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Abstract: Due to the increasing maturity of deep learning and remote sensing technology, the
performance of object detection in satellite images has significantly improved and plays an important
role in military reconnaissance, urban planning, and agricultural monitoring. However, satellite
images have challenges such as small objects, multiscale objects, and complex backgrounds. To
solve these problems, a lightweight object detection model named BSFCDet is proposed. First, fast
spatial pyramid pooling (SPPF-G) is designed for feature fusion to enrich the spatial information of
small targets. Second, a three-layer bidirectional feature pyramid network (BiFPN-G) is suggested to
integrate the deep feature’s semantic information with the shallow feature’s spatial information, thus
improving the scale adaptability of the model. Third, a novel efficient channel attention (ECAM) is
proposed to reduce background interference. Last, a new residual block (Resblock_M) is constructed
to balance accuracy and speed. BSFCDet achieves high detection performance while satisfying
real-time performance, according to experimental results.

Keywords: feature fusion; channel attention; object detection; satellite images; lightweight

1. Introduction

Remote sensing technology refers to technology that collects electromagnetic radiation
information on Earth objects via aviation, aerospace, or artificial satellites and recognizes
the Earth’s environment and resources. Due to the increasing maturity of the aviation
industry, the count and quality of remote sensing images (RSIs) have improved significantly,
and it is important to explore how to obtain and utilize the information in RSIs [1]. Remote
sensing object detection (RSOD) is a popular study interest in RSI processing, with the aim
of identifying the categories of objects of interest in RSIs and detecting the locations of
objects [2]. Compared to natural scene images, RSIs have higher resolution, wider coverage,
and contain more information. Based on the above advantages, RSOD is widely utilized in
the following fields:

1. In military reconnaissance, RSOD techniques can detect aircraft, missiles, and other
military equipment and facilities, which is convenient for the rapid acquisition of
military intelligence and is an important part of the modern military system.

2. In urban planning, the relevant departments use RSOD techniques to quickly ob-
tain urban topography, traffic conditions, and other data, which is conducive to the
coordination of urban spatial layouts and the rational use of urban land.

3. In agricultural monitoring, RSOD techniques are used to monitor crop growth, pests,
and other information to take preventive measures to reduce economic losses.

Due to the increasing maturity of deep learning, the performance of RSOD has sig-
nificantly improved. However, there are still some challenges in RSOD, as described
below:
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1. The proportion of small objects is large. Small objects are easily missed due to a lack
of feature information, which affects the detection effect. For example, there are more
small targets in Figure 1a, which creates challenges in RSOD.

2. The scales of objects greatly vary. Objects of the same category or different categories
in RSIs are quite different in scale, and the scales presented by the same object may
vary at different resolutions. As shown in Figure 1b, the scale of the playground is
large, while that of the car is small, which requires the detection algorithm to have
strong scale adaptability.

3. The background is complex. As shown in Figure 1c, remote sensing imaging is
influenced by light, weather, and terrain, which increases the background noise of
RSIs and makes the objects hard to detect.
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As traditional detection methods, the VJ Detector [3], the histogram of oriented gradi-
ents (HOG) [4], and the deformable parts model (DPM) [5] are mainly based on the manual
extraction of features, and have high computational complexity. Deep learning-based
methods can automatically extract features and have better performance. As two-stage
methods, R-CNN [6], SPPNet [7], Fast R-CNN [8], and Faster R-CNN [9] have relatively
high accuracy and low detection speed. One-stage algorithms, such as YOLO [10–13],
improve the detection speed but are less accurate than two-stage algorithms. In recent
years, one-stage algorithms have been migrated to the field of satellite observation and
have obtained good detection performance. However, these methods are devised based
on natural scene images. Compared to natural images, RSIs are obtained from remote
distances, covering a wider range, and are influenced by factors such as lighting, weather,
and terrain. Therefore, RSIs have more small objects, more multiscale objects, and more
complex backgrounds. In this regard, some detection methods for RSIs have been proposed.

To enrich object features, Chen et al. [14] combined the shallowest features with
semantic info and then enhanced and fused them with deep features. However, background
noise was introduced. To reduce noise interference, Fu et al. [15] applied a balancing factor
to balance the weight of feature fusion. However, this method is less robust to different
tasks. Schilling et al. [16] used deconvolution to enlarge the scale of deep features and
combined them with shallow features. Hou et al. [17] suggested a fusion tactic of cascade
features, which fuses spatial features and semantic features to fuse the features of each
layer and strengthen the cascade impression. Qu et al. [18] devised an efficient feature
fusion network using extended convolution to enhance the effective perception field of
deep features. Although the above methods ameliorate the problem of small targets in RSIs,
they reduce the inference speed.
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FPNs [19] fuse underlying visual characteristics with high-level semantic features and
can predict on various scales. Yang et al. and Zou et al. [20–22] employed a dense feature
pyramid based upon the FPN to additionally enhance the connection among characteristics
of diverse scales. Fu et al. [23] increased an additional bottom-up connection after the
top-down FPN to fuse the bottom features with the high-level visual features, which further
enhanced feature expression ability. FMSSD [24] used the FPN and multiple sampling rates
to form a spatial feature pyramid that fuses context information into multiscale features.
These methods improve the performance of multiscale object detection. Nevertheless, the
equilibrium between accuracy and velocity cannot be achieved well.

