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Abstract: In remote-sensing image processing tasks, images with higher resolution always result
in better performance on downstream tasks, such as scene classification and object segmentation.
However, objects in remote-sensing images often have low resolution and complex textures due
to the imaging environment. Therefore, effectively reconstructing high-resolution remote-sensing
images remains challenging. To address this concern, we investigate embedding context information
and object priors from remote-sensing images into current deep learning super-resolution models.
Hence, this paper proposes a novel remote-sensing image super-resolution method called Context-
Guided Constrained Network (CGC-Net). In CGC-Net, we first design a simple but effective method
to generate inverse distance maps from the remote-sensing image segmentation maps as prior
information. Combined with prior information, we propose a Global Context-Constrained Layer
(GCCL) to extract high-quality features with global context constraints. Furthermore, we introduce a
Guided Local Feature Enhancement Block (GLFE) to enhance the local texture context via a learnable
guided filter. Additionally, we design a High-Frequency Consistency Loss (HFC Loss) to ensure
gradient consistency between the reconstructed image (HR) and the original high-quality image (HQ).
Unlike existing remote-sensing image super-resolution methods, the proposed CGC-Net achieves
superior visual results and reports new state-of-the-art (SOTA) performance on three popular remote-
sensing image datasets, demonstrating its effectiveness in remote-sensing image super-resolution
(RSI-SR) tasks.

Keywords: remote-sensing image; super-resolution; deep learning; distance transform; guided filter

1. Introduction

The development of airborne satellite imaging technology has led to the widespread
use of remote-sensing images in various fields such as agriculture [1], military [2], and
civilian [3]. These images have been extensively used for land vegetation detection [4],
military reconnaissance [5], building extraction [6–8], and other applications. At the same
time, higher-resolution remote-sensing images achieve better performance on downstream
tasks [9–12]. However, the resolution of target objects [13] is limited due to the high imaging
altitude, which negatively affects the performance of downstream tasks. For instance, while
cars in natural images generally have hundreds of pixels, in remote-sensing images, they
have less than 20 pixels. Due to the high cost and long period to acquire high-quality
remote-sensing images from aerial satellites, remote-sensing image super-resolution (RSI-
SR), which reconstructs high-quality (HQ) remote-sensing images from low-quality (LQ)
ones via image super-resolution (SR) algorithms [14], have aroused wide concern from the
remote-sensing community.
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Image super-resolution is a fundamental task aiming at recovering a high-resolution
image with detailed textures from a relatively low-resolution image or image sequence.
Image super-resolution algorithms have been widely employed in natural images [15] and
achieved excellent reconstruction results. Indeed, researchers recently adopted the Swin
Transformer [16] model into the SR task and proposed a novel SwinIR [17] model. It has
been proven that SwinIR [17] surpassed most competitive methods attaining state-of-the-art
reconstruction results. Furthermore, Restormer [18] reduced the computational cost via the
progressive learning training strategy and performed excellently on most natural image
super-resolution benchmarks.

However, compared to natural images, the texture in remote-sensing images is much
more complex [19,20]; therefore, directly adopting existing natural image super-resolution
methods onto remote-sensing images does not pose an appealing option. To address this is-
sue, the MHAN [21] method effectively utilizes hierarchical features by implementing HOA
modules of various orders to feature maps with different frequency bands. In a recent study,
researchers built upon the SwinIR [17] method and introduced the ARSRN [22] method,
which utilizes self-adaptive difference convolution blocks to enhance the reconstruction
performance of remote-sensing images.

Although the methods mentioned above have made significant progress on RSI-SR,
some defects still exist, such as ignoring the texture distribution gap between natural and
artificial objects in remote-sensing images. In addition, the contextual information must
be fully explored due to the complex texture in remote-sensing images. Therefore, this
paper investigates how to effectively learn texture, contextual information, and object prior
to remote-sensing images. Thus, we propose the Context-Guided Constrained Network
(CGC-Net), which enhances the inter-class global texture context and in-class local texture
context in remote-sensing images and performs remarkably on three typical RSI-SR datasets.
The main contributions of this study are as follows:

(1) Firstly, we design a prior map generator to generate the segmentation maps and
the inverse distance maps. These two maps are applied as prior information for the
proposed GCCL module and GLFE module.

(2) We propose a global context-constrained layer (GCCL), which effectively utilizes the
prior knowledge to model high-quality features with global context constraints.

(3) To enhance the semantic feature with local details, we propose the guided local feature
enhancement block (GLFE), which obtains features with local texture context via a
learnable guided filter from deeper layers.

(4) To enhance the gradient consistency between the reconstructed HR image and the
original HQ image, we develop a novel high-frequency consistency loss (HFC loss) by
training a three-layer convolution neural network to simulate the canny boundary
detection operator [23]. Then, the trained network is used as the loss network to
enhance the high-frequency details of the reconstructed HR image.

The remainder of this paper is structured as follows: Section 2 presents the related
work, Section 3 details the proposed CGC-Net, and Section 4 covers the experimental
results, ablation studies, and our analysis. Finally, Section 5 concludes this work. In this
paper, we use LQ, HQ, and HR to demonstrate the original low-quality image, ground-truth
high-quality image, and reconstructed high-resolution image, respectively.

2. Related Work
2.1. Image Super-Resolution

A series of deep neural network-based methods have emerged in the field of SR
in recent years due to the accelerating development of deep learning techniques. For
instance, SRCNN [15] employs a three-layer convolution neural network to reconstruct
high-resolution images. Although bicubic LR images outperform many conventional SR
methods, such as SC [24], K-SVD [25], and ARN [26], they are computationally slow, causing
a slow training speed. In order to solve this issue, the FSRCNN [27] and ESPCNN [28]
methods send LR images directly to the network to extract features and learn HR feature
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maps. These methods reduce the reconstruction time of SRCNN [15] to 1/10 (ESPCNN [28]))
and 1/38 (FSRCNN [27]), respectively.

Methods utilizing shallow network layers have a smaller receptive field. However, in-
creasing the network’s depth affects its convergence and leads to gradient explosion or gra-
dient disappearance [29] problems. Therefore, VDSR [30] integrates residual learning [31]
to the SR field and applies adaptive gradient clipping to avoid gradient explosion [29] and
deepen the model’s depth, strengthening the network’s hierarchical feature representation
ability. Additionally, considering that the interpolation method in SRCNN [15] leads to
reconstruction artifacts, the ESRCNN [32] method replaces interpolation with a sub-pixel
convolution layer for upsampling. However, the simple shallow structure of ESRCNN [32]
cannot easily learn the complex mapping between LR and HR images. Thus, Lai et al.
designed LapSRN [33] (Laplacian Pyramid Networks for SR), a network structure based
on the Laplacian pyramid model, to obtain a multilevel super-resolution map through the
parameter sharing between modules and module cascaded step-by-step amplification.

However, CNN-based methods cannot distinguish and learn across feature channels,
which limits the expression ability of the network. In addition to CNN-based methods,
the self-attention mechanism and the Transformer [34] model have been gradually intro-
duced into image SR tasks due to the powerful ability of sequence modeling and global
information awareness. As the first attempt to use the attention mechanism on SR tasks,
the residual channel attention network RCAN [35] adds the channel attention mechanism
to the residual module, making it adaptively learn more useful channel features. Based on
the Transformer [34] model, TTSR [36] uses the attention mechanism to recover the texture
information of low-resolution images by learning the texture features of reference images.

