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Abstract: Rubber (Hevea brasiliensis Muell.) plantations are among the most critical agricultural
ecosystems in tropical regions, playing a vital role in regional carbon balance. Accurate large-
scale biomass estimation for these plantations remains a challenging task due to the severe signal
saturation problem. Recent advances in remote sensing big data, cloud platforms, and machine
learning have facilitated the precise acquisition of key physiological variables, such as stand age
(A) and canopy height (H), which are critical parameters for biomass estimation but have been
underutilized in prior studies. Using Hainan Island—the second-largest rubber planting base in
China—as a case study, we integrated extensive ground surveys, maps of stand age and canopy
height, remote sensing indicators (RSIs), and geographical and climate indicators (ECIs) to ascertain
the optimal method for estimating rubber plantation biomass. We compared different inputs and
estimation approaches (direct and indirect) using the random forest algorithm and analyzed the
spatiotemporal characteristics of rubber plantation biomass on Hainan Island. The results indicated
that the traditional model (RSIs + ECIs) had low accuracy and significant estimation bias (R2 = 0.24,
RMSE = 38.36 mg/ha). The addition of either stand age or canopy height considerably enhance
model accuracy (R2 = 0.77, RMSE ≈ 21.12 mg/ha). Moreover, incorporating the DBH obtained
through indirect inversion yielded even greater predictive accuracy (R2 = 0.97, RMSE = 7.73 mg/ha),
outperforming estimates derived from an allometric equation model input with the DBH (R2 = 0.67,
RMSE = 25.43 mg/ha). However, augmenting the model with stand age, canopy height, or their
combination based on RSIs, ECIs, and DBH only marginally improved the accuracy. Consequently,
it is not recommended in scenarios with limited data and computing resources. Employing the
optimal model, we generated biomass maps of rubber plantations on Hainan Island for 2016 and 2020,
revealing that the spatiotemporal distribution pattern of the biomass is closely associated with the
establishment year of the rubber plantations. While average biomass in a few areas has undergone
slight decreases, total biomass has exhibited significant growth, reaching 5.46 × 107 mg by the end of
2020, underscoring its considerable value as a carbon sink.

Keywords: biomass; rubber plantations; DBH; model comparison

1. Introduction

Biomass, defined as the accumulation of dry matter per unit time or area, represents
a fundamental quantitative attribute of forest ecosystems [1–3]. Fluctuations in biomass
mirror alterations and influences stemming from forest, climate, and human activities, ren-
dering it an essential parameter for assessing vegetation carbon stocks and examining shifts
in forest ecosystem structure and function [4–6]. Consequently, the accurate description
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and estimation of biomass are vital to a wide array of scientific endeavors [7]. In light of
societal advancement, resource utilization, and global climate change, the investigation
of biomass and carbon stocks has undergone significant expansion, with related research
consistently receiving substantial interest [8].

Numerous methods exist for estimating biomass, with the precision and spatial scale of
these approaches varying significantly [9]. Traditional field measurement remains the most
accurate estimation technique, and the established allometric equation (AE) often serves as
a critical foundation for alternative methods [2,5]. However, this approach is both time-
consuming and spatially constrained [5]. Owing to its high spatial, temporal, and spectral
resolution, as well as its capacity for continuous, long-term scientific observations, remote
sensing technology has become a widely employed tool for biomass estimation [10–13].
Broadly speaking, forest biomass estimation via remote sensing has evolved through
three stages: (1) estimation solely based on optical, radar, or Light Detection and Ranging
(LiDAR) data [14,15]; (2) effective incorporation of multiple types of satellite imagery,
mitigating the limitations of solitary satellite imagery data [16]; (3) selection of optimal
variables from multi-source satellite imagery and ancillary data [5], thereby enhancing
model accuracy [12,17].

Rubber (Hevea brasiliensis Muell.), a tall tree native to the Amazon basin, constitutes
the primary source of natural rubber [3,6,18]. In response to the burgeoning industrial
and economic growth, the tree has been extensively cultivated in Southeast Asia and the
tropical regions of China since the last century [3]. Prompted by the swift escalation of
natural rubber prices in the 2000s, global rubber plantation coverage has undergone rapid
expansion, rendering rubber plantations significant ecosystems within numerous tropical
regions. Beyond providing natural rubber, rubber plantations fulfill the ecological roles
commonly associated with typical forests, such as carbon sequestration [19,20]. Studies
indicate that total carbon stocks within rubber plantations surpass those of many tropical
forests and agroforestry ecosystems, contributing positively to climate change mitigation
efforts [21]. Accurate estimates of rubber plantation biomass are essential for predicting
natural rubber yield [22], analyzing intrinsic dynamics, and understanding the carbon cycle
in the tropics [21,23].

