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Abstract: Accurate and reliable mapping of fire extent and severity is critical for assessing the
impact of fire on vegetation and informing post-fire recovery trajectories. Classification approaches
that combine pixel-wise and neighbourhood statistics including image texture derived from high-
resolution satellite data may improve on current methods of fire severity mapping. Texture is an innate
property of all land cover surfaces that is known to vary between fire severity classes, becoming
increasingly more homogenous as fire severity increases. In this study, we compared candidate
backscatter and reflectance indices derived from Sentinel 1 and Sentinel 2, respectively, together with
grey-level-co-occurrence-matrix (GLCM)-derived texture indices using a random forest supervised
classification framework. Cross-validation (for which the target fire was excluded in training) and
target-trained (for which the target fire was included in training) models were compared to evaluate
performance between the models with and without texture indices. The results indicated that the
addition of texture indices increased the classification accuracies of severity for both sensor types,
with the greatest improvements in the high severity class (23.3%) for the Sentinel 1 and the moderate
severity class (17.4%) for the Sentinel 2 target-trained models. The target-trained models consistently
outperformed the cross-validation models, especially with regard to Sentinel 1, emphasising the
importance of local training data in capturing post-fire variation in different forest types and severity
classes. The Sentinel 2 models more accurately estimated fire extent and were improved with the
addition of texture indices (3.2%). Optical sensor data yielded better results than C-band synthetic
aperture radar (SAR) data with respect to distinguishing fire severity and extent. Successful detection
using C-band data was linked to significant structural change in the canopy (i.e., partial-complete
canopy consumption) and is more successful over sparse, low-biomass forest. Future research will
investigate the sensitivity of longer-wavelength (L-band) SAR regarding fire severity estimation and
the potential for an integrated fire-mapping system that incorporates both active and passive remote
sensing to detect and monitor changes in vegetation cover and structure.

Keywords: fire extent; fire severity; grey-level co-occurrence matrix; optical; Sentinel 1; Sentinel 2;
synthetic aperture radar; texture

1. Introduction

Recent advances in remote sensing technology have ushered in a rapid increase in the
number of earth observation (EO) satellites launched, mission longevity, and the spatial,
spectral, and temporal resolution captured by the employed sensors. Since the 1970s, the
average number of EO satellites launched per year/decade has increased from 2 to 12,
and the spatial resolution of multispectral sensors has increased from 80 m to less than
1 m [1,2] The rate of increase in EO satellites launched is expected to accelerate in the
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coming decades. Technological advancements have also allowed spaceborne active sensors,
synthetic aperture radar (SAR), and LiDAR, to be launched, with miniaturisation into Cube-
Sats facilitating reduced costs for targeted missions [3]. Rapid advancements in unmanned
aerial vehicle (UAV) technology and lower costs have initiated an ongoing increase in
the use of very-high (sub cm)-spatial-resolution UAV data in earth observation applica-
tions [4,5]. While the benefits of higher-spatial and -spectral-resolution remote sensing data
include a greater volume of and detail in the EO information being captured, increasingly
finer resolution can create other challenges for some applications, requiring more advanced
image analysis techniques for the accurate classification of high-resolution imagery.

Pixel-wise techniques are commonly used in the classification of satellite imagery,
where the radiometric properties of individual pixels are treated as independent from
the surrounding pixels [6,7]. However, pixel-wise classification approaches have inherent
limitations when applied to features with heterogenous landscape patterns or when the
size of a feature may be smaller or larger than the size of a pixel. Similarly, the type
of imagery may also influence the decision to use pixel-wise methods. For example,
finer-resolution imaging increases the number of adjacent pixels that may need to be
clustered to represent an object of interest [7]. Furthermore, certain sensor characteristics
may also increase misclassification when using pixel-wise methods. For example, SAR
imagery is characterised by ‘salt and pepper’ noise due to coherent interference from
multiple scatterers in each resolution cell [8]. Therefore, the classification of single pixels
is to be avoided in favour of spatial averaging or object-based approaches. Contextual
information from the spatial association and radiometric comparisons of neighbouring
pixels may improve classification capacity for high-resolution optical and radar imagery
and classification problems in heterogenous landscapes.