2.2. Prior Knowledge-Based Image Super-Resolution

In recently reported review articles on image SR, most methods based on prior knowl-
edge outperform traditional-based SR methods, which typically suffer from sharpening
effects and difficulty in preserving details and textures.

To alleviate these problems, Yang et al. proposed a sparse coding-based image
super-resolution method [24] that assumes high-resolution images can be represented
as a linear combination of low-resolution images. Learning a K-dictionary [25] means the
low-resolution images can be represented as a linear combination of sparse coefficients.
Additionally, they incorporate regularization and L2 parametric [37] minimization to ensure
image sparsity. This approach employs dictionary learning to capture local features and
achieves image SR. The core concept of this method is to create a sparse representation
model that leverages small fragments of low-resolution images. Moreover, this method
assumes that some local segments of high-resolution images can represent each of these
fragments by utilizing L2 parametric [37] minimization to obtain a sparse representation
of each small fragment. This method effectively addresses the over-fitting issue in image
SR, enhancing the model’s generalization ability. Subsequently, Liang et al. proposed
SRCNN-Pr [38], which, combined with prior knowledge and the SRCNN [15], alleviated
the problem of excessive parameters and reduced the network’s computational burden.
However, achieving high-quality reconstruction of high-magnification images is still a
challenge that SRCNN-Pr [38] needs to solve.

Previous works include edge-detection-based and edge-weighted-based super-resolution
methods, which cannot recover the finer texture details. Although these methods enhance
super-resolution results by introducing edge information, they have low edge detection
accuracy and use ineffective edge-weighted strategies. To address these challenges, Chun
et al. proposed SREdgeNet [39], a single-image SR method that enhances edges based on
segmentation prior. This technique employs a dense edge detection network and a feature
fusion network to enhance the SR effect. The edge detection network extracts the gradient
features of the image, while the feature fusion network combines the edge information with
the low-resolution features of the image to produce a high-resolution image.
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2.3. Perceptual Loss

The effectiveness of MSE [40] and other pixel-wise loss functions in reconstructing
high-frequency details of HR images is limited: minimizing MSE [40] encourages finding
a pixel-averaged solution that is overly smooth and perceptually a poor result. Rather
than pixel-wise loss, perceptual loss [41] compares the feature map obtained by HQ image
convolution with the one obtained by HR image convolution to make the high-level
information more consistent. The perceptual loss [41] comprises a trained loss network
and loss functions, where the former extracts high-level semantic features, and the latter
reduces the error between the feature maps extracted by the pre-trained loss network.
Compared with the traditional comparison between the differences of individual pixels,
the perceptual loss [41] can better retain higher levels of information on image SR tasks.

Numerous studies concentrate on designing loss functions with better-oriented texture
learning ability. Extending from pixel-wise error measures, some researchers [42] measure
the error from the features extracted from a pre-trained loss network. Perceptually more
realistic SR results have been achieved by designing a loss function between feature maps
extracted from the VGG network [43]. Subsequently, Li [44] studied the impact of patch
comparison and mixing in the pixel and VGG feature spaces. However, existing perceptual
loss methods do not consider semantic information when computing the reconstruction loss
over the entire image. Recently, researchers have proposed a new method called SROBB [45],
which generates object, background, and boundary (OBB) labels from segmentation labels
to estimate the appropriate perceptual loss at the boundary. Additionally, SROBB [45]
applies different penalties for images at different semantic levels.

Remote-sensing images usually not only cover the spectral information of multiple
bands but also have a wealth of surface information. The traditional MSE [40] loss functions
often make it difficult to retain the information accurately during overprocessing. However,
a few perceptual loss [41] methods have been applied to remote sensing. To our knowledge,
only Chen et al. advocated using semantic edge-aware loss [46] to improve remote-sensing
segmentation precision.

3. Method
3.1. Overview of the Proposed Network

Figure 1 illustrates the proposed CGC-Net involving a simple encoder–decoder struc-
ture comprising five parts: prior maps generator, shallow content encoder, deep texture
encoder, HR image reconstruction, and HFC Loss. The prior map generator includes
a segmentation network (DeeplabV3+ [47] in this paper) and the inverse distance map
generator. In a prior map generator, the low-quality (LQ) image ILQ ∈ RH×W×C (H, W, C
are the image height, width, and the channel of the LQ image, respectively) is input into
a segmentation network to obtain its segmentation map Iseg ∈ RH×W×C1 , and then from
our carefully designed inverse distance transform, we generate the inverse distance map
Iiv ∈ RH×W×C1 from the segmentation map.

In the shallow content encoder, we use a simple convolutional layer to extract shallow
features Fl ∈ RH×W×C2 of the input LQ remote-sensing image, where the convolution
layer provides a simple way to map the LQ image into higher-dimensional feature repre-
sentations. Then, we extract deep features Fd ∈ RH×W×C2 via the deep texture encoder,
consisting of several global context-constrained layers (GCCL), guided local feature en-
hancement blocks (GLFE), and additional convolution layers. We input the LQ image with
the segmentation map and the inverse distance map into the global context-constrained
layer (GCCL) as prior knowledge to model the global contextual information of remote-
sensing images. Although deeper layers focus on learning semantic representation [48],
such networks lack learning local textures. Therefore, we design the guided local feature
enhancement block (GLFE) to enhance the semantic features with local texture context. The
additional convolution layer at the end of the deep texture encoder is designed to enhance
the inductive bias, laying the foundation for the subsequent convergence of shallow and
deep features.



Remote Sens. 2023, 15, 3171 5 of 26

Remote Sens. 2023, 15, x FOR PEER REVIEW 5 of 28 
 

 

sensing images. Although deeper layers focus on learning semantic representation [48], 
such networks lack learning local textures. Therefore, we design the guided local feature 
enhancement block (GLFE) to enhance the semantic features with local texture context. 
The additional convolution layer at the end of the deep texture encoder is designed to 
enhance the inductive bias, laying the foundation for the subsequent convergence of shal-
low and deep features. 

At the end of the model, we use the sub-pixel convolution [17] as the high-resolution 
image reconstruction decoder to reconstruct the high-resolution (HR) remote-sensing im-
age from aggregating shallow and deep features. In addition, we designed a novel high-
frequency consistency (HFC Loss) to enhance the gradient consistency between the recon-
structed HR image and the HQ image. 

Shallow 
Content 
Encoder

Segmengta
tion

Network

G

C

C

L

Inverse 
Distance 

Map
Generator

HR Image 
Reconstruction⊕ 

Deep Texture Encoder

G

C

C

L

G

L

F

E

G

L

F

E

G

L

F

E

 Segmentation 
map

Inverse distance
map

LQ HR

G

C

C

L

C

O

N

V

Priori Maps Generator

HQ

High-frequency
Consistency 

Loss 
(HFC Loss)

the flow of the segmentation map

the flow of the inverse distance map

 
Figure 1. The architecture of the proposed model for remote-sensing image super resolution. Our 
model follows the simple encoder–decoder architecture. The core modules of the model are: (a) In-
verse Distance Map Generator that uses the segmentation map to generate the inverse distance map. 
(b) Global Context-Constrained Layer (GCCL) that uses the segmentation map and the inverse dis-
tance map in cross-attention to enhance global features. (c) Guided Local Feature Enhancement 
Block (GLFE) that uses the gradient map of the segmentation map as the guided image in the guided 
filter layer to enhance local features. (d) High-frequency Consistency Loss (HFC Loss) that enhances 
the gradient consistency between the reconstructed HR image and the HQ image. ⊕  denotes ele-
ment-wise addition. 