Numerous studies have investigated biomass estimation in rubber plantations; how-
ever, the primary study areas have been concentrated on Hainan Island and in Xishuang-
banna, China [24–28]. Methodological evolution has advanced from initial direct remote
sensing inversion to the incorporation of vital physiological parameters, such as stand
age [14,19,23]. Rubber plantations are typically established concurrently, resulting in uni-
form stand age, which correlates closely with biomass and can be estimated using dense
time-series satellite imagery [20]. For example, the authors of [6] combined stand age with
the random forest algorithm to estimate the biomass of rubber plantations in Hainan Island,
achieving an R2 of 0.82 to 0.96 and root-mean-square error (RMSE) of 4.08 to 10.59 mg/ha.
However, stand age is not the most ideal parameter for biomass estimation, as rubber tree
growth conditions vary across different geographical environments despite identical ages.
Diameter at breast height (DBH) is the simplest parameter to measure for plantations, but
its large-scale measurement and accurate remote sensing retrieval pose challenges. Fortu-
nately, the recently launched Global Ecosystem Dynamics Investigation (GEDI) satellite
can accurately obtain high-resolution forest canopy heights on a global scale, which can be
utilized for precise forest biomass estimation [29]. For example, Nico et al. (2022) fused
GEDI and Landsat images to obtain a global canopy height product with a resolution of
10 m for 2020 [30]; Sun et al. (2022) found high accuracy in aboveground biomass (AGB)
estimation using GEDI canopy metrics (R2 = 0.82, RMSE = 19.1 mg/ha) [31]. Consequently,
we hypothesize that integrating stand age, canopy height, remote sensing indices (RSIs),
and environment and climate indices (ECIs) may yield a more accurate rubber planta-
tion biomass estimation. The specific aim of this study was to employ machine learning
algorithms to compare the effects of different variable combinations (stand age, canopy
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height, RSIs, and ECIs) and estimation methodologies (direct and indirect estimates) on the
accuracy of rubber plantation biomass estimation.

2. Materials and Methods
2.1. Study Area

Hainan Island, with a total area of approximately 3.4 million hectares, possesses
a topography typified by peripheral lowlands and a central mountainous prominence.
The region is subject to a tropical monsoon maritime climate, exhibiting annual mean
temperatures between 23 ◦C and 25 ◦C. The island’s iso-precipitation line distribution
indicates elevated concentrations in the central and eastern areas, whereas diminished
concentrations are observed along the southwestern coast. Furthermore, Hainan Island is
characterized by pronounced rainy and dry seasons, with the former extending from May
to October and constituting approximately 80% of the overall annual precipitation.

Since the 1950s, extensive rubber plantations have been established on Hainan Island
to promote economic, scientific, and technological advancements [27]. Hainan Island, once
the largest rubber plantation area in China, has been surpassed by Yunnan province, and it
now ranks second with an approximate area of 520,000 hectares. Rubber plantations on
Hainan Island are predominantly located in the northwest, central, and northern regions,
accounting for over 25% of the total forest area and forming the largest plantation ecosystem
on the island [32,33].

2.2. Data and Processing
2.2.1. Field Inventory Data

Field data were procured from sampled plots across the island and long-term po-
sitioning monitoring plots located at the experimental farm of the Chinese Academy of
Tropical Agricultural Sciences (CATAS). The field investigation took place in October 2016,
during which time 70 rubber plantations with diverse stand ages on Hainan Island were
selected for analysis. For each rubber tree within a 25 × 25 m zone in each plantation,
DBH using a 1.3 m height was measured. Rubber stand age was determined through both
field estimation and an algorithm analyzing time-series satellite imagery dating back to
1987 [34]. To correspond with the canopy height map in 2020 (elaborated in Section 2.2.3),
these samples were further scrutinized using Google Earth high-resolution imagery, re-
taining only the sample plots with accurate geolocation and persistence in 2020. In a prior
biomass estimation study, a mere 51 samples with precise geolocations and stand ages
under 30 years were utilized [6]. Due to advancements in stand age monitoring technology
employing satellite images, 58 samples remained accessible after excluding the rubber
plantations harvested in 2020 (Figure 1). Among these samples, only a few overlapped
with the GEDI footprint in 2020.

At the CATAS experimental farm, there are nine long-term positioning monitoring
plots ranging from 1.39 to 2.98 hectares. From 2007 to 2014, the DBH of each tree was
measured monthly during the seedling stage (≤4 years) and subsequently at quarterly or
semi-annual intervals as trees grew taller. The DBH for the rubber plantations from 2007 to
2014 was calculated using Equation (1):

Dg =

√√√√√ N
∑

i=1
d2

i

N
(1)

where Dg is the mean DBH, di is the DBH of the ith tree in the stand, and N is the total
number of trees. The total biomass of each plantation (BAE, mg/ha) was calculated using
Equation (2), which was developed based on an AE model, taking into account initial
planting density and tree loss due to natural disasters, such as typhoons [6].

BAE = 3.9105G2.4021 ·10−3 (2)
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where G (cm) is the average girth at 1.3 m based on the field measurement.
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Figure 1. Spatial distribution map for rubber plantations and sample plots in Hainan Island: (a) map
showing the year of establishment of rubber plantations overlayed with sampling plots, (b) plots for
long-term monitoring, and (c) typical photo of rubber plantation.

2.2.2. Satellite Imagery

The U.S. Geological Survey (USGS) and National Aeronautics and Space Administra-
tion(NASA) provided the Landsat 5/8 optical satellite imagery, while the Japan Aerospace
Exploration Agency (JAXA) contributed the Phased Array L-band Synthetic Aperture
Radar (PALSAR/PALSAR-2) data. Both datasets underwent preprocessing and were imple-
mented on the Google Earth Engine (GEE) cloud platform. The Landsat product employed
was a collection 2 level-2 surface reflectance product that had been subjected to requisite
preprocessing, including geometric and atmospheric correction. Clouds and shadows were
masked using the quality band (QA_PIXEL) associated with each scene.