To reduce the background interference, Zhang et al. [25] extracted the feature mask of
the objects and the background and introduced the pixel attention mechanism to weight
the classes. However, this approach relies on prior knowledge and lacks universality. After
extracting multiscale features, Li et al. [26] utilized the attention mechanism to enhance
the features of each feature map. SCRDet [27] proposed a supervised attention network
to decrease background noise. Li et al. [28] designed a salience pyramid fusion strategy
to suppress background noise and introduced global attention mechanisms to enhance se-
mantic information. Although attentional mechanisms can effectively weaken background
information, they introduce additional mask calculations. Lightweight convolution is often
used to reduce computational costs. Li et al. [29] proposed a lightweight convolutional
called GSConv. Although this method requires more training data and increases tuning
difficulty, the sparse connectivity and group convolution adopted lighten the model and
maintain accuracy. Luo et al. [30] improved inference speed by improving the neck layer of
YOLOv5 with GSConv.

Inspired by the above methods, we propose a lightweight model that combines channel
attention with multiscale feature fusion. First, we designed a fast spatial pyramid pooling
incorporating GSConv (SPPF-G) for feature fusion [7], which fleshes out the spatial features
of small targets. Second, the three-layer bidirectional feature pyramid network (BiFPN-
G) [31] is suggested to integrate the deep semantic information with the shallow spatial
information and to output the feature maps of different scales, which improves the scale
adaptation ability of the model. Last, a novel efficient channel attention (ECAM) [32] is
suggested to reduce background interference. The above methods reduce the inference
speed; we constructed a new residual block (Resblock_M) [33] in the backbone to balance
accuracy and speed.

The following are the contributions of this thesis:

1. We designed SPPF-G for feature fusion, which fleshes out the spatial features of small
targets and improves the detection accuracy of small objects.

2. We modified the two-layer feature pyramid network (FPN) [19] to a three-layer BiFPN-
G to integrate the deep semantic information with the shallow spatial information,
thus improving the detection ability of the model for multiscale objects.

3. We proposed the ECAM to enhance object information and suppress background
noise and proposed a less computational residual block named Resblock_M to balance
accuracy with speed.

The remainder of the paper is arranged as follows: Section 2 presents the relevant
existing methods and our proposed method. Section 3 presents the experimental results
obtained on different datasets. Section 4 is a discussion of the experimental results and
future work. Section 5 is the summarization and future prospects of our work.

2. Methods
2.1. The Existing Methods
2.1.1. YOLOv4-Tiny

We used YOLOv4-tiny as the baseline. The model is faster than most algorithms and
has few parameters, which is conducive to deployment on small devices with limited
resources and is suitable for real-time RSOD. Figure 2 reveals the architecture of YOLOv4-
tiny. The size of the input image is 640 × 640. As shown in Figure 2, the third residual
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block has two branches, one of which is nested with a residual block. The feature map
with a size of 40 × 40 output by this branch is named F0. The feature map with a size of
20 × 20 output from the last CBL in the backbone passes through two CBLs with a step size
of 1 and upsampling, and the obtained feature map with a size of 40 × 40 is concatenated
with F0. YOLO Head is used for localization and classification, where the step size of
both CBL and convolution is 1. If the step size is greater than 1, the input feature will be
downsampled according to that step size during convolution, thereby reducing the size of
the output feature map. If the step size is 1, the size of the feature map will not be changed.
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Figure 2. Structure of YOLOv4-tiny.

2.1.2. Spatial Pyramid Pooling

The objects in RSIs are usually small and dense. Spatial pyramid pooling (SPP) [7] can
realize feature fusion and solve the above problems. The architecture of SPP is revealed in
Figure 3.
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For an input image of any size, it first undergoes a convolution. Second, the feature
map is grouped into 21 subblocks by the maximum pooling of 1 × 1, 2 × 2, and 4 × 4.
Third, the maximum values are extracted from the 21 subblocks, thus transforming the
input feature map of arbitrary size into a 21-dimensional feature of fixed size. Last, the
21-dimensional features are concatenated and convolved.
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2.2. The Proposed Methods
2.2.1. Structure of BSFCDet

Figure 4 is the architecture of BSFCDet. BSFCDet proposes SPPF-G, the three-layer
BiFPN-G, ECAM, and Resblock_M based on YOLOv4-tiny. The scale of the input image is
640 × 640. First, we input the picture and used the backbone to extract the feature map,
where the designed residual block is less computed, which can improve the inference
speed. Second, SPPF-G was employed to fuse the feature maps of various receptive fields
after the backbone to enrich the expression power of the feature maps. Third, to boost
the scale adaptation capacity, a three-layer BiFPN-G is suggested to integrate the spatial
info of superficial layer feature maps and semantic info of in-depth feature maps and
produce feature maps of separate measures. Fourth, the ECAM was built for the three
scales of the feature map output of the BiFPN-G to further enrich the characteristics of the
targets. Last, the feature regression prediction was made via the prediction output end.
The decoding format is (class + 5) × 3, class represents the number of categories, 5 denotes
the information about the anchor boxes: centre coordinates (x, y), width (w), height (h),
and confidence, and 3 is the number of anchor boxes.
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2.2.2. SPPF-G

However, the parallel pooling mode adopted by SPP requires processing multiple
maximum pooling simultaneously, which increases computational time and memory usage.
The pooling at different scales is carried out independently, which may extract similar
features, leading to feature redundancy. As shown in Figure 5, to reduce feature redun-
dancy, SPPF-G uses a serial structure, which involves sequentially performing maximum
pooling; the results of each pooling are used as input for the next pooling, reducing the
burden of processing multiple pooling simultaneously, thereby reducing computational
time and memory consumption. Unifying the pooling kernels of different sizes of SPP into
5 × 5 makes features of different scales have same receptive fields for better feature fusion
and detection. Larger pooling kernels can capture broader contextual information, more
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accurately represent the shape and structure of the objects, and require less computation,
so SPPF-G uses the maximum pooling of size 5 × 5.