Section 3.2 introduces the proposed Prior Maps Generator. Sections 3.3 and 3.4 pre-
sent the global context-constrained layer (GCCL) and the guided local feature enhance-
ment block (GLFE), and Section 3.5 introduces the loss functions. 

3.2. Prior Maps Generator 
Figure 1 depicts that the low-quality (LQ) remote-sensing image is first fed into a 

segmentation network (DeeplabV3+ [47]) to obtain the segmentation map. Next, we gen-
erate the inverse distance map via the inverse distance map generator. All processes for 
generating inverse distance maps are presented in Algorithm 1: Specifically, for one input 
segmentation map, p represents a pixel point inside the objects, and q is a pixel point on 
the object boundaries. Then, we calculate the distance between pixel point p and pixel 
point q using the Euclidean distance: 

2
( , ) ,d p q p q=   (1)

Furthermore, for every pixel point p, we define the transformation distance as: 

Figure 1. The architecture of the proposed model for remote-sensing image super resolution.
Our model follows the simple encoder–decoder architecture. The core modules of the model are:
(a) Inverse Distance Map Generator that uses the segmentation map to generate the inverse dis-
tance map. (b) Global Context-Constrained Layer (GCCL) that uses the segmentation map and
the inverse distance map in cross-attention to enhance global features. (c) Guided Local Feature
Enhancement Block (GLFE) that uses the gradient map of the segmentation map as the guided image
in the guided filter layer to enhance local features. (d) High-frequency Consistency Loss (HFC Loss)
that enhances the gradient consistency between the reconstructed HR image and the HQ image.
⊕ denotes element-wise addition.

At the end of the model, we use the sub-pixel convolution [17] as the high-resolution
image reconstruction decoder to reconstruct the high-resolution (HR) remote-sensing
image from aggregating shallow and deep features. In addition, we designed a novel
high-frequency consistency (HFC Loss) to enhance the gradient consistency between the
reconstructed HR image and the HQ image.

Section 3.2 introduces the proposed Prior Maps Generator. Sections 3.3 and 3.4 present
the global context-constrained layer (GCCL) and the guided local feature enhancement
block (GLFE), and Section 3.5 introduces the loss functions.

3.2. Prior Maps Generator

Figure 1 depicts that the low-quality (LQ) remote-sensing image is first fed into a
segmentation network (DeeplabV3+ [47]) to obtain the segmentation map. Next, we
generate the inverse distance map via the inverse distance map generator. All processes
for generating inverse distance maps are presented in Algorithm 1: Specifically, for one
input segmentation map, p represents a pixel point inside the objects, and q is a pixel point
on the object boundaries. Then, we calculate the distance between pixel point p and pixel
point q using the Euclidean distance:

d(p, q) = ‖p, q‖2 (1)

Furthermore, for every pixel point p, we define the transformation distance as:

D(p) = min
∀q∈Q

(F(q) + d(p, q)) (2)

where Q denotes the set of pixels on the object boundaries and F(q) is the pixel value of
point q. Then, we obtain the distance map Idis by constantly updating the pixel values.
Subsequently, we generate the inverse distance map by inverting the non-background
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region of the distance map. The result of the inverse distance map generator is illustrated
in Figure 2.
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Algorithm 1: Inverse Distance Map Generator
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3.3. Global Contex-Constrained Layer (GCCL)

As shown in Figure 3, the proposed GCCL consists of a RSTB [17] and a constrained
cross-attention block (CCAB). In GCCL, we input the LQ image with the segmentation map
and the inverse distance map obtained from Section 3.2 as prior knowledge to model global
contextual constraint information. Figure 2 highlights that the geometric context of images
is well represented in the inverse distance map (Figure 2d), such as shape, boundary, and
profile information. In addition, the segmentation map (Figure 2b) indicates the context of
regions where pixels belonging to the same (different) class might have similar (different)
textures in remote-sensing images. Therefore, we design a constrained cross-attention block
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(CCAB) in GCCL to use these maps as prior knowledge to learn high-quality features with
global context constraints.
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Figure 3. The structure of the proposed GCCL. (a) Two components of GCCL. (b) The workflow of
the proposed constrained cross-attention block (CCAB). LN and CONV stand for linear layer and
convolution layer respectively.

The workflow of CCAB is depicted in Figure 3b. We use the natural exponential
function to smooth the value because there is a significant amount of zero entries in the
segmentation map and the inverse distance map, as presented in Equations (3) and (4).

Fseg =
(
exp

(
Iseg
)
−min

(
exp

(
Iseg
)))

/
(
max

(
exp(Iseg)

)
−min

(
exp

(
Iseg
)))

(3)

Fiv = (exp(Iiv)−min(exp(Iiv)))/(max(exp(Iiv))−min(exp(Iiv))) (4)

For convenience, we use Fseg and Fiv to demonstrate the tensor extracted from the
normalized segmentation map and the inverse distance map, respectively. We use Fi−1 to
demonstrate the tensor extracted from RSTB [17]. Specifically, we first calculate query (Q)
from Fi−1 ∈ RĤŴ×Ĉ via a simple linear layer. Next, we apply element-wise multiplication
between Fiv ∈ RĤ×Ŵ×Ci and Fi−1 ∈ RĤŴ×Ĉ. Then, the dot product F̂ ∈ RĤŴ×Ĉ is fed
to another linear layer to get the value (V). Finally, we use a 3 × 3 convolution layer to
extract the features of the segmentation map, and then we produce key (K) via another
linear transformation. The process is described through the following equations:

Q = LN(Fi−1) (5)

K = LN
(
CONV

(
Fseg
))

(6)

V = LN(Fiv � Fi−1) (7)

where LN is the linear transform, and the CONV represents the convolution layer, while �
denotes element-wise multiplication. Finally, we calculate the constrained cross-attention
value by applying the softmax function [49]. In addition, the input of CCAB is added to
the output through the residual connection [31]. The overall process of CCAB is defined
as follows:

Attention(Q, K, V) = softmax(QKT/
√

dk) ·V (8)

Fi = Attention(Q, K, V) + Fi−1 (9)

where dk is the dimension of the query (Q), Fi−1 denotes the original input tensor, and
Fi represents the final output of GCCL. The Formula (8) is calculating the constrained
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cross-attention score. It is based on the calculation method of attention score proposed in
Transformer [34] model. The formula 9 describes the process of residual connection, which
is first proposed in Resnet [31]. Moreover, the coefficients are learned adaptively from the
training data. The proposed CCAB borrows the ideas of Transformer [34] model.

3.4. Guided Local Feature Enhancement Block (GLFE)

As described in Section 3.3, the proposed CGC-Net models the global contextual
constraint information from three GCCLs. Neural network with deeper layers has great
ability on learning high-level features, while the ability of extracting low-level and local
features is relatively weak [50]. Therefore, we propose a guided local feature enhancement
block (GLFE) to enhance the local texture context via a learnable guided filter from deep
layers. GLFE uses the Sobel gradient map of the segmentation map as the guided image
(the guided image selection is studied in the experimental section) of a carefully designed
guided filter layer while playing the key role in obtaining features with local texture context.
The whole process of GLFE is depicted in Figure 4.