Three widely used vegetation indices, the normalized difference vegetation index
(NDVI) [35], enhanced vegetation index (EVI) [36], and land surface water index (LSWI) [37],
were calculated using Equations (3)–(5), respectively.

NDVI =
ρNIR − ρred
ρNIR + ρred

(3)

EVI = 2.5× ρNIR − ρred
ρNIR + 6× ρred − 7.5× ρblue + 1

(4)

LSWI =
ρNIR − ρSWIR1

ρNIR + ρSWIR1
(5)

where ρblue, ρred, ρNIR, and ρSWIR1 are the blue, red, near-infrared (NIR), and shortwave
infrared (SWIR1) bands of the Landsat 5/8 imagery, respectively.

The 25 m PALSAR/PALSAR-2 imagery utilized consisted of an annual global mosaic
composed of images acquired during the growing season. The mosaic data encompassed
horizontal transmit horizontal receive (HH) and horizontal transmit vertical receive (HV)
bands. Referring to prior analogous studies [38], the gray level co-occurrence matrix
(GLCM) was calculated for the HV band. Subsequent to GLCM computation, 18 bands were
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derived, but a limited number of key variables were screened using correlation analysis [39].
The selection criterion entailed retaining only one band with a high correlation coefficient;
ultimately, HV_savg and HV_shade were the final bands retained. The original optical
spectral bands (blue, green, red, NIR, SWIR1, SWIR2) and the NDVI, EVI, and LSWI, as
well as SAR variables (HH, HV, HV_savg, HV_shade), are collectively referred to as remote
sensing indicators (RSIs).

2.2.3. Terrain and Climate Data

Elevation data possessing a spatial resolution of 1 arc-second (approximately 30 m
resolution) were obtained from the National Aeronautics and Space Administration’s Jet
Propulsion Laboratory (NASA JPL) and originated from the Shuttle Radar Topography
Mission (SRTM) Version 3 (V3). Slope was calculated using the application program-
ming interface (API) of the GEE. Furthermore, the annual average precipitation, with an
approximate resolution of 11 km, was a composite derived from the fifth generation of
the European ReAnalysis (ERA5) dataset, which represents an enhanced global dataset
for the land component generated by the European Centre for Medium-Range Weather
Forecasts (ECMWF) [40]. These variables, including elevation, slope, annual average
temperature, and precipitation, are collectively referred to as environmental and climate
indicators (ECIs).

2.3. Biomass Estimation
2.3.1. Work Flow

The workflow diagram is depicted in Figure 2, outlining a three-step process: (1) prepa-
ration of biomass inversion variables encompassing direct variables, such as RSIs and ECIs,
and indirect variables, like canopy height (H) and DBH; (2) evaluation and comparison
of various biomass models based on these variables; and (3) identification of the optimal
model for estimating rubber plantation biomass in Hainan Island, accompanied by an
analysis of its temporal and spatial characteristics. The canopy height for 2016 (the year of
the island-wide field investigation) was estimated through the development of a height
and stand age model. At present, there is no readily available remote sensing-based model
for rubber DBH estimation. We modeled and compared field observations, stand age, RSIs,
and ECIs, selecting the optimal model to estimate DBH.
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2.3.2. Key Independent Parameter Estimation

Stand Age (A)
The 2020 and 2016 maps of rubber plantations were generated through the utilization

of dense optical and radar satellite imagery coupled with a phenology-based decision
tree algorithm. The implementation of these techniques yielded an overall classification
accuracy of 90%, as reported by [33]. The stand age maps for the years 2016 and 2020 relied
on these rubber plantation maps and a comprehensive analysis of long-term time-series
images from Landsat and Sentinel-2 satellites beginning in 1987. This analysis followed
an algorithm previously outlined [34]. The algorithm’s core principle involves utilizing
distinctive features of land-use and land-cover changes during the establishment phase
of plantations and the subsequent progression of canopy closure from rubber seedlings
to fully mature dense plantations. By employing these parameters, the algorithm can
effectively identify the precise year of establishment for rubber plantations. The target year
minus the establishment year is the stand age of a rubber plantation in a specific year.

Canopy Height (H)
The canopy height data for the entirety of Hainan Island in 2020 were produced in [30].

This study is considered a milestone in the field as it produced the first global 2020 wall-to-
wall canopy height map at 10 m spatial resolution through the integration of GEDI and
Sentinel-2 imagery with a probabilistic deep learning model. Given the strong relationship
between stand age and canopy height [41], it was judged to be feasible to predict the canopy
height of rubber plantations in 2016 based on this relationship and the wall-to-wall canopy
height map from 2020. The primary steps included: (1) reclassifying the 2020 stand age map
of rubber plantations in 1-year increments, followed by masking of the 2020 canopy height
map; (2) performing sampling for each age class map with 50 sample points and extracting
the corresponding canopy height for these sample points; (3) computing the percentile
mean and standard deviation for the canopy height within a range of 20 to 80 percent
(excluding misclassified rubber pixels and canopy height outliers); and (4) constructing a
regression model with stand age as the independent variable and average canopy height as
the dependent variable.