Traditional convolution uses dense connection, where each input channel is connected
to each output channel. GSConv [29] uses sparse connectivity and group convolution,
where input channels are grouped and each group is independently convolved, and each
group is only connected to a portion of the output channels, which can reduce the compu-
tational complexity. GSConv uses the adaptive receptive field mechanism to dynamically
adjust the size of the convolution kernel according to the spatial distribution of the input
feature map, which enhances the diversity and expression ability of features, and the
network’s adaptability to challenges such as complex scenes and small objects. So, SPPF-G
uses GSConv instead of the traditional convolution.
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As shown in Table 1, the forward and reverse calculation speed of SPPF-G is approxi-
mately 1.5 times higher than that of SPP. Experiments have shown that the calculation time
of SPPF-G is shorter than that of SPP. After the backbone, we use more efficient SPPF-G
to fuse the feature maps, which enlarges the receptive field of the picture, enriching the
spatial features and detection effect of the small objects. Specifically, SPPF-G only reduces
the calculation time of SPP rather than BSFCDet. Introducing SPPF-G into the model will
still increase the computational complexity of the model, but it will increase less than SPP.

Table 1. Performance comparison between SPPF-G and SPP.

GPU_mem (GB) Forward (ms) Backward (ms) Input Output

SPPF-G 4.401 54.84 114.3 (16,1024,64,64) (16,1024,64,64)
SPP 4.586 80.9 171.2 (16,1024,64,64) (16,1024,64,64)

2.2.3. BiFPN-G

The objects’ scales vary greatly in RSIs. However, the FPN [19] is too simple, with only
one upsampling and a single channel direction from top to bottom, and the output feature
maps only have two scales, which easily lose the spatial info of superficial layer features
and are not conducive to multiscale object detection. Therefore, we modified the FPN to a
three-layer BiFPN-G, which outputs feature maps of three different scales.

In Figure 4, the feature map of the export of the first residual block in the backbone is
named F1 (80 × 80), the feature map of the export of the second residual block is named F2
(40× 40), and the feature map of the export of SPPF-G is named F3 (20× 20). We carried out
GhostConv [34] and upsampling of F3 to enlarge the scale of the feature map to 40 × 40 and
then concatenated it with F2. The feature map after concatenation is named F4 (40 × 40). A
GhostConv and upsampling of F4 are carried out to enlarge the scale of the feature map to
80 × 80 and then concatenate it with F1. The feature map after concatenating is named F5
(80 × 80). F5 is subsampled once to change the scale of the feature graph to 40 × 40, and
then it is concatenated with F2 and F4. The feature map after concatenation is named F6
(40 × 40). F6 is subsampled to change the scale of the feature graph to 20 × 20, and then it is
concatenated with F3. The feature map after concatenation is named F7 (20 × 20). BiFPN-G
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outputs three different scale feature maps, F5, F6, and F7, which advances detection accuracy
for multi-scale objects.

Compared with the single-channel direction of the FPN from top to bottom, BiFPN-G
adopts bidirectional transmission to combine the spatial info of superficial features and
the semantic info of in-depth characteristics, which enhances the characterization ability of
the backbone, avoids the loss of the spatial communication of superficial characteristics,
and improves the fusion speed. This bidirectional structure can use not only the deep
features transmitted by upsampling as the classification basis, but also the shallow spatial
information transmitted by downsampling as the positioning basis. Small objects have only
a small amount of info in the in-depth feature graph, so BiFPN-G adds a layer of output in
the shallow layer to improve the recognition rate of small targets.

The number of convolution kernels of GhostConv is half that of the conventional
convolution, which improves the inference speed of the model. GhostConv divides the
channels of the input feature maps into main path and ghost path. The main path uses
larger convolution kernels, while the ghost path uses smaller convolution kernels. This
method of grouping feature channels can reduce the number of parameters. The ghost path
repeatedly utilizes the feature maps in the main path for calculation, reducing computa-
tional complexity while enhancing the expression ability of the features.

2.2.4. ECAM

Influenced by light and other factors, the background info of RSIs is more complex.
Furthermore, after multiple convolutions, the iterative accumulation of the background
produces numerous redundant info, thus increasing the difficulty of detection. Many works
sufficiently address these issues through attention mechanisms. The mechanism can not
only preserve temporal location information but also obtain the differences among the
feature maps in different channels and spatial dimensions and enhance the features of the
objects. However, most attention modules have higher complexity. Compared with other
attention mechanisms, the ECA [32] has higher efficiency while improving performance
through the local cross-channel interaction strategy without dimensionality reduction.