Remote Sens. 2023, 15, x FOR PEER REVIEW 8 of 28 
 

 

−=  1( )iv iV LN F F   (7)

where LN is the linear transform, and the CONV represents the convolution layer, while 
  denotes element-wise multiplication. Finally, we calculate the constrained cross-atten-
tion value by applying the softmax function [49]. In addition, the input of CCAB is added 
to the output through the residual connection [31]. The overall process of CCAB is defined 
as follows: 

Attention( , , ) softmax( )kQ K V QK d VΤ= ⋅   (8)

1Attention( , , )i iF Q K V F −= +   (9)

where kd  is the dimension of the query (Q), 1iF−  denotes the original input tensor, and 
iF  represents the final output of GCCL. The Formula (8) is calculating the constrained 

cross-attention score. It is based on the calculation method of attention score proposed in 
Transformer [34] model. The formula 9 describes the process of residual connection, 
which is first proposed in Resnet [31]. Moreover, the coefficients are learned adaptively 
from the training data. The proposed CCAB borrows the ideas of Transformer [34] model. 

3.4. Guided Local Feature Enhancement Block (GLFE) 

As described in Section 3.3, the proposed CGC-Net models the global contextual con-
straint information from three GCCLs. Neural network with deeper layers has great abil-
ity on learning high-level features, while the ability of extracting low-level and local fea-
tures is relatively weak [49]. Therefore, we propose a guided local feature enhancement 
block (GLFE) to enhance the local texture context via a learnable guided filter from deep 
layers. GLFE uses the Sobel gradient map of the segmentation map as the guided image 
(the guided image selection is studied in the experimental section) of a carefully designed 
guided filter layer while playing the key role in obtaining features with local texture con-
text. The whole process of GLFE is depicted in Figure 4. 

 
Figure 4. The calculation process of the guided local feature enhancement block (GLFE). ⊕ denotes 
element-wise addition. 

Figure 4 presents a feature map fI , which is extracted from RSTB [17], as one of the 
input images of the guided filter layer. From the perspective of a guided filter, the high-
frequency information of the output image oI  is determined by the guided image. The 
developed scheme uses the Sobel Edge Detect operator [51] to create the segmentation 
map. Then, we use the Sobel gradient map of the segmentation map segsobel(I )  as the 

Figure 4. The calculation process of the guided local feature enhancement block (GLFE). ⊕ denotes
ele-ment-wise addition.

Figure 4 presents a feature map I f , which is extracted from RSTB [17], as one of the
input images of the guided filter layer. From the perspective of a guided filter, the high-
frequency information of the output image Io is determined by the guided image. The
developed scheme uses the Sobel Edge Detect operator [51] to create the segmentation map.
Then, we use the Sobel gradient map of the segmentation map sobel(Iseg) as the guided
image (the choice of the guided image is studied in the experimental section) in the guided
filter layer. Next, the output image is regarded as the local linear transformation of the
guided image in the filtering window wk. Thus, the output image can be expressed as:

Io[i] = ak ∗
(
sobel

(
Iseg
)
[i]
)
+ bk, ∀i ∈ wk (10)

where I0[i] is the pixel value of the i-th point in the output image, sobel(Iseg)[i] is the
i-th point in the Sobel gradient map of the segmentation map, ak and bk are the linear
coefficients of the local filtering window. This strategy has been proven useful in enhancing
local details of the output image Io.
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To determine the linear coefficients, we assume that the noise between the output
image I0 and the input feature map I f is as small as possible. In addition, in the guided
filter, a regularization parameter ε is introduced to prevent ak from being too large. Thus,
in the filtering window wk, this purpose can be formulated as follows:

argmin ∑
i∈wk

((
ak ∗

(
sobel(Iseg)[i]

)
+ bk − I f [i]

)2
+ εa2

k

)
(11)

Linear regression can give the optimization in Equation (11):

ak =

1
|w|∑i∈wk

(
sobel

(
Iseg
)
[i] ∗ I f [i]

)
− µk

1
|w|∑i∈wk

I f [i]

σ2
k + ε

(12)

bk =
1
|w| ∑

i∈wk

I f [i]− akµk (13)

where µk and σ2
k are the mean and variance of sobel(Iseg)[i] in the filtering window wk

and |w| is the number of pixels in wk. Then, by substituting the two linear coefficients
into Equation (10), we can obtain the output of the guided filter [52]. In addition, in this
module, we employ the residual connection [31]. Overall, the GLFE process is formulated
as follows:

Io = GF
(

I f , sobel
(

Iseg
))

(14)

Fo = I f + Io (15)

where GF represents the guided filter, I f is the feature map extracted from RSTB [17],
sobel(Iseg) is the Sobel gradient map of the segmentation map, Io is the output of the
guided filter layer, and Fo is the final output of GLFE.

3.5. Loss Functions

High-frequency consistency loss (HFC loss). Unlike traditional perceptual loss [41],
we design a novel high-frequency consistency loss (HFC loss) to measure the high-frequency
information variance between the reconstructed HR images and the original HQ images.
Specifically, we use the canny edge detector [23] to extract the high-frequency information
of the image and then employ the canny gradient image as the true value to train a three-
layer CNN network Ω (Figure 5a). Then, from the perspective of perceptual loss [41], Ω
is considered a high-frequency loss network whose parameter is fixed while training the
CGC-Net. In the HFC loss, we calculate the L1 loss [29] between the feature maps of the
reconstructed HR and HQ images while preserving their high-frequency consistency to
enhance the high-frequency texture in the reconstructed HR image. The computational
flow of HFC loss is illustrated in Figure 5b, and it can be formulated as follows:

LHFC = ∑
i
αi
∥∥Ωi(IHR)−Ωi(IHQ)

∥∥
1 (16)

where Ωi represents the i-th feature map of the high-frequency loss network and αi is the
weight coefficient of this feature map, set to 1/4, 1/4, and 1/2, respectively.
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Reconstruction loss. Considering that using L2 loss [37] for reconstructing HR images
will excessively smooth them, we adopt the L1 loss [29] because it better maintains the
spatial structure of the LQ images:

Lrec =
∥∥IHR − IHQ

∥∥
1 (17)

Adversarial loss. To enhance the visual quality of the reconstructed image and restore
its original texture, we utilize the adversarial loss from GAN [53]:

LD = ∑
i

log
(
1− Dη(Gθ(xi))

)
(18)

The total losses of the CGC-Net are as follows:

L = λ1 ∗Lrec + λ2 ∗LD + λ3 ∗LHFC (19)

where λ represents the equilibrium parameter of each loss, set to 1, 0.2, and 0.04, respectively.

4. Experiments and Analysis
4.1. Datasets and Implementation Details
4.1.1. Datasets

In order to evaluate the effectiveness of our proposed model, we employ three chal-
lenging public remote-sensing image datasets, including the Inria Aerial Image dataset [54],
the WHU Building dataset [55], and the ISPRS Potsdam dataset [56]. Several representative
image samples are depicted in Figure 6.
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Figure 6. Close-up images of three datasets. The image samples in the Inria Aerial image dataset [54],
the WHU Building dataset [55], and the ISPRS Potsdam dataset [56] are shown from the first to the
third row, correspondingly.

