorithms are
emerging. This paper concludes with a few possible research points that will hopefully be
useful to future researchers.
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(1) Due to the increasing complexity of the battlefield situation, multi-UAV cluster re-
connaissance positioning has gained tremendous attention and development [50,51].
The advantages of UAV clusters in reconnaissance and positioning are enormous, and
there are still many technical difficulties waiting to be broken through.

(2) The research method in this paper has achieved better results, but there are still some
problems. To address these problems, we also propose some new research plans.
For example, if we increase the anti-jamming capability of the radar, the cooperative
decision-making method of multiple jammers can be improved, for example, how
to communicate efficiently between multiple jammers. It should also be noted that
the Ant-QL method proposed in this paper discards information matrices that do not
work well in each round. In the next stage of research, we need to consider how to
utilize all information matrices of multiple jammers more effectively.

(3) For radar jamming decision-making, the jammers use hierarchical RL algorithms for
radar jamming decisions in response to the hierarchical structure of the target radar.
For increasingly urgent cluster confrontation, multi-jammers use multi-intelligence RL
algorithms for radar jamming decision-making. There are limitations in using a single
algorithm to solve this problem, and we hope that more researchers will combine
algorithms such as metaheuristics with RL to solve this problem more effectively.

(4) Research on various new jamming methods is the key to gaining battlefield advan-
tages. Radars of different regimes have many counterpart anti-jamming measures to
traditional jamming methods. We note that the use of many new types of jamming
usually achieves unexpected results [52–55].

(5) With the development of a cognitive radar, radar jamming decisions based on fixed
jamming methods still pose a significant battlefield threat. A future jammer should be
centered on radar jamming decision-making and have an adaptive jamming waveform
optimization capability. These features will greatly enhance the flexibility and adapt-
ability of jammers in the actual battlefield. Numerous meta-heuristic optimization
algorithms are currently available for jamming waveform optimization [56,57].

(6) As battlefield complexity rises, electronic countermeasures in various clusters will
proliferate. The jammer itself is limited by the resources of the applicable platform and
often does not have the software, hardware and power resources to match the target
radar. For the jamming side, the rational allocation of jamming resources to maximize
operational effectiveness is the difficulty. Despite jamming waveform optimization,
the jammer of the cluster needs to have a strong jamming resource scheduling algo-
rithm. The algorithms currently applied to jamming resource scheduling include the
Hungarian algorithm, the dynamic planning algorithm, etc. [58,59]. We believe that
the fusion algorithm of a metaheuristic algorithm and RL is an effective method to
realize cognitive electronic countermeasures in the future.
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Abbreviations

The following abbreviations are used in this manuscript:

EW Electronic Warfare
AI Artificial Intelligence
RL Reinforcement Learning
CEW Cognitive Electronic Warfare
IDSS Intelligent Decision-Making Support System
OODA Observe, Orient, Decide and Act
Ant-QL Ant Colony Q-Learning
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