However, the global average pooling (GAP) used by ECA is more suitable for large
objects, while there are many small objects in the RSIs and the background is complex. The
GAP will retain the background information, thus affecting the detection results. Therefore,
GMP is applied to improve the ECA to obtain the ECAM, which requires less computation.
We built three ECAMs after BiFPN-G to address the output feature maps of three scales,
namely, F5, F6, and F7. The structure of ECAM is shown in Figure 6.
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First, GMP is performed on the input feature map to gain channel weights, and the
scale of the resulting feature map is 1 × 1 × C. Second, to avoid dimension reduction, the
local cross-channel interaction is realized with a 1D convolution with kernel size k, the
dependence between channels is extracted, and the weight (ω) of every channel is attained
through the sigmoid activation function. The formula is presented as follows:

ω = σ(C1Dk(y)) (1)
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where C1D represents 1D convolution, σ represents the sigmoid activation function, and y
represents the feature map after GMP. The weights ω are multiplied channel-by-channel
with the original input feature map to obtain features with channel attention. The ECAM
not only weakens the background noise but also has minimal impact on the network
processing speed due to the few parameters.

2.2.5. Resblock_M

Adding SPPF-G, BiFPN-G, and ECAM to the network can improve detection accuracy
while increasing the number of layers and computational complexity of the network.
Therefore, we replaced the residual blocks in the backbone with residual blocks with less
computation, named Resblock_M, to balance accuracy and speed.

In Figure 7, Branch A performs a 1 × 1 convolution as well as a 3 × 3 convolution of
the import feature map to halve the measurements of feature map, whereupon it performs
a 1× 1 convolution. Branch B performs a 2× 2 maximum pooling on the input feature map
to halve the measurements of feature map, whereupon it performs a 1 × 1 convolution.
A feature map with half the size is obtained via concatenating the export feature maps of
these two parts. Maximum pooling is utilized as it requires less computation than average
pooling and does not retain background information. Compared to the residual block
CSPBlock in YOLOv4-tiny, Resblock_M uses the 1 × 1 convolution of branch A instead of
the 3 × 3 convolution in CSPBlock, reducing computation. Although Resblock_M adds
two layers at branch B, the computation is still less than that of CSPBlock.
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3. Results
3.1. Dataset and Preprocessing

Three datasets from the remote sensing fields, namely, DIOR [35], RSOD [36], and
DOTAv1.0 [37], were selected. Moreover, to prove the universality of BSFCDet, non-remote
sensing dataset PASCAL VOC2012 [38] was also selected. Table 2 displays the details of
each dataset. In addition to DIOR’s training set, verification data, and test data, which are
stochastically grouped in a proportion of 1:1:2, the other three datasets are stochastically
separated in a proportion of 7:1:2.

DIOR [35] is a large-scale dataset for object detection in optical RSIs, with 23,463 images
and 192,472 instances, covering 20 types of objects. This dataset has the advantages of
rich object scale and diverse images, which facilitates testing the performance of models
in multiscale objects and complex backgrounds. RSOD [36] is an open dataset, includ-
ing four object types: aircraft, playground, oil tank, and overpass. The dataset contains
976 images, covering 6950 objects. DOTAv1.0 [37] is an aerial image dataset annotated
with horizontal boxes. Compared with other datasets, the data size of DOTA is larger, and
the image resolution is higher. Since the aspect ratio of some pictures is too large to be
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directly utilized for training, we cut each picture into multiple 600 × 600 size pictures and
generated corresponding annotation information for each cut picture. Then, we deleted the
label files and corresponding pictures that did not meet the requirements, such as when
an object is empty and out of bounds. The final dataset yielded a total of 20,889 images,
188,282 instances, and 15 object categories. VOC2012 [38] is a commonly employed object
detection dataset with 20 object categories, 17,125 images, and 40,138 instances.

Table 2. Specifics of the datasets.

Dataset Categories Images Instances Year Proportion

DIOR 20 23,463 192,472 2018 1:1:2
RSOD 4 976 6950 2017 7:1:2

DOTAv1.0 15 20,889 188,282 2017 7:1:2
VOC12 20 17,125 40,138 2012 7:1:2

There is no fixed size ratio between small and large targets in RSIs. Some datasets have
relatively larger size ratios, while others have relatively smaller size ratios, which can affect
the setting of parameters of the proposed algorithm on each dataset. However, this impact
is not significant. For example, to obtain optimal training results, appropriate training
epochs and anchor boxes need to be set for each dataset. We used the static data analysis
method k-means clustering to cluster the datasets before the training, obtaining a set of
fixed-size anchor boxes as the initial prediction boxes, which is beneficial to accelerate the
regression of the prediction boxes and increase the positioning precision. Table 3 presents
the anchor boxes used by BSFCDet on different datasets. Furthermore, to flesh out the
image background, we used mosaic data augmentation as well as image flipping. The input
pictures are randomly flipped, and then four images are selected for random cropping and
spliced into an image as training data.

Table 3. Anchor boxes used for the different datasets.

Dataset Anchor

DIOR (7,7)(8,16)(14,28)(19,11)(26,47)(36,20)(57,60)(107,128)(278,280)
RSOD (14,15)(22,23)(30,29)(36,39)(47,48)(55,62)(68,74)(80,92)(223,275)

DOTAv1.0 (11,10)(20,22)(29,41)(43,25)(44,98)(47,45)(78,63)(100,106)(169,202)
VOC12 (21,40)(52,68)(62,141)(97,272)(159,155)(177,380)(303,495)(372,267)(549,556)

3.2. Experimental Setup and Comparative Methods

Our approach involves many parameters. The dimension of the entered picture during
training is set to 640 × 640, and the batch size is 64. The dynamic learning rate method
was adopted. The initial learning rate is 0.01, and the cosine annealing hyperparameter
is 0.1. The momentum parameter of the gradient descent is 0.937. To prevent overfitting,
the weight attenuation coefficient is 0.0005. During the training phase, the epochs for
datasets DIOR, VOC12, RSOD, and DOTA are 300, 300, 1000, and 500. Table 4 unveils the
experimental environment that we set up.