The Inria Aerial Image dataset [54] consists of five open-access land-cover types from
Chicago, Kitsap Country, Austin, Vienna, and West Tyrol. The images are aerial RGB with
a very high spatial resolution of 0.3 m. There are 36 rectified images totaling 81 km2 in each
location. The dataset images are divided into 18,000 non-overlapping 500× 500 tiles, and to
decrease graphics memory requirements, we choose 120 images randomly and further crop
them into 3000 smaller images, each measuring 100 × 100 pixels. The remaining images
are utilized as the training set.

The WHU Building dataset [55] has 8189 image samples divided into building and
non-building categories. A training set (4736 tiles), a test set (2416 tiles), and a validation
set (1036 tiles) with a 512× 512 size make up the 3 official divisions. Over 220,000 buildings
from New Zealand are extracted for the WHU Building dataset [55], having the same
spatial resolution of 0.3 m as the Inria Aerial Image dataset [54]. The dataset’s building
labels are all artificially aligned. The 216 images used in our studies are randomly chosen,
and the test set is split into 3456 smaller images with a 128 × 128 size. The remaining
samples are used as the training set.

The 38 UAV remote-sensing images in the ISPRS Potsdam dataset [56] have a fixed
resolution of 6000 × 6000 and generally fall into the following 6 categories: background,
car, tree, low vegetation, building, and impervious surfaces. We divide these images into
5472 500 × 500 patches following earlier efforts. Then, 200 images are used as the test
set, and 5272 images are randomly chosen as the training set. Additionally, the test set’s
200 images are divided into 3200 sub-images with a 100 × 100 size, which is used as the
final test set to save graphics memory.

4.1.2. Implementation Details and Metrics

To generate low-quality (LQ) images with two, four, and eight sampling factors, the
original high-quality (HQ) images are downsampled using the Bicubic function [29]. In
order to evaluate the effectiveness of the proposed CGC-Net, we compare its performance
with several classical SR methods (SRCNN [15], VDSR [30], EDSR [57], RCAN [35]), two
of the latest state-of-the-art (SOTA) SR methods (SwinIR [17], Restormer [18]), and the
specifically designed RSI-SR methods (MHAN [21], SA-GAN [58]). We employ two widely
used image quality assessment metrics, namely PSNR and SSIM, to quantify the model’s
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performance. A larger PSNR value indicates a smaller distortion in the reconstructed HR
image. The PSNR value can be calculated as follows:

PSNR = 10 log10
MAX
MSE

(20)

where MAX is the maximum pixel value in the image, and the calculation formula of
MSE is:

MSE =
1

HW

H−1

∑
i=0

W−1

∑
j=0

[
IHR − IHQ

]2 (21)

where H and W represent the height and width of the image, respectively. Another full-
reference index for evaluating image quality is SSIM, which evaluates image similarity
based on brightness, contrast, and structure. The SSIM formula is:

SSIM(x, y) = l(x, y)αc(x, y)βs(x, y)γ (22)

However, the traditional image similarity measurement metrics are usually based on
pixel value or structure information, which cannot reflect the difference in perception of
human system vision. Therefore, to further demonstrate the effectiveness of our method,
we also compare and evaluate the LPIPS value of each method. The LPIPS is calculated as:

LPIPS(x, y) =
1
n

n

∑
i=1
‖ fi(x)− fi(y)‖2 (23)

where x and y are the two images to be compared, fi represents the feature extractor of the
i-th convolutional layer, and n represents the number of convolutional layers. All models
are trained on a desktop with Ubuntu 22.04, CUDA 11.7, CUDNN 8.4, and two NVIDIA
GTX 3090 GPUs. The Adam optimizer [37] is employed for optimization with β1 = 0.9 and
β2 = 0.99. The learning rate is initialized to 2 × 10−4 and decreases based on a polygon
learning rate adjustment schedule.

4.2. Comparison Experiments on the Inria Aerial Image Dataset

Table 1 shows the average performance of the proposed CGC-Net and other competing
deep learning-based methods on the Inria Aerial Image dataset [54] with scale factors of
2 and 4. Bold values indicate the optimal outcomes and the underlined values are sub-
optimal. The proposed CGC-Net attains the best performance on the Inria Aerial Image
dataset [54], achieving an average PSNR value of 0.3677/0.3306 dB, higher than the sub-
optimal method, for scale factors of 2 and 4, respectively. The mean SSIM values are
0.0099/0.0096 higher than the suboptimal method when the scale factors are 2 and 4,
respectively. Furthermore, the mean LPIPS values are 0.0057/0.0025 lower than the subop-
timal method when the scale factors are 2 and 4, respectively. It further demonstrates the
effectives of our proposed CGC-Net method.

Figure 7 displays the reconstructed images from the other competing algorithms
on the Inria Aerial Image dataset [54] with a scale factor of 2. Images in the third and
fourth rows present the MSE maps between the reconstructed HR and the original HQ
images. According to the reconstruction results, the proposed CGC-Net obtains superior
PSNR/SSIM values than current approaches, which is also reflected in the MSE maps that
present fewer errors (zoom in for a better view).
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Table 1. SOTA comparisons on the Inria Aerial Image dataset [54]. The best and suboptimal results
are shown in bold and underlined respectively.

Methods Scales PSNR↑ SSIM↑ LPIPS↓
SRCNN [15] 33.9729 0.8680 0.0963
VDSR [30] 34.1635 0.8710 0.0880
EDSR [57] 34.4402 0.8779 0.0800
RCAN [35] 34.4525 0.8782 0.0776
SwinIR [17] ×2 34.4400 0.8784 0.0831

Restormer [18] 34.4450 0.8787 0.0772
MHAN [21] 34.3525 0.8774 0.0783

SA-GAN [58] 34.3901 0.8777 0.0801
CGC-Net (Ours) 34.8202 0.8886 0.0715

SRCNN [15] 29.6069 0.7058 0.1787
VDSR [30] 29.6957 0.7110 0.1592
EDSR [57] 29.8370 0.7153 0.1401
RCAN [35] 29.8044 0.7141 0.1431
SwinIR [17] ×4 29.8411 0.7150 0.1409

Restormer [18] 29.8405 0.7009 0.1422
MHAN [21] 29.8212 0.7121 0.1410

SA-GAN [58] 29.8016 0.7119 0.1417
CGC-Net (Ours) 30.1717 0.7249 0.1376
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4.3. Comparison Experiments on the WHU Building Dataset

Table 2 reports the performance comparison of CGC-Net and other deep learning-
based methods on the WHU Building dataset [55] with scaling factors of 2 and 4. The
optimal results are shown in bold, and the non-ideal results are underlined. The results
infer that CGC-Net outperforms all competing methods on the WHU Building dataset [55].
Specifically, the mean PSNR value of CGC-Net is 0.3268/0.4250 dB, higher than the sub-
optimal method when the scale factors are 2 and 4, respectively. The mean SSIM values
are 0.0072/0.0104 higher than those of the suboptimal method. Furthermore, the mean
LPIPS values are 0.0018/0.0024 lower than those of the suboptimal method. A higher PSNR
value indicates lower noise in the reconstructed image, while a higher SSIM value indicates
less distortion in the reconstructed image. Additionally, a lower LPIPS value indicates the
smaller the perceived distance between the reconstructed HR image and the original HQ
image.