DBH
The DBH is also closely related to the stand age and the growth environment of rubber

trees. By combining the field DBH, stand age (A), canopy height (H), RSIs, and ECIs, we
developed and compared three random forest (RF)-based DBH models using Equation (6).

DBHRF = f (RSIs, ECIs, A|H) + ε (6)

where DBHRF is the DBH estimated by the random forest algorithm; A|H represents the
stand age and canopy height, which were additional independent variables during the test;
and ε is the error in the estimated DBH. The Boruta algorithm was used to select optimal
independent variables from the RSI and ECI sets for the DBH and subsequent biomass esti-
mation, as the feature selection process is fundamental to any machine learning project [42].
The RF algorithm was selected for DBH estimation due to its general immunity to over-
fitting and data noise and its widespread use in the remote sensing community [43,44].
Ultimately, the optimal model was chosen to estimate the DBH for rubber plantations for
different nominal years.

2.3.3. Biomass Estimation Models

The RF algorithm utilized several independent variables, including RSIs, ECIs, A, H,
and DBH. The primary reason for selecting RSIs and ECIs as variable sets was their ease of
acquisition and their extensive use in traditional biomass estimation via remote sensing.
Moreover, the models were assessed by incorporating A, H, DBH, and their combinations
(eight combinations in total; Figure 2) using Equation (7).

BRF = f (RSIs, ECIs, A&|H&|DBHRF) + ε (7)
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where BRF is the biomass estimated, and A&|H&|DBHRF means adding one or a combina-
tion of A, H, and DBHRF to the RSIs and ECIs during model estimation. The RF model’s
hyperparameters were set to 100 for the number of trees and 1 for the random state. In
addition to the RF models, biomass estimates based on the AE model (BAE) using Equations
(2) and (8) were compared, utilizing the best DBHRF as an input parameter.

BAE = f (DBHRF) + ε (8)

2.4. Accuracy Assessment

Considering the limited availability of field data, this study adopted a k-fold (k = 4
was used herein) cross-validation approach for modeling and evaluation. Plots were
stratified into diverse categories based on their biomass (10, 20, 30, 40, 50, 60, 70, 80,
90, 100, 110, and greater than 110 mg/ha), which served as the grouping variable. The
sample was subsequently divided into four smaller subsets referred to as folds, utilizing a
hierarchical k-fold cross-validation method. This technique refines the conventional k-fold
cross-validation method by incorporating a grouping variable, ensuring a roughly even
distribution of biomass across folds. During each iteration, k−1 folds were employed
for training, while the remaining fold was designated for validation. To evaluate model
performance, the R2 and RMSE were implemented as metrics. The performance of various
band combinations was compared by calculating their mean values within the k-fold loop.

2.5. Spatial Analysis

The biomass of rubber plantations in different administrative regions (provinces and
counties/cities) and topographic environments (with differing elevation and slope) on
Hainan Island was examined using the GEE cloud platform. Elevation was segmented into
seven groups with bin values of 0, 50, 100, 200, 300, 400, and 600 m. Slope was categorized
into seven levels with bin values of 0, 5, 10, 15, 20, and 25◦, slightly adjusted based on the
technical standard Comprehensive control of soil and water conservation—General rule
of planning (GB/T 15772-2008) [45]. Additionally, the spatiotemporal characteristics of
biomass changes between 2016 and 2020 were analyzed.

3. Results
3.1. Estimation of Canopy Height and DBH

The canopy height (H)–stand age model is presented in Figure 3a. With increasing
stand age over the first 10 years, the height of rubber trees rose dramatically. The growth
rate slowed between 10 and 15 years, and after 15 years, the trees’ height increased very
slowly. According to logistic curve fitting, the R2 reached 0.95. Figure 3b–d show the
DBH models established using three different methods. DBH estimated via RSIs and
ECIs displayed a high degree of accuracy for rubber trees around 17 years but had clear
tendencies for overestimation for trees younger than 15 years and underestimation for trees
older than 20 years. The linear fit demonstrated an R2 of 0.36 and an RMSE of 4.38 cm.
When the canopy height or stand age was introduced, the prediction accuracy significantly
improved: the scatter points for the observed and predicted DBH were mainly distributed
along the 1-to-1 line, while the R2 reached 0.76 and 0.77 and the RMSE decreased to 2.65 cm
and 2.60 cm, respectively. Considering that stand age is easier to obtain using remote
sensing than canopy height, we finally chose the model with RSIs, ECIs, and stand age as
independent variables to estimate DBH.
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age (A), and canopy height (H)).