Texture is an innate property of all surfaces and can be used in automated feature
extraction to classify objects or regions of interest affected by the limits of classical pixel-wise
image-processing methods. Image texture analysis aims to reduce the number of resources
required to accurately describe a large set of complex data [9]. Particular characteristics
of landscape patterns may benefit from image texture analysis techniques. Texture may
add vegetation structural information to estimates of forest and woodland composition via
spectral vegetation indices, thereby helping to discern vegetation community types [10–13].
The accuracy in classifying environmental phenomena with a strong element of spatial
contagion, such as floods, fires, smoke, and the spread of disease, may also improve through
image texture analysis, as nearby pixels tend to belong to the same class or classes with a
functional association [8,14].

Various statistical measures of image texture can be derived using different approaches,
with the Grey-Level Co-occurrence Matrix (GLCM; [15] ) method being the more commonly
used approach in remote sensing. A GLCM represents the frequency of the occurrence
of pairs of grey levels (intensity values) for combinations of pixels at specified positions
relative to each other within a defined neighbourhood (e.g., a 5 × 5-pixel window or
kernel). Within the neighbourhood, texture consists of three elements: the tonal difference
between pixels, the distance over which tonal difference is measured, and directionality.
The central pixel of the moving window is recoded with the chosen texture statistics,
generating a single-raster layer that may be used as an input in further analysis [9,15,16].
Texture-based statistics include first-order measures such as mean and variance, which do
not include information on the directional relationships between pixels, and second-order
(co-occurrence) measures such as contrast, homogeneity, correlation, dissimilarity, and en-
tropy [16]. With many options available, selecting appropriate texture metrics may require
systematic comparative assessment and is likely to vary depending on the application.

In the broad-scale mapping of fire severity, which is defined as the immediate post-fire
loss or change in organic matter caused by fire [17], remotely sensed imagery is pre-
dominantly processed using pixel-wise image differencing techniques that determine the
difference between pre- and post-fire images [17–23] Numerous reflectance indices have
been derived and compared for applications in the remote sensing of fire severity, including
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the differenced Normalised Burn Ratio (dNBR; [20], the Relativised dNBR (RdNBR; [24], the
soil-adjusted vegetation index [25,26], the burned area index [27]), Tasselled-cap brightness
and greenness transformations [28], and sub-pixel unmixing estimates of photosynthetic
cover [19,29–31]. The supervised classification of multiple indices of fire severity has re-
cently been the focus of research employing machine learning and pixel-wise approaches
based on Landsat imagery [32] as well as higher-resolution (10 m pixel size) Sentinel 2
imagery [31]. However, fire severity is an ecological phenomenon with inherent spatial
contagion and image texture properties that vary between severity classes. Image texture be-
comes increasingly more homogenous as fire severity increases. Thus, fire severity mapping
may benefit from advanced data fusion techniques combining information characteristics
from multiple input types (i.e., pixel-based and texture-based indices).

During the bushfire crisis of 2019–2020 in south-eastern Australia, the approach
outlined in Gibson et al. (2020) was rapidly operationalised to map fires in near-real time
using Sentinel 2 data [31]. The mapping helped fire management agencies in New South
Wales to understand the evolving situation and prioritise response actions. However,
smoke from the extensive active fires in the surrounding landscape significantly limited
the selection of suitable clear imagery for rapid response mapping. Rapid fire extent
and severity mapping could benefit from the all-weather-, cloud-, and smoke-penetrating
capability of SAR. Furthermore, active sensors such as SAR have a greater potential to
add information on the third dimension of a biophysical structure compared to the more
traditional two-dimensional optical remotely sensed data [33,34].

Recent studies that investigated the sensitivity of different SAR frequencies for fire
severity applications found that both short- (C-band, ~5.4 cm) and longer-wavelength
(L-band, ~24 cm) SAR data show some potential. For example, Tanase et al. (2010) observed
an increase in co-polarised backscatter and a decrease in cross-polarised backscatter in the
X-, C-, and L-bands in a burnt pine forest in Ebro valley, Spain, due to a decrease in volume
scattering from the canopy [35]. Interferometric SAR coherence and full polarimetric SAR
have also facilitated the discrimination of fire severity classes [36,37]. Furthermore, a
progressive burned-area-monitoring capacity has been demonstrated using Sentinel 1 [38],
capturing most of the burnt areas with the exception of some low-severity areas without a
structural change.