Table 2. SOTA comparisons on the WHU Building dataset [55]. The best and suboptimal results are
shown in bold and underlined, respectively.

Methods Scales PSNR↑ SSIM↑ LPIPS↓
SRCNN [15] 25.7705 0.7119 0.1326
VDSR [30] 26.3692 0.7391 0.1124
EDSR [57] 26.7306 0.7531 0.1031
RCAN [35] 26.7347 0.7532 0.1030
SwinIR [17] ×2 26.7504 0.7543 0.1023

Restormer [18] 26.6706 0.7510 0.1048
MHAN [21] 26.7312 0.7533 0.1034

SA-GAN [58] 26.6692 0.7507 0.1051
CGC-Net (Ours) 27.0772 0.7615 0.1005

SRCNN [15] 22.8173 0.4857 0.2252
VDSR [30] 23.1390 0.5186 0.1932
EDSR [57] 23.5048 0.5464 0.1824
RCAN [35] 23.5346 0.5481 0.1818
SwinIR [17] ×4 23.5216 0.5468 0.1820

Restormer [18] 23.5754 0.5522 0.1804
MHAN [21] 23.5122 0.5466 0.1822

SA-GAN [58] 23.4817 0.5452 0.1841
CGC-Net (Ours) 24.0004 0.5626 0.1780

Figure 8 displays the reconstructed HR images of the WHU Building dataset [55] using
various competitive methods with a scale factor of 2, demonstrating the same outcome.
The third and fourth rows show the MSE maps between the original HQ and the recon-
structed HR images. CGC-Net achieves better PSNR/SSIM values than the competitor deep
learning-based SR methods, demonstrated by better recovering the textures and structures,
such as clearer lines, in the reconstructed results. The MSE maps in the third and fourth
rows also reflect fewer errors in our reconstructed HR image (zoom in for a better view).
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high-resolution (HR) results.

4.4. Comparison Experiments on the ISPRS Potsdam Dataset

Furthermore, to evaluate the effectiveness of the proposed CGC-Net at higher ampli-
fication scale factors, we conduct a comparison study with several deep learning-based
methods on the ISPRS Potsdam dataset [56]. In this study, we use scale factors of 4 and 8,
which differs from those used in the other two datasets (2 and 4). Table 3 reports the average
performance of these methods, with bold values indicating optimal outcomes and under-
lined values representing suboptimal outcomes. Compared to the suboptimal method, the
Restormer [18], CGC-Net shows higher average PSNR values of 0.1008/0.0895 dB with
scale factors of 4 and 8, respectively. Similarly, when the scale factor is 4, CGC-Net exhibits
a higher average SSIM of 0.0013 than Restormer [18]. In addition, CGC-Net exhibits a lower
average LPIPS of 0.0046 than EDSR [57]. However, CGC-net shows larger SSIM values
on the ×8 test set, mainly because the original spatial resolution is high, depressing the
importance of learning the global and local constraint representations when the sampling
ratio is high.

To better compare the reconstruction effect, we visualize the reconstructed high-
resolution (HR) images on the ISPRS Potsdam dataset [56] with a scale factor of 4. The mean
squared error (MSE) between the original high-quality (HQ) images and the reconstructed
HR images is shown in the third and fourth rows of Figure 9. The suggested CGC-Net
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outperforms the competitor methods, as evidenced by the smaller reconstruction error
highlighted in the red box (zoom in for a better view).

Table 3. SOTA comparisons on the ISPRS Potsdam dataset [56]. The best and suboptimal results are
shown in bold and underlined, respectively.

Methods Scales PSNR↑ SSIM↑ LPIPS↓
SRCNN [15] 33.4417 0.8521 0.1206
VDSR [30] 34.1902 0.8645 0.1056
EDSR [57] 34.8442 0.8764 0.0944
RCAN [35] 34.8863 0.8784 0.0947
SwinIR [17] ×4 34.7476 0.8750 0.0951

Restormer [18] 34.8876 0.8789 0.0956
MHAN [21] 34.8246 0.8762 0.0960
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To better compare the reconstruction effect, we visualize the reconstructed high-res-
olution (HR) images on the ISPRS Potsdam dataset [55] with a scale factor of 4. The mean 
squared error (MSE) between the original high-quality (HQ) images and the reconstructed 
HR images is shown in the third and fourth rows of Figure 9. The suggested CGC-Net 
outperforms the competitor methods, as evidenced by the smaller reconstruction error 
highlighted in the red box (zoom in for a better view). 

4.5. Model Efficiency Analysis 

Table 4. Comparisons of model parameters (Params) and floating-point operations per second 
(FLOPs). Params and FLOPs are tested on a LR image with 48 × 48 pixels. 
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Figure 9. A visual comparison of the proposed CGC-Net with other models on the ISPRS Potsdam
dataset [56]. The models were evaluated using a scale factor of 4, and the third and fourth rows
of the figure show the mean squared error (MSE) between the high-quality (HQ) image and the
high-resolution (HR) results.
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4.5. Model Efficiency Analysis

In order to evaluate the computational complexity of the proposed CGC-Net, we
report the values of the model parameters (Params/M) and the floating-point operations
per second (FLOPs) of these image super-resolution methods in Table 4. The higher
parameters indicate that the proposed CGC-Net has a stronger representation ability than
the SwinIR [17] method. Combined with the floating-point operations per second (FLOPs)
value of the proposed CGC-Net, it can be concluded that our method achieves a great
trade-off between computational performance and model parameters. However, it also
means higher computational cost and memory consumption of the CGC-Net. There is no
doubt that this large computational complexity of the proposed CGC-Net leads to longer
training time. In our feature studies, we will further optimize the computational complexity
of the proposed CGC-Net.

Table 4. Comparisons of model parameters (Params) and floating-point operations per second
(FLOPs). Params and FLOPs are tested on a LR image with 48 × 48 pixels.

Method Param (M) FLOPs (G)

SRCNN [15] 0.06 0.26
VDSR [30] 0.67 1.53
EDSR [57] 40.72 4.75
RCAN [35] 15.44 35.36
SwinIR [17] 11.75 27.03

Restormer [18] 26.12 4.96
MHAN [21] 11.20 26.10

SA-GAN [58] 36.39 18.39
CGC-Net (Ours) 15.17 39.01

4.6. Ablation Studies and Analysis

In this section, we ablate the importance of the elements involved in CGC-Net. All
ablation results are conducted on the WHU Building dataset [55] with a scale factor of 2.

4.6.1. Hyperparameter Tuning of Weight Loss

This ablation study is conducted to determine the suitable setting for the weight loss.
As described in Section 3.5, λ1, λ2, and λ3 represent the weight coefficients of reconstruc-
tion loss, adversarial loss, and high-frequency consistency loss (HFC loss), respectively.
Following previous works [59], we first experiment with the effect of only using recon-
struction loss Lrec, when λ2 and λ3 are set to 0. As shown in Table 5, when λ2 and λ3
are set to 0.1/0.04, an additional 0.1402 dB PSNR value and 0.0045 SSIM value can be
obtained compared with only using reconstruction loss. However, when λ2 and λ3 are set
to 0.2/0.02, a slight decrease of the PSNR/SSIM values can be observed. To obtain the best
results, many hyperparameter adjustment experiments have been conducted, and we set
the weight hyperparameters for reconstruction loss, adversarial loss, and HFC loss to 1, 0.2,
0.04, respectively. Due to the integral property of the Fourier transform [60], the weight of
the proposed HFC loss is much less than other loss functions.