Table 4. Experimental environment.

Parameter Configuration

Operating System Ubuntu 18.04
CPU Intel Core i9-9900X CPU @3.50 GHz × 20
GPU NVIDIA RTX 2080 Ti

Language Python 3.8
Frame PyTorch

To validate the performance of BSFCDet, we compared BSFCDet with YOLOv4-tiny.
In addition, in the comparative experiments, we also performed a comparison with classical
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and recent methods. In the DIOR dataset, we compared 22 methods, including R-CNN [6],
Faster R-CNN [9], SSD [39], YOLOv5, YOLOv4 [13], YOLOv3-tiny [12], CSFF [40], and
AFADet [41]. In the RSOD dataset, we compared 10 methods, including CenterNet [42],
FANet [43], YOLOv3 [12], and YOLOv5s. For the datasets DOTA and VOC12, we compared
the methods of YOLOv4, YOLOv3, and YOLOv3-tiny.

3.3. Evaluation Metrics

The IOU indicates the overlap of the prediction box and ground truth; the larger the
IOU is, the more accurate the positioning. The object is generally detected when the IOU is
not less than 0.5. The formula is presented as follows, where A is the prediction box and B
is the ground truth:

IOU =
A ∩ B
A ∪ B

. (2)

Precision is used to measure the probability of predicting true examples, and recall
refers to the percentage of whole positives in test data that are aright recognized. The
formulas are presented as follows:

Precision =
TP

TP + FP
. (3)

Recall =
TP

TP + FN
. (4)

where TP is the true-positive sample, FP is the false-positive sample, and FN is the false-
negative sample. Precision and recall reflect two aspects of classifier performance; however,
relying only on a single metric does not comprehensively evaluate the performance of a
classifier. In order to consider precision and recall comprehensively, we introduced F1 as
a comprehensive indicator, inspired by Michael Buzzy et al. [44], which is the harmonic
average of precision and recall. The formula is presented as follows:

F1 =
2× precision× recall

precision + recall
. (5)

Average precision (AP) is the specific value of the volume of aright identified objects
to the sum of identified objects. A graph with precision as the ordinate and recall as the
abscissa was constructed. The acreage encircled is AP. The mean of every class of AP is
the mean average precision (mAP). The mAP at an IOU threshold of 0.5 is referred to as
mAP@0.5. The IOU threshold ranges from 0.5 to 0.95, and the average mAP obtained with
a step size of 0.05 is referred to as mAP@0.5:0.95. Frames per second (FPS) is the number
of pictures recognized per second, which is a commonly employed indicator to assess the
inference speed. Note that since the values of FPS are not unique per test, all of the values
of FPS shown in this paper are the average values obtained after 50 experiments. The
evaluation metrics utilized in this paper are mainly mAP@0.5, mAP@0.5:0.95, and FPS.

3.4. Ablation Experiment

To verify the importance of SPPF-G (S), BiFPN-G (B), ECAM (E), and Resblock_M
(R), we performed an ablation experiment on the DIOR dataset, where the baseline is
YOLOv4-tiny. The results are shown in Table 5, where SPPF-G, BiFPN-G, and ECAM
improve the recognition rate and Resblock_M improves the inference velocity.

From Table 5, it can be seen that the F1 score of YOLOv4-tiny is 50.2. SPPF-G increases
F1 by 6.6, with the most significant improvement effect. BiFPN-G further increases F1 by
1.8, ECAM further increases F1 by 0.9, and Resblock_M sacrifices the F1 of 5.5 to improve
detection speed. Compared with the baseline, BSFCDet’s F1 is 3.8 higher, with a significant im-
provement effect. Compared to the baseline, BSFCDet improves mAP@0.5 and mAP@0.5:0.95
by 10.2% and 6.3%, maintaining high real-time performance. Since the dataset that we chose
mainly has problems with small objects, SPPF-G used to raise the recognition rate of tiny
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targets has the most significant effect. BiFPN-G enhanced mAP@0.5 and mAP@0.5:0.95 by
3% and 2.6%. Due to the simple ECAM structure and few computations, the increase in
accuracy is not significant, but the lowest speed decreased compared to SPPF-G and BiFPN-G.
These three modules also reduce the detection speed while improving accuracy, so the table
shows that Resblock_M increases the FPS by 13 without much reduction in accuracy.

Table 5. Results of the ablation experiment.

Baseline +S +S+B +S+B+E +S+B+E+R

Precision 42.5 49.8 50.5 51 44.6
Recall 61.4 66.2 69.7 71.4 68.4

F1 50.2 56.8 58.6 59.5 54
mAP@0.5 53 62.5 65.5 66.6 63.2

mAP@0.5:0.95 30.2 35.4 38 39.2 36.5
FPS 270 258 220 209 222

3.5. Comparative Experiments

YOLOv4, YOLOv3, YOLOv4-tiny, and YOLOv3-tiny are used as the comparison
methods for all four datasets. Different comparison methods are also selected for differ-
ent datasets. This is because different datasets have different representative algorithms,
better-performing algorithms, and methods that have been widely studied and validated.
Different datasets have different characteristics and challenges, some methods perform
better on specific datasets while performing poorly on others; choosing more adaptable
comparison methods can provide a more accurate and comprehensive performance com-
parison, thereby better demonstrating the improvement effects of our proposed method.