Several recent studies have included SAR-derived texture metrics in burnt-area-
mapping applications. The majority of these studies concerned the detection of post-fire
burnt areas. For example, Lestari et al. (2021) demonstrated improved classification of burnt
and unburnt areas through the joint classification of Sentinel 1 (including GLCM features)
and Sentinel 2 data [39]. Sentinel 1 GLCM texture measures of entropy, homogeneity, and
contrast demonstrated high variability in separating burnt and unburnt areas in Victoria,
Australia [40]. The impact of topography on backscatter, and hence the better separation
of burnt flat areas, was also highlighted by Tariq et al. (2023), who found that similarity,
entropy, homogeneity, and contrast were most useful for separating burnt and unburnt
areas [41]. Tariq et al. (2020) also noted the importance of window size, lag distance, and
quantisation level when calculating GLCM texture and that further studies were needed
to better understand the sensitivities with changing resolution. No previous studies have
evaluated the use of SAR texture metrics for fire severity mapping.

Through a systematic comparison of classification accuracy and the visual interpre-
tation of classified fire extent and severity maps, this study tested whether image texture
indices improved the accuracy of fire extent determination and severity mapping based
on (1) Sentinel 1 SAR data, (2) Sentinel 2 optical data, and (3) whether the most suitable
neighbourhood window size and texture metrics varied with the different sensors and
applications (fire extent/fire severity).
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2. Materials and Methods
2.1. Study Area

This study analysed 8 wildfires that occurred in the 2017–2018 and 2018–2019 fire
years within the state of New South Wales, south-eastern Australia (Figure 1, Table 1). The
fires covered a variety of forest types and bioregions and a wide range of fire severity. The
main vegetation types across the studied fire regions were dry sclerophyll woodland and
open forest communities, dominated by eucalypt species of variable height. Low trees
(up to 10 m) are generally more common on upper slopes and ridges, while taller trees
(20–30 m) are more common on lower slopes and in gullies, which is largely representative
of the broadly forested environment across south-eastern Australia. The fires occurred
across different climatic zones, including temperate and semi-arid [42]. Shrublands (i.e.,
heath), grasslands, grassy woodlands, tall wet forests, and rainforests, which were major
components of the landscape for several study fires but were not present across all fires.
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Figure 1. Location of the 8 case study fires (Pilliga, Sir Ivan, White Cedars, Mt Canobolas, Wollemi,
Holsworthy, Sir Bertram, and Tathra) in NSW, Australia.

2.2. Imagery Selection and Pre-Processing

Freely available Sentinel 1 (C-band SAR; interferometric wide-swath dual-polarization
mode) and Sentinel 2 (optical) satellite imagery data were downloaded as ground-range-
detected high-resolution (GRDH) and level 1C products (orthorectified; top-of-atmosphere
reflectance), respectively, for the pre- and post-fire periods for each study fire. Sentinel 1
data were acquired in a descending orbit. Precipitation records were consulted, and only
those images acquired under dry conditions with minimal to no rainfall in the few days
prior to observation were selected. All Sentinel 1 post-fire images were acquired between 1
and 9 days post-fire.
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Table 1. Summary of case study fires with start and end dates and details on high-resolution
photography (airborne digital sensor, ADS) used for aerial photo interpretation (API). The number of
days for which the photos were captured after the end of a fire is included in parentheses.

Fire Name Fire Start Date Fire End Date Aerial
Photography Date of Capture Fire Size (Ha)

Sir Ivan 11 February 2017 17 February 2017 50 cm 4-band ADS 18 February 2017 (1) 47,105
White Cedars 12 February 2017 17 February 2017 20 cm 4-band ADS 16 February 2017 (−1) 5217

Wollemi 18 January 2018 15 February 2018 50 cm 4-band ADS 17 March 2018 (30) 14,178
Mt Canobolas 10 February 2018 15 February 2018 30 cm 4-band ADS 9 March 2018 (21) 1891

Sir Bertram 20 January 2018 15 January 2018 50 cm 4-band ADS 11 March 2018 (38) 2241
Pilliga 19 January 2018 25 February 2018 50 cm 4-band ADS 11 March 2018 (38) 57,822
Tathra 18 March 2018 19 March 2018 10 cm 4-band ADS 20 March 2018 (1) 1258