Table 5. Results of average PSNR and SSIM values of different equilibrium parameters of each loss.
The best and suboptimal results are shown in bold and underlined, respectively.

λ1 λ2 λ3 PSNR↑ SSIM↑
1 0 0 26.7891 0.7557
1 0.1 0.04 26.9293 0.7602
1 0.2 0.02 26.8841 0.7577
1 0.2 0.04 27.0772 0.7615
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4.6.2. The Influence of Using Different Images as Guided Images

In this section, we investigate the impact of utilizing various images, such as the
low-quality (LQ) image, the Sobel gradient map of the LQ image, the segmentation
map, the Sobel gradient map of the segmentation map, the distance map, and the in-
verse distance map, as guided images in guided local feature enhancement block (GLFE).
The guided filter assigns high-frequency information to the output image based on the
guided image, influencing the overall SR results. Figure 10 illustrates the different guided
image representations.
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Figure 10. One example using different images as the guided image. (a) LQ image, (b) The Sobel
gradient map of LQ image, (c) Segmentation map, (d) The Sobel gradient map of the segmentation
map, (e) Distance map, and (f) Inverse distance map.

Table 6 reports the most optimal results achieved when utilizing the gradient map
of the segmentation map as the guided image. Conversely, unsatisfactory performance is
observed when using the LQ image and its gradient map. Deeper layers focus on learning
a semantic representation [48], while lacking learning local textures. Due to the global
characteristics of the LQ image and its Sobel gradient map, the model fails to focus on the
local objective textures effectively. Since the segmentation map approximates the attention
map, driving the model pays more attention to the local textures that need to be restored,
explicitly enhancing local textures. The local information in the segmentation, distance,
and inverse distance maps are redundant, resulting in unsatisfactory results.

Table 6. The effect of using different images as guided images on the performance of the model in
guided local feature enhancement block (GLFE). The bold represents the best value for each metric,
and the upward arrow indicates that the larger the value is, the better the performance.

Guided Image PSNR↑ SSIM↑
LQ image 26.7858 0.7559

the gradient map of LQ image 26.7906 0.7561
Segmentation map 26.7379 0.7541

the gradient map of the segmentation map 27.0772 0.7615
distance map 26.7388 0.7543

inverse distance map 26.7440 0.7543

4.6.3. Components Ablations

In order to showcase the efficacy of the individual components, we progressively
incorporated the global context-constrained layer (GCCL), the guided local feature en-
hancement block (GLFE), the high-frequency consistency loss (HFC loss), and GAN loss
into the baseline model. We trained all models with the same configuration, and the corre-
sponding results per metric are presented in Table 7. Additionally, Figure 11 displays the
visualization images.
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Table 7. The effect of incrementally adding different components on model performance compared to
the baseline model. GCCL represents the global contextual constraint layer, GLFE represents guided
local feature enhancement block, HFC Loss represents high-frequency consistency loss. Bold text
indicates the optimal value for each metric.

Baseline GCCL GLFE HFC Loss GAN Loss PSNR↑ SSIM↑
3
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Figure 11. The overall visual comparisons show the impact of each module on the reconstruction effect.

Table 7 demonstrates that including additional modules results in a gradual improve-
ment of the PSNR and SSIM values. The developed CGC-Net exhibits the best performance
when all modules are incorporated, as the proposed guided context-constrained layer
(GCCL) increases the PSNR values to 0.8189 dB and the SSIM values to 0.0360 SSIM values
compared to the baseline model. Next, adding the guided local feature enhancement block
(GLFE) significantly improves PSNR/SSIM to 0.1957 dB/0.0077, respectively. An additional
0.1400 dB PSNR value and 0.0043 SSIM value can be obtained via our carefully designed
high-frequency consistency loss (HFC Loss). Furthermore, applying GAN Loss has a minor
positive impact on the result, demonstrating that all modules are indispensable for the
proposed CGC-Net.

Figure 11 reveals that the reconstruction effect of the baseline model is blurry. After
adding GCCL, the lines in the playground are clearer, while GLFE increases the information
detail. After adding our carefully designed HFC loss, the lines in the playground and
the roads are more accurate. Finally, by adding GAN Loss, the reconstruction HR image
obtains the best visual performance.
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4.6.4. CGC-Net with Different Training Scales

In this section, we investigate the adaptability of the proposed CGC-Net to a different
number of training labels. We divide the WHU Building dataset [55] into a training set
and a test set according to different partition ratios of 8:2, 5:5, and 2:8, respectively. As
shown in Table 8, when the dataset partition ratio is 8:2, the mean PSNR/SSIM values are
0.3237 dB/0.0059 higher than the SwinIR [17] model. This is mainly because sufficient
training samples enable CGC-Net to make full use of the target information in prior maps.
Especially, to evaluate the performance of the proposed CGC-Net on small labels, we divide
a smaller training set according to the dataset partition ration of 2:8. Experimental results
still show greater performance of the proposed CGC-Net compared to the other models. It
can be observed from Table 8 that our proposed method achieves consistent performance
improvements on all training scales.

Table 8. The adaptability of the proposed CGC-Net to different numbers of training labels. The best
and suboptimal results are shown in bold and underlined, respectively.

Partition Ratio Model PSNR↑ SSIM↑
RCAN [35] 26.6043 0.7530

training set/test set MHAN [21] 26.5778 0.7528
(8:2) SwinIR [17] 26.6201 0.7532

CGC-Net (Ours) 26.9438 0.7591

RCAN [35] 26.4044 0.7503
training set/test set MHAN [21] 26.4001 0.7493

(5:5) SwinIR [17] 26.4079 0.7504
CGC-Net (Ours) 26.5021 0.7506

RCAN [35] 26.2502 0.7394
training set/test set MHAN [21] 26.2379 0.7388

(2:8) SwinIR [17] 26.2505 0.7396
CGC-Net (Ours) 26.3376 0.7401

4.6.5. Adaptability to Noise

To further demonstrate the progressiveness of the proposed CGC-Net, we study
the adaptability of the proposed algorithm to image noise. As a common experimental
setup in the literature [61], additional Gaussian noises [62] with zero mean and standard
deviation σ are added to images to test the performance of noise adaptability. In this
paper, noise level σ are set as 10, 30, and 50, respectively. Figure 12 shows the test images
with different noise levels. SRCNN [15], VDSR [30], EDSR [57], RCAN [35], SwinIR [17],
Restormer [18], MHAN [21], and SA-GAN [58] are compared. As shown in Table 9, the
mean PSNR/SSIM values of the proposed CGC-Net are 0.3268 dB/0.0083, 0.1025 dB/0.0038,
and 0.1968 dB/0.0074 higher than the suboptimal results when the noise level σ is 10, 30,
50, respectively. The experimental results demonstrate that the proposed CGC-Net has
better robustness and generalization ability compared to other models.
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Table 9. Average PSNR and SSIM results of σ 10, 30, 50 on WHU Building dataset [55]. The best and
suboptimal results are shown in bold and underlined, respectively.