3.5.1. Comparative Experiments on DIOR

Table 6 compares BSFCDet in terms of speed with other mainstream methods. Accord-
ing to the table, the FPS of BSFCDet is 222, which substantially exceeds Simple-CNN [45],
CSFF [40], and other methods despite a slight decrease in accuracy, and the FPS of our
algorithm is 209 higher than that of Simple-CNN [45]. Moreover, the accuracy and speed of
BSFCDet surpass those of YOLOv3 [12], AFADet-300 [41], and LO-Det [46]. Although the
accuracy of BSFCDet does not exceed that of the optimal YOLOv4 [13], the FPS of BSFCDet
is 160 higher than the FPS of the optimal YOLOv4. Although FANet [43], YOLOv4-tiny [13],
and YOLOv3-tiny [12] have a higher speed, BSFCDet has more advantages in relation to
the detection effect. Otherwise, the other algorithms are slower than BSFCDet.

Table 6. Comparison of the detection speed of each algorithm.

Methods Backbone mAP@0.5 mAP@0.5:0.95 FPS GPU Year

Simple-CNN VGG16 66.5 — 13 GT710 2021
CSFF ResNet-101 68.0 — 15 RTX-3090 2021

CF2PN [47] VGG16 67.3 — 20 RTX2080Ti 2021
AFADet VGG16 66.1 — 26 RTX2080Ti 2022

YOLOv5l — 71.2 45.8 28 GTX1070Ti 2020
ASSD-Lite [48] MobileNetv2 63.3 — 35 GTX1080Ti 2021

YOLOv5m Focus-CSP-SPP 69.8 44.6 46 GTX1070Ti 2020
AFADet-300 VGG16 57.4 — 61 RTX2080Ti 2022

YOLOv4 CSPDarkNet53 74.4 51.4 62 RTX2080Ti 2020
LO-Det MobileNetv2 58.7 — 65 RTX3090 2021

YOLOv3 DarkNet53 57.1 49.9 89 RTX2080Ti 2018
YOLOv5s CSP Focus 65.4 39.0 118 GTX1070Ti 2020

FANet 17-layer-CNN 56.5 — 228 RTX2080Ti 2021
YOLOv4-tiny CSPDarkNet53tiny 53.0 30.2 270 RTX2080Ti 2020
YOLOv3-tiny — 51.0 26.0 275 RTX2080Ti 2018

BSFCDet CSPDarkNet53tiny-R 63.2 36.5 222 RTX2080Ti 2022
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Table 7 (the red number is the highest value in each line, and the blue number is the
second highest value in each line) compares the mAP@0.5 of each algorithm and AP values
for 20 kinds of objects, which covers the classical algorithms, the most recent algorithms,
and the algorithms for RSIs. It is not difficult to determine that BSFCDet achieves 63.2%
mAP, outperforming other algorithms. Furthermore, BSFCDet has a 25.5% higher mAP
than the classical R-CNN [6], a 10.2% higher mAP than YOLOv4-tiny [13], and a 12.2%
higher mAP than YOLOv3-tiny [12].

Tennis courts, chimneys, basketball courts, and baseball fields are mainly shot from
high altitudes, with complex backgrounds. Storage tanks and airplanes are also small and
dense. However, the detection effect of BSFCDet ranks first on the airplane, basketball
court, baseball field, and chimney, followed by expressway toll station, ship, storage tank,
and tennis court. BSFCDet effectively improves the problems of RSOD, such as small
objects and complex backgrounds.

Table 7. Comparison of the detection accuracy of each algorithm.

R-CNN RICNN [49] RICAOD [50] YOLOv3-Tiny YOLOv4-Tiny Faster R-CNN

Backbone VGG16 VGG16 VGG16 — CSPDarkNet53tiny VGG16
Airplane 35.6 39.1 42.2 73.3 58.7 53.6
Airport 43.0 61.0 69.7 25.5 56.1 49.3

Expressway toll station 33.5 36.6 49.3 50.2 48.7 55.2
Basketball court 62.3 66.3 79.0 82.5 74.4 66.2

Bridge 15.6 25.3 27.7 22.1 22.5 28.0
Chimney 53.7 63.3 68.9 71.7 72.0 70.9

Dam 33.7 41.1 50.1 22.7 47.5 62.3
Expressway service area 50.2 51.7 60.5 44.0 54.7 69.0

Baseball field 53.8 60.1 62.0 75.1 71.8 78.8
Golf course 50.1 55.9 64.4 28.5 60.4 68.0
Overpass 30.9 39.0 46.8 40.7 46.8 50.1
Harbor 39.5 43.5 42.3 34.8 51.3 50.2

Ground track field 49.3 58.9 65.3 56.5 64.5 56.9
Tennis court 54.0 63.5 70.3 81.8 79.8 75.2