3.2. Comparison of Different Biomass Estimation Models

The nine biomass models developed with different variables and field data from
2016 are presented in Figure 4. Notably, the model exclusively employing RSIs and ECIs
exhibited the lowest accuracy in estimation (R2 = 0.24 and RMSE = 38.36 mg/ha) along
with the most substantial estimation bias, particularly for rubber plantations with biomass
greater than 100 mg/ha (Figure 4a). However, with the introduction of stand age, a
significant improvement in prediction accuracy was observed: R2 increased to 0.77 and
RMSE decreased to 21.16 mg/ha. Additionally, scatter points demonstrated a closer
alignment along the 1-to-1 line (Figure 4b). Likewise, when solely incorporating canopy
height, the model’s prediction accuracy remained comparable to that achieved with stand
age (R2 = 0.77 and RMSE = 20.91 mg/ha), while the slope of the linear fit improved from
0.79 to 0.80 (Figure 4c). However, the inclusion of DBH led to a substantial enhancement
in model accuracy: R2 increased from 0.77 to 0.97, RMSE decreased to 7.73 mg/ha, and
the slope improved from 0.80 to 0.93 (Figure 4d). Furthermore, when simultaneously
incorporating two out of three variables (A, DBH, and H), the prediction accuracy of both
the models incorporating DBH surpassed that of the model without DBH. The R2 for the
former models reached 0.97, while the latter model lagged at a value of 0.77 (Figure 4e–g).
Incorporating DBH, A, and H together yielded an identical R2 of 0.97 but with a slightly
reduced RMSE of 7.43 mg/ha. However, it is worth noting that the biomass calculated
using the AE and DBH (from the best RF model) exhibited lower precision compared to the
RF models, with an R2 of 0.67 and an RMSE of 25.43 mg/ha (Figure 4i). Consequently, the
RF model utilizing RSIs, ECIs, DBH, A, and H as independent variables was selected as the
final biomass model. Utilizing this model, the biomass of rubber plantations in both 2016
and 2020 was determined.
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3.3. Spatiotemporal Pattern for Rubber Biomass at City/County Scale in Hainan Island

Figure 5 provides an overview of the spatial distribution of rubber plantation biomass
in 2016 and 2020. In 2016, the rubber plantations with a biomass of about 70 mg/ha were
mainly located in the northwestern and northern regions of Hainan Island, including Lingao
and Changjiang county and northwest of Danzhou city. On the other hand, the central
region and southeastern coastal regions had higher biomass for the rubber plantations,
typically ranging between 70 mg/ha and 85 mg/ha (Figure 5a). In 2020, there was a
significant increase in both the area and biomass of rubber plantations. The rubber acreage
increased throughout the island, especially in the northwest and northern regions. Rubber
plantations with a biomass of approximately 65 mg/ha or less were found to be more widely
distributed in the western region of Danzhou city, the northern region of Changjiang and
Ledong county, Haikou city, Ding’an county, and Wenchang city. In most of the remaining
areas, the biomass of rubber plantations increased to around 70 mg/ha. The areas with the
highest biomass were often distributed in the border areas of different cities and counties,
such as the border areas between Chengmai county and Tunchang county, Qiongzhong
county, Wuzhishan city, Baisha county, and Wanning city, where the biomass of many of
the rubber plantations exceeded 120 mg/ha (Figure 5b).
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The average biomass of rubber plantations across different cities and counties changed
greatly between 2016 and 2020 (Figure 6a). In 2016, the average biomass was approximately
75 mg/ha. Wuzhishan city, Wanning city, and Sanya city had the highest average biomass
of about 84 mg/ha. Conversely, the average biomass in Changjiang county, Dongfang
county, Ledong city, and Dingan city was relatively low, approximately 69 mg/ha. With the
exception of Baisha, Chengmai city, Danzhou county, and Qiongzhong, the average biomass
of rubber plantations in the other 14 cities and counties showed a decreasing trend. Notably,
Chengmai city had the highest increase of 5.70 mg/ha, far exceeding the other cities and
counties. The cities and counties with remarkable decreases in biomass were Wanning
county, Tunchang city, Lingao city, and Dongfang county. In 2020, Qiongzhong county had
the highest average biomass of approximately 85 mg/ha, followed by Wuzhishan city and
Chengmai county, Baisha city, and Wanning county, which had average biomass exceeding
79 mg/ha. The average biomass in Sanya city, Baoting county, Danzhou city, Lingao county,
and Tunchang county was concentrated around 73 mg/ha. Dongfang city and Changjiang
county had the lowest average biomass for rubber trees among the 18 cities and counties,
with values of 63.81 mg/ha and 63.57 mg/ha, respectively.

Figure 6b demonstrates that the total biomass of the rubber plantations in different
cities and counties on Hainan Island varied significantly. Danzhou city had the highest
total biomass in both 2016 and 2020, with a value of 1.06 × 107 mg in 2020, which was
significantly higher than that of other cities and counties. The growth of rubber planta-
tion biomass in Danzhou city was also very rapid, increasing by about 1.93 × 106 mg.
In 2016, the total biomass of rubber plantations in Baisha county, Chengmai county, and
Qiongzhong county exceeded 4.00 × 106 mg, with the first two cities and counties also
demonstrating significant increases. Additionally, Ledong county, Qionghai city, Tunchang
county, and Lingao county had total rubber plantation biomass exceeding 2.00 × 106 mg in
2016. Conversely, Dongfang county and Linshui city had smaller total biomass values of
0.63 × 106 mg and 0.67 × 106 mg, respectively, in 2020. The total biomass of rubber planta-
tions on Hainan Island in 2016 and 2020 was 4.52 × 107 and 5.46 × 107 mg, respectively.
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3.4. Topographic Pattern of the Latest Rubber Biomass on Hainan Island