σ = 10 σ = 30 σ = 50

PSNR↑
SRCNN [15] 25.0205 22.8105 21.6805

VDSR [30] 25.6692 23.5392 22.4392

EDSR [57] 26.0402 23.9402 22.7402

RCAN [35] 25.9947 23.9647 22.7747

SwinIR [17] 26.0404 23.9104 22.7804

Restormer [18] 25.9606 23.7906 22.5906

MHAN [21] 26.0312 23.8812 22.7112

SA-GAN [58] 25.9392 23.8392 22.7092

CGC-Net (Ours) 26.3672 24.0672 22.9772

SSIM↑
SRCNN [15] 0.6714 0.4851 0.3927

VDSR [30] 0.6944 0.5489 0.4197

EDSR [57] 0.7353 0.5900 0.4570

RCAN [35] 0.7352 0.5991 0.4569

SwinIR [17] 0.7359 0.5975 0.4591

Restormer [18] 0.7350 0.5910 0.4483

MHAN [21] 0.7354 0.5913 0.4585

SA-GAN [58] 0.7342 0.5879 0.4555

CGC-Net (Ours) 0.7442 0.6029 0.4665

4.6.6. Lower and Upper Boundaries of the Proposed CGC-Net

This section investigates the impact of directly utilizing Ground Truth prior maps
(including the segmentation map and the inverse distance map), prior maps predicted
by the DeeplabV3+ [47] model, and random noise maps on the performance of CGC-
Net. These different map representations are depicted in Figure 13. Table 10 reveals that
using Ground Truth prior maps achieves the best PSNR/SSIM values, our model’s upper
boundary. Our method uses the DeeplabV3+ [47] model to generate the segmentation
map and then generates the inverse distance map. This method achieves 27.0772/0.7615
PSNR/SSIM values. Using random noise maps achieves unsatisfactory results because
disorganized noise points disable the model from learning effective information. Thus, we
assume that the results of using random noise maps are the lower boundary of our model.
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Table 10. The influence of utilizing different prior maps on the performance of CGC-Net. The best
results are shown in bold.

Prior Maps PSNR↑ SSIM↑
Ground Truth 27.1979 0.7619

DeeplabV3+ [47] 27.0772 0.7615
Random noise map 26.5379 0.7401

4.6.7. The Influence of Different Reconstructed HR Datasets on Segmentation Task

This study examines the impact of super-resolution reconstruction on downstream
tasks by reconstructing the WHU Building dataset [55] using different SR methods. Specifi-
cally, we use datasets with varying resolutions to assess the segmentation performance of
the segformer [63] model. The mean intersection over union (mIoU) and mean accuracy
(mAcc) are used as standard evaluation metrics to assess the performance of the segmen-
tation model. The mIOU metric calculates the average ratio of the intersection and union
between two images (ground truth and expected outcome), and mACC represents the
average forecast accuracy per category. All segmentation experiments are conducted under
the same parameters to ensure a fair comparison.

Table 11 highlights that the dataset reconstructed by the proposed CGC-Net achieves
the best mIoU and mAcc values, presenting the best SR results compared to the competitor
methods. Due to the unsatisfactory reconstruction effect of the SRCNN [15] method, the
results of segformer [63] model on this dataset are also unsatisfying. Combined with
the reconstruction performance of each method, Table 7 infers that the performance of
the segmentation model is positively correlated with the resolution of the reconstructed
image. Figure 14 demonstrates that the segformer [63] model achieves better results on
the dataset reconstructed by CGC-Net. Hence, the local areas are visualized much better,
strongly demonstrating the significance of the SR algorithm in improving the performance
of downstream tasks.
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results of segformer [63] model on this dataset are also unsatisfying. Combined with the 
reconstruction performance of each method, Table 7 infers that the performance of the 
segmentation model is positively correlated with the resolution of the reconstructed im-
age. Figure 14 demonstrates that the segformer [63] model achieves better results on the 
dataset reconstructed by CGC-Net. Hence, the local areas are visualized much better, 
strongly demonstrating the significance of the SR algorithm in improving the performance 
of downstream tasks. 

 

Table 11. The influence of WHU Building dataset [55] reconstructed by different SR methods with 
a scale factor of 2 on the downstream segmentation task. All segmentation experimental results are 
based on segformer [63] model. The best and suboptimal results are shown in bold and underlined, 
respectively. 

Datasets 
IoU(%) Acc(%) 

mIoU(%) mAcc(%) 
Building Clutter Building Clutter 

SRCNN (HR) [15] 86.09 98.47 89.97 99.52 92.28 94.75 
VDSR (HR) [30] 86.91 98.54 91.46 99.44 92.72 95.45 
EDSR (HR) [57] 87.46 98.60 92.45 99.39 93.03 95.92 
RCAN (HR) [35] 87.61 98.63 91.90 99.48 93.12 95.69 
SwinIR (HR) [17] 88.18 98.69 92.21 99.51 93.44 95.86 

Restormer (HR) [18] 87.89 98.66 92.21 99.48 93.27 95.84 
CGC-Net (Ours HR) 89.47 98.83 93.84 99.48 94.15 96.66 

                              
Figure 14. Mapping results on the WHU Building dataset [55] reconstructed by different SR meth-
ods. Building: white and clutter: black. 

Figure 14. Mapping results on the WHU Building dataset [55] reconstructed by different SR methods.
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Table 11. The influence of WHU Building dataset [55] reconstructed by different SR methods with a
scale factor of 2 on the downstream segmentation task. All segmentation experimental results are
based on segformer [63] model. The best and suboptimal results are shown in bold and underlined,
respectively.

Datasets
IoU (%) Acc (%)

mIoU (%) mAcc (%)
Building Clutter Building Clutter

SRCNN (HR) [15] 86.09 98.47 89.97 99.52 92.28 94.75
VDSR (HR) [30] 86.91 98.54 91.46 99.44 92.72 95.45
EDSR (HR) [57] 87.46 98.60 92.45 99.39 93.03 95.92
RCAN (HR) [35] 87.61 98.63 91.90 99.48 93.12 95.69
SwinIR (HR) [17] 88.18 98.69 92.21 99.51 93.44 95.86

Restormer (HR) [18] 87.89 98.66 92.21 99.48 93.27 95.84
CGC-Net (Ours HR) 89.47 98.83 93.84 99.48 94.15 96.66

5. Conclusions

This paper proposes a novel Context-Guided Constrained Network, named CGC-
Net for remote-sensing image super-resolution. In CGC-Net, we first design a simple
but effective method to generate inverse distance maps from the remote-sensing image
segmentation maps as prior information. Combined with prior information, we propose a
Global Context-Constrained layer (GCCL). In GCCL, we employ the characteristics of the
segmentation map and the inverse distance map to model high-quality features with global
context constraints. Furthermore, we introduce a Guided Local Feature Enhancement Block
(GLFE) to enhance local texture context via a learnable guided filter from deeper layers.
Additionally, we design a High-Frequency Consistency loss (HFC Loss) to balance the
gradient consistency between the reconstructed HR image and the original HQ image.
Compared with competitive deep learning-based methods, the experimental results demon-
strate promising SR performance from CGC-Net on three typical remote-sensing image
datasets. The reconstructed HR datasets of the proposed CGC-Net achieve state-of-the-art
(SOTA) results on downstream image segmentation tasks, strongly demonstrating the
potential of super-resolution (SR) algorithm to boost the performance of downstream tasks.
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