Stadium 60.8 61.1 53.5 63.7 55.4 73.0
Storage tank 18.0 19.1 24.5 52.7 37.0 39.8

Ship 9.1 9.1 11.7 66.7 42.2 27.7
Train station 36.1 46.1 53.3 22.7 36.3 38.6

Vehicle 9.1 11.4 20.4 33.0 26.5 23.6
Windmill 16.4 31.5 56.2 72.4 52.6 45.4

mAP 37.7 44.2 50.9 51.0 53.0 54.1

RIFD-CNN [51] YOLOv3 SSD Faster RCNN with FPN BSFCDet

Backbone VGG16 DarkNet53 VGG16 ResNet-50 CSPDarkNet53tiny-R
Airplane 56.6 72.2 59.5 54.1 79.0
Airport 53.2 29.2 72.7 71.4 62.7

Expressway toll station 56.0 54.4 53.1 62.1 57.4
Basketball court 69.0 78.6 75.7 81.0 86.0

Bridge 29.0 31.2 29.7 42.6 29.7
Chimney 71.5 69.7 65.8 72.5 74.0

Dam 63.1 26.9 56.6 57.5 39.9
Expressway service area 69.0 48.6 63.5 68.7 62.5

Baseball field 79.9 74.0 72.4 63.3 82.0
Golf course 68.9 31.1 65.3 73.1 65.4
Overpass 51.1 49.7 48.1 56.0 50.8
Harbor 51.2 44.9 49.4 42.8 50.2

Ground track field 62.4 61.1 68.6 76.5 66.6
Tennis court 79.5 87.3 76.3 81.2 85.5

Stadium 73.6 70.6 61.0 57.0 67.2
Storage tank 41.5 68.7 46.6 53.5 63.8

Ship 31.7 87.4 59.2 71.8 83.8
Train station 40.1 29.4 55.1 53.0 44.1

Vehicle 28.5 48.3 27.4 43.1 42.1
Windmill 46.9 78.7 65.7 80.9 71.7

mAP 56.1 57.1 58.6 63.1 63.2



Remote Sens. 2023, 15, 3213 13 of 20

To further prove the effectiveness of BSFCDet, we visualized the detection results.
Figure 8 shows the representative detection examples of BSFCDet compared to other
algorithms on the dataset DIOR. BSFCDet can more accurately locate complete objects
and has higher accuracy. Compared to other algorithms, the proposed algorithm does not
generate redundant boxes, and there is no omission or misdetection.
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Figure 8. Detection examples of BSFCDet compared to other algorithms on the dataset DIOR.
(a) Comparison of detection examples for image 1; (b) Comparison of detection examples for image 2;
(c) Comparison of detection examples for image 3. The algorithms corresponding to each row from
left to right are BSFCDet, YOLOv3, YOLOv4-tiny, and YOLOv3-tiny.

3.5.2. Comparative Experiments on RSOD

To verify the generalization of BSFCDet, we tested another dataset, RSOD. This dataset
has many challenges, including small objects and complex backgrounds, which is beneficial
to test the robustness of the network. Table 8 compares the performance of different models
on RSOD where aircraft (AI), oil tank (OI), overpass (OV), and playground (PL) are the
four types of objects. The red figure is the maximum in every column, and the blue figure
shows the second largest value in every column.
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Table 8. Performance contrast of the different models on RSOD.

Methods AI OI OV PL mAP@0.5 mAP@0.5:0.95 FPS

CenterNet — — — — 75.4 — 88
YOLOv3-tiny 90.7 92.2 61.3 88.9 83.3 51.2 276

SSD300 70.1 90.3 78.4 100 84.7 — 54
FANet 87.1 99.0 56.6 97.9 85.1 — 228

YOLOv4-tiny 90.9 91.8 68.0 90.0 85.2 53.7 274
Faster R-CNN 86.4 88.3 80.2 91.2 86.5 — 18
AFADet-300 69.8 96.9 93.4 99.9 90.0 — 61

YOLOv3 97.4 97.6 71.0 94.6 90.1 64.0 80
YOLOv5s — — — — 90.8 — 79
YOLOv4 98.4 98.5 76.3 98.4 92.9 65.7 60
BSFCDet 95.7 97.8 81.7 96.0 92.8 58.5 227

Compared to YOLOv4-tiny, BSFCDet improves mAP@0.5 and mAP@0.5:0.95 by
7.6% and 4.8%, while maintaining a certain detection speed. Since the attention mech-
anism reduces background interference and the missing detection and misdetection rates,
the detection effect of BSFCDet on the four types of objects has been greatly improved.
The AP value of the overpass increases the most, which is the second largest value in all
the results, only second to AFADet-300 [41]. Due to the lightweight design, BSFCDet is
slightly inferior to YOLOv4 and YOLOv3 in terms of accuracy, but the FPS was improved
by 167 and 147, respectively. The ECAM, SPPF-G, and BiFPN-G increase the computation
amount of the network, and the detection speed of BSFCDet is not higher than that of
YOLOv4-tiny and YOLOv3-tiny, but we obtained a more significant detection effect. The
remaining algorithms, even the latest YOLOv5s, lag behind BSFCDet on precision and rate
due to the lack of an attention mechanism and lightweight design. In conclusion, BSFCDet
surpasses most algorithms, with strong generalization and robustness. In the face of the
RSOD dataset with small objects and a complex background, BSFCDet achieves better
performance and high real-time performance, effectively solves some challenges in the field
of RSOD, and obtains the optimal balance between precision and pace.

Figure 9 shows the detection examples of BSFCDet compared to other algorithms on
the dataset RSOD. BSFCDet has the best detection performance, especially when facing
small and dense targets; BSFCDet still maintains better robustness.