Rubber plantations exhibited notable variability in average biomass across differing
elevations and slopes in 2020, as demonstrated in Table 1. The most substantial average
biomass was observed in rubber plantations situated at elevations between 400 and 600 m
above sea level, which exhibited an average biomass of 86.52 mg/ha. Comparatively,
plantations distributed at elevations between 300 and 400 m and 200 and 300 m above
sea level displayed average biomasses of 85.74 mg/ha and 84.48 mg/ha, respectively. In
contrast, the rubber plantations situated at elevations between 0 and 50 m above sea level
displayed the lowest average biomass, with a value of 69.08 mg/ha. The average biomass
fluctuated slightly among the various slope regions. Specifically, plantations situated in
the flattest areas (<5◦) exhibited an average biomass of 74.48 mg/ha, while the highest
average biomass, 89.38 mg/ha, was observed in plantations situated in regions with slopes
greater than 25◦. The average biomass of rubber plantations increased marginally with
increases in slope, from 74.48 mg/ha in plantations with slopes less than 5◦ to 89.38 mg/ha
in plantations with slopes above 25◦.

This study investigated the total biomass of rubber plantations situated at varying
elevations and slopes. The findings reveal that the plantations at elevations of 100–200 m
above sea level exhibited the highest total biomass, exceeding 2.3 × 107 mg. Rubber planta-
tions at elevations of 50–100 m and 200–300 m possessed total biomass of 1.41 × 107 mg
and 0.97 × 107 mg, respectively. Conversely, plantations at elevations above 600 m had con-
siderably lower total biomass amounting to 0.6 × 105 mg. Furthermore, the total biomass
of the rubber plantations progressively diminished with increasing slope. For instance,
in the plains with slopes less than 5◦, the total biomass approached 2.41 × 107 mg, but it
decreased sharply to 1.64 × 107 mg in areas with slopes of 5–10◦. Notably, regions with
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slopes exceeding 25◦ exhibited significantly lower total biomass for rubber plantations
amounting to 1.61 × 106 mg.

Table 1. The average and total biomass of rubber plantations at different elevations and slopes on
Hainan Island in 2020.

Elevation (m) 0–50 50–100 100–200 200–300 300–400 400–600 >600

Biomass (mg/ha) 69.08 75.17 79.02 84.48 85.74 86.52 82.34

Biomass (×106 mg) 4.83 14.05 23.3 9.7 3.95 1.85 0.06

Slope (◦) 0–5 5–10 10–15 15–20 20–25 >25

Biomass (mg/ha) 74.48 78.41 83.33 86.09 87.54 89.38

Biomass (×106 mg) 24.09 16.35 8.13 4.84 2.72 1.61

4. Discussion
4.1. Biomass Estimation Using Different Variables

Signal saturation is a common problem in estimating forest biomass using optical and
SAR remote sensing data [12,46,47]. It has been reported that data saturation may occur
when biomass density reaches 100–150 mg/ha in moist tropical forests, depending on the
complexity of the forest stand structures caused by biophysical environments [12]. For
uniformly planted rubber plantations, many studies have found that the saturation point
for the biomass is lower than that in moist tropical forests. For example, saturation occurred
at 50 mg/ha with the PALSAR HV band, 40 mg/ha with the WorldView-2 images, and
65 mg/ha with the LS2-based spectral indices [6,48,49]. Therefore, it is difficult to accurately
estimate the biomass of rubber plantations solely using traditional predictors, such as
spectral bands, vegetation indices, geo-environmental indicators, or their combinations.
One of our models demonstrated the a estimation bias using RSIs and ECIs: the biomass of
rubber plantations was seriously underestimated when it was greater than about 70 mg/ha,
with an R2 of 0.24 and RMSE of 38.36 mg/ha (Figure 4a).

The rate of forest biomass accumulation is closely related to stand age, especially
in the transitional stage of forest succession [50–52]. For specific species, such as rubber
trees, the economic life cycle is about 30 years. During the growth and development stage
(<10 years), the biomass increases rapidly with the increase in the stand age and gradually
slows down with the increase in latex harvesting time [53]. The stand age of rubber trees in
the same plantation is consistent, which brings great convenience to the accurate estimation
of biomass and alleviates the problem of signal saturation to a great extent. When the stand
age was added to the independent variable sets, the estimation accuracy for biomass was
significantly improved (R2 = 0.77, RMSE = 21.16 mg/ha; Figure 4b). However, obtaining a
high-precision map of rubber stand age in advance is essential for estimating biomass in
large areas. Thanks to the development of remote sensing big data and cloud computing
platforms, such as GEE [54], it is now possible to quickly access and analyze decades
of remote sensing images and obtain more accurate stand age information for rubber
plantations by monitoring changes in land use and rubber tree growth [34,55].

Each rubber plantation also has a similar canopy height, which is another key variable,
in addition to DBH, in estimating aboveground biomass on the ground [56–58]. Estimating
tree canopy heights from traditional optical and radar imagery was also challenging until
the GEDI instrument was successfully launched on the International Space Station (ISS) [31].
By producing high-resolution laser-range observations of the Earth’s three-dimensional
structure, the GEDI instrument significantly increases the accuracy of the worldwide
estimation of tree canopy heights [59]. When canopy height was added in the RF model, the
estimation accuracy for rubber plantation biomass also significantly improved (R2 = 0.77
and RMSE = 20.91 mg/ha). Compared to the stand age, the accuracy of biomass estimation
was slightly higher after adding the canopy height variable (Figure 4b,c), which could
explain the differences in canopy height even though the stand age was the same in the
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same rubber plantation. The height difference between trees in the same plantation can
be obtained through the GEDI, while the stand age monitored through time-series images
tends to be the same.

Although canopy height was comparable as a biomass estimator variable to DBH, its
contribution was found to be significantly lower than that of DBH when tested in this study.
Compared with stand age and canopy height, the RF model with only the DBH variable
added had the highest estimation accuracy (Figure 4d; R2 = 0.97 and RMSE = 7.73 mg/ha).
In the other four RF models using multivariate combinations of stand age, canopy height,
and DBH, the accuracy of the model with the DBH variable was also significantly higher
than that of the model without DBH (Figure 4e–g). This could be primarily explained by
the fact that DBH is the most important variable in forest biomass estimation [3,60,61]. The
biomass used for verification in this study came from Equation (2), a DBH-based AE model.
Moreover, there are still many uncertainties regarding the current canopy height products.
The GEDI data used for canopy height retrieval were discrete footprint samples with a
diameter of about 25 m, and the other areas were obtained from indirect estimation with
data from multiple sources, such as Landsat imagery [62]. In addition, high geolocation
uncertainty in GEDI data is likely to introduce high uncertainty in canopy height estimation.
The horizontal geolocation error for each 25 m footprint center for the first-release GEDI
data is within 10 m, but a recent evaluation of GEDI early-mission data for about 8 months
showed a horizontal geolocation error of 23.8 m [63,64]. Furthermore, canopy height data
are currently only available for the nominal years of 2019 and 2020 [62,65]. To match the
2016 DBH data, the canopy height used to estimate rubber plantation biomass in 2016 was
indirectly estimated by the regression model developed with stand age (Figure 3a). Due to
this indirect estimation, there were more dependencies among the DBH, stand age, and
canopy height, which is also an important reason why the model accuracy could not be
significantly improved when multiple variable combinations were added at the same time.

4.2. Spatial Distribution Pattern for Rubber Plantations and Biomass on Hainan Island

Rubber plantations constitute over a quarter of the forested area on Hainan Island, rep-
resenting the largest forest plantation ecosystem in the region [33]. Therefore, quantifying
the biomass of these plantations holds considerable significance for the island. The spatial
distribution of rubber biomass on Hainan Island is intricately linked to the timeline of the
establishment and the location of rubber plantations (Figure 1). Following a rapid increase
in natural rubber prices after 2003, rubber planting areas on the island expanded rapidly,
particularly in the western and northern regions [33,66]. Although the southeastern and
southern parts of Hainan offer favorable temperature and rainfall conditions for rubber
cultivation, the former is prone to frequent severe typhoons, and the latter, as a genuine
tropical area, generates more substantial economic returns from the production of tropical
fruits rather than rubber trees [67–69]. This phenomenon explains the high average biomass
in Sanya city in the south during 2016, which subsequently declined significantly in 2020
(Figure 6). There are few new rubber plantations in these areas, resulting in most of the old
rubber plantations gradually being felled to plant other tropical fruits. Consequently, the
establishment of new rubber plantations along the southeastern coast and in the south is
substantially lower in comparison to the western and northern regions.

With regard to alterations in spatial distribution, the extent of rubber plantations in
2020 was markedly greater than in 2016 (Figure 5). This observation may be ascribed to
the limitations of existing algorithms, which solely detect rubber plantations exhibiting
forest morphological characteristics via remote sensing approximately five years post-
establishment [34]. Consequently, the rubber plantations that principally expanded be-
tween 2016 and 2020 were established between 2010 and 2015. Despite a precipitous
decline in natural rubber prices following their peak in 2011, the enlargement of rubber
planting areas persisted due to a temporal disconnect between plantation growth and
price oscillations [66,70,71]. For example, statistics indicate that, between 2010 and 2015,
newly established rubber plantations on Hainan Island encompassed 128,000 ha (averaging
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21,000 ha annually), while this figure diminished to approximately 3200 ha in 2016 [72]. As
a result, by the end of 2020, a substantial portion of Hainan Island’s rubber plantations
consisted of trees less than 15 years old, displaying relatively low biomass density. The rise
in the proportion of young rubber plantations explains the reduced average biomass for
rubber plantations in numerous cities and counties in 2020 compared to 2016 (Figure 6).
However, the augmented total area of rubber plantations in 2020 contributed to the ele-
vation of total biomass in the majority of cities and counties. The total biomass of rubber
plantations island-wide also increased from 4.52 × 107 mg in 2016 to 5.46 × 107 mg in 2020.

Rubber plantations characterized by higher biomass (exceeding 120 mg/ha) are pre-
dominantly situated in central mountainous regions and the border areas of different cities
and counties (Figure 5). This distribution may be attributed to the elevated expenses associ-
ated with short-term, intensive agricultural development in mountainous locales, rendering
the cultivation of perennial rubber trees a more favorable option [73]. The considerable
costs involved in updating old rubber plantations in these regions facilitate the preserva-
tion of older rubber plantations [34]. For example, the top four rubber plantations with
the highest average biomass in 2020 were Qiongzhong county, Wuzhishan city, Chenmai
county, and Baisha county, three of which have typical mountainous terrain (Figure 6).
In addition, border areas often comprise underdeveloped regions with unfavorable geo-
graphic conditions, which, in turn, increases the likelihood of maintaining older rubber
plantations [74,75].