3.5.3. Comparative Experiments on DOTA

Table 9 shows the performance contrast of the various algorithms on DOTAv1.0. DOTA
has the advantages of rich object types and a large scale, which facilitates the training of
the model. According to the table, BSFCDet increases the mAP@0.5 and mAP@0.5:0.95
of YOLOv4-tiny by 6% and 3.8%. Compared with YOLOv3-tiny, the mAP@0.5 and
mAP@0.5:0.95 of BSFCDet are improved by 7% and 9.4%. Moreover, BSFCDet’s FPS
exceeds YOLOv4’s and YOLOv3’s by 179 and 154, with a higher detection speed. Therefore,
BSFCDet is undoubtedly optimal when considering precision and pace.

Figure 10 provides the detection examples of BSFCDet compared to other algorithms
on the dataset DOTA. Most vehicles are small, and the distribution is relatively dense.
However, SPPF-G reinforces the spatial info of tiny targets. Therefore, BSFCDet adequately
locates these objects with high confidence. In addition, due to the multiscale fusion strategy,
BSFCDet still achieves the best detection results in the face of harbors and ships with
significant differences in size.

3.5.4. Comparative Experiments on VOC12

To enhance the universality of BSFCDet and demonstrate that BSFCDet is not only
applicable to RSIs, we conducted experiments on a publicly available natural image dataset,
VOC12. Table 10 shows a performance comparison of the different models on VOC12. While
maintaining high real-time performance, the mAP@0.5 and mAP@0.5:0.95 of BSFCDet are
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12% and 13% higher than those of YOLOv4-tiny and 14.5% and 15.6% higher than those
of YOLOv3-tiny, respectively. Compared to the classical R-CNN, YOLOv1, and SPP-Net,
BSFCDet has more superiorities in both precision and speed. Compared with YOLOv3 and
YOLOv4, we greatly improved the inference pace with only a mild reduction in precision.
In conclusion, BSFCDet has strong universality, which not only achieves a good detection
effect on remote sensing datasets but is also applicable to other datasets and has the most
significant improvement effect on VOC12.
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Table 10. Performance comparison of the different models on VOC12.

Methods mAP@0.5 mAP@0.5:0.95 FPS

YOLOv3-tiny 44 20.7 283
YOLOv4-tiny 46.5 23.3 284

R-CNN 53.3 — 50
YOLOv1 57.9 — 95
SPP-Net 58.1 — 51
YOLOv3 66 47 78
YOLOv4 68.3 49.1 71
BSFCDet 58.5 36.3 238

Figure 11 shows the detection examples of BSFCDet compared to other algorithms on
the dataset VOC12. BSFCDet also has the best detection effect on non-RSIs.
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left to right are BSFCDet, YOLOv3, YOLOv4-tiny, and YOLOv3-tiny.

4. Discussion

In this paper, we demonstrate that BSFCDet can maintain a better balance between
detection accuracy and detection speed. The results may be attributed to the following
facts. SPPF-G is used to achieve feature fusion, in which the serial pooling method reduces
feature redundancy, and the size of maximum pooling is unified to 5 × 5, which increases
the receptive field of the images and enriches the spatial information of small objects.
GSConv improves the diversity of features and robustness of the network to small objects
and complex backgrounds. The three-layer BiFPN-G integrates the semantic information of
deep features and spatial information of shallow features, improving the detection ability
of the model for multiscale objects. Adding an output layer in the shallow layer preserves
more features of small objects, improving the recognition rate of small objects. ECAM
reduces background interference and enhances object features. A residual block with
smaller computational complexity balances the detection accuracy and speed of the model.

However, some limitations of this study still exist. Firstly, SPPF-G, BiFPN-G, and
ECAM ignore the increase in parameter quantity, which reduces the detection speed,
especially when the model introduces BiFPN-G with high computational complexity,
resulting in a significant decrease in detection speed. Secondly, to balance accuracy and
speed, Resblock_M loses some accuracy, but does not increase the speed too much. Finally,
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our method only considers small objects, multiscale objects, and complex backgrounds,
without considering other issues such as object occlusion in RSIs.

In summary, in the future work, we will focus on accelerating the model by de-
signing more lightweight networks to improve both the accuracy and inference speed of
the model [52]. We will study the mixed use of non-maximum suppression (NMS) and
Soft-NMS [53] in image post-processing, integrating the advantages of both, removing
redundant bounding boxes, and improving the model’s robustness to object occlusion.
Specifically, two thresholds, N1 and N2, are set. When IOU is higher than N1, traditional
NMS is directly executed for filtering. When IOU is between N1 and N2, Soft-NMS is
executed to reduce the confidence of overlapping anchor boxes. When IOU is lower than
N2, no operation is performed.

5. Conclusions

In this paper, a lightweight RSOD method that combines channel attention and multi-
scale feature fusion is proposed. First, we propose SPPF-G to fuse the abstracted features
and enrich the spatial info of small objects. Second, the two-layer single-channel structure
of FPN [19] is modified to a three-layer BiFPN-G, which strengthens the detection capacity
for multiscale targets. Third, by constructing the ECAM, the expressive ability of object fea-
tures is enhanced. Last, Resblock_M, a lightweight residual block, is suggested to achieve a
slight balance between accuracy and speed. We have performed tests on several datasets,
and the data display that BSFCDet has strong generalization and robustness. In the future,
we will research more lightweight models to attain improvements in both accuracy and
speed, and improve the robustness of the model to object occlusion.
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