4.3. Uncertainty Analysis and Potential Application Prospects

The precision of rubber plantation biomass estimation primarily depends on the accu-
rate determination of three variables: DBH, stand age, and canopy height. Remote sensing
offers a comparatively more feasible approach for acquiring stand age and canopy height
data than obtaining DBH measurements. The estimation of stand age and canopy height
involves a relatively comprehensive algorithm that demonstrates notably high accuracy,
with an RMSE of approximately 2 years, when sufficient image data are available [34,55].
Nevertheless, the availability of Landsat 5 images prior to 2000 was limited, leading to a
scarcity of data sources and consequently affecting the estimation accuracy. With regard
to canopy height estimation, significant improvements in accuracy have been achieved
through the use of GEDI data [30,62], but it still has high uncertainty due to intrinsic geo-
metric positioning errors associated with the GEDI and the availability of footprint points
only. While the indirect estimation of DBH through RSIs, ECIs, stand age, and canopy
height displays high accuracy, the employed algorithm lacks clear theoretical significance.
Furthermore, tropical regions are characterized by severe landscape fragmentation [25,76],
and many rubber plantations are managed by smallholders with limited land area that
is not easy to detect, which exacerbates the problems of collecting stand age and canopy
height at the spatial resolution level of satellite imagery. Hence, a more advanced nonlinear
regression fitting analyzer [77] that can synthetically consider all disturbance factors related
to the rubber tree biomass assessment could be developed to raise the accuracy of the
final results.

Despite the existence of limitations, the algorithm employed in this study demonstrates
promising potential and can be readily applied to other rubber cultivation regions, such as
Xishuangbanna in Yunnan province, China, and various Southeast Asian countries. Firstly,
the utilization of platforms such as GEE and the availability of extensive time-series big
data, such as from Landsat, Sentinel, and SDGSAT-1, enable accurate estimation of rubber
stand age [54,78]. Secondly, the canopy height products from 2020 are on a global scale, and
canopy height in recent years can be further mapped using the latest LiDAR data acquired
from GEDI and GF-7, as well as L-band SAR data, like PALSAR-2 [13]. By incorporating
ground survey data to refine the DBH estimation model and biomass allometric equations
specific to different regions, it is anticipated that satisfactory accuracy in biomass estimation
can be achieved across diverse geographical areas.
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Against the backdrop of persistently low natural rubber prices for over a decade and
China’s explicit commitment to carbon peaking and carbon neutrality [79,80], the practical
significance of large-scale biomass/carbon storage estimation in rubber plantations is
becoming increasingly profound. Accurately determining the carbon sink capacity of
rubber plantations holds the potential to facilitate carbon trading initiatives and enhance
the economic benefits associated with rubber cultivation. For example, implementation of
the Verified Carbon Standard (VCS) in forestry carbon sequestration projects within rubber
plantations can yield tangible economic advantages for various stakeholders, including
rubber farmers, businesses, and government regulators [81]. Hence, with the continuous
upgrading of satellite-borne remote sensing techniques and the latest image processing
algorithms, the ideological elaboration of carbon stock surveying from the regional scale
to the sample-plot scale and then the individual-tree scale could be achieved in the near
future [82].

5. Conclusions

Estimating biomass in rubber plantations holds significant scientific and practical
implications, but achieving accurate estimations on a large scale remains challenging. This
study employed remote sensing images, ground surveys, and key physiological factors,
such as stand age and canopy height, to investigate the impact of different predictors and
estimation methods on biomass estimation accuracy in rubber plantations. The results
demonstrate that incorporating stand age or canopy height factors into the random forest
model based on RSIs and ECIs significantly improves biomass prediction accuracy. This
approach effectively addresses the signal saturation problem encountered in traditional
remote sensing inversion, increasing the R2 value from 0.24 to 0.77. Furthermore, when the
DBH—the most widely used variable for biomass estimation using the AE—was added
to the model, the prediction accuracy surpassed that obtained when adding stand age or
canopy height, resulting in an R2 value of 0.97. However, incorporating two or all of the
variables (stand age, canopy height, and DBH) into the model did not yield significant
improvements in prediction accuracy as compared to the more straightforward approach
using RSIs, ECIs, and DBH.

This study applied the optimal model to estimate biomass in rubber plantations on
Hainan Island, China’s second-largest rubber planting region, for the years 2016 and
2020. The results reveal that spatiotemporal biomass distribution patterns closely correlate
with rubber plantation distribution and establishment years. Since the onset of the 21st
century, the increasing price of natural rubber has prompted the establishment of numerous
rubber plantations across the island, particularly in the northwest and northern regions.
Consequently, these areas exhibit relatively low biomass densities (e.g., <50 mg/ha). In
contrast, older rubber plantations in the central mountainous region and the border areas of
different cities and counties feature higher biomass densities (e.g., >120 mg/ha). Although
the average biomass in over half of the cities and counties in 2020 was marginally lower
than in 2016, the total biomass of rubber plantations in most cities and counties exhibited a
clear growth trend due to the expansion of plantation areas. By the end of 2020, the total
biomass of rubber plantations on Hainan Island reached 5.46 × 107 mg, emphasizing its
substantial value for the carbon cycle on Hainan Island.
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