Holsworthy 13 April 2018 18 April 2018 50 cm 4-band ADS 24 April 2018 (6) 3955

Sentinel 1 GRDH products (10 m pixel size) consist of detected, multi-looked, and
ellipsoid projected data. To facilitate interpretation, the GRDH data were orthorecti-
fied and radiometrically calibrated to gamma0 (γ0) using ESA’s Sentinel-1 Toolbox v7.0
(http://step.esa.int, accessed on 1 July 2022). The processing workflow was similar to that
reported by Filipponi (2019), with precise orbits applied, thermal noise removal, radiomet-
ric calibration, speckle filtering (Refined Lee), radiometric terrain flattening, co-registration,
and range doppler terrain correction [43]. Areas subject to geometric distortion, layover,
and shadow were estimated by differencing local incidence angle (LIA) and global inci-
dence angle (GIA) images and applying a threshold of −15 dB [44]. Immediate pre- and
post-fire images were differenced and clipped in accordance with the extent of each site.

Sentinel 2 satellite imagery with the lowest cloud cover and obtained as close as
possible to the start and end date of each fire was manually selected. All Sentinel 2 post-fire
images were captured between 2 and 18 days post-fire. Sentinel 2 SWIR bands (11 and
12) were pan-sharpened from 20 m to 10 m resolution using the Theil–Sen Estimator, a
robust regression technique [45]. The images were processed to represent standardised
surface reflectance with a nadir view angle and an incidence angle of 45◦ [46], the latter
of which corrects for variations due to atmospheric conditions, topographic variations,
and the bi-directional reflectance distribution function (BRDF; [47,48], thus minimising
the differences between scenes caused by different sun and view angles. Fractional cover
products were generated for each Sentinel 2 image; these products calculate, for each pixel,
the proportion of photosynthetic (green) vegetation, non-photosynthetic (‘non-green’, dead,
or senescent vegetation), and bare ground cover [49].

2.3. Input Indices

Candidate indices based on Sentinel 1 SAR data included the pre- to post-fire differ-
ences in the VV and VH polarizations (refer to Equations (1) and (2)) as well as the post-fire
backscatter in VV and VH polarizations:

preminpostVV = pre VV γ0− post VV γ0 (1)

preminpostVH = pre VH γ0− post VH γ0 (2)

Candidate spectral indices were generated for each pair of pre- and post-fire Sen-
tinel 2 reflectance images. These indices included the differenced normalised burn ratio
(dNBR); relativised dNBR (RdNBR); relativised change in total fractional cover (RdFCT);
and change in bare fractional cover (dFCB), which are expressed in the following equations
(Equations (3)–(11)):

preNBR =
pre NIR− pre SWIR
pre NIR + pre SWIR

(3)

http://step.esa.int
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postNBR =
post NIR− post SWIR
post NIR + post SWIR

(4)

dNBR = preNBR− postNBR (5)

ABS pre NBR =|preNBR| (6)

RdNBR =

(
dNBR

sqrtABS preNBR

)
(7)

pre Total = pre Green + pre Non Green (8)

post Total = post Green + post Non Green (9)

RdFCT =

(
pre Total − post Total

sqrt(pre Total)

)
(10)

dFCB = post Bare− pre Bare (11)

In addition, the less commonly used NBR2 based on short-wave infrared (SWIR)
bands, in which the SWIR1 band is substituted for the NIR band used in NBR, was used to
generate a modified dNBR2 and RdNBR2 (see Equations (12)–(15)). Recent reports indicate
that NBR2 is less sensitive to variations due to precipitation effects [50] and, like SWIR
bands, has the ability to penetrate haze, smoke, and semi-transparent clouds [51].

preNBR2 =

(
pre SWIR1− pre SWIR2
pre SWIR1 + pre SWIR2

)
(12)

postNBR2 =

(
post SWIR1− post SWIR2
post SWIR1 + post SWIR2

)
(13)

dNBR2 = preNBR2− postNBR2 (14)

dRdNBR2 =

(
dNBR2

sqrt(ABS preNBR2)

)
(15)

A range of commonly used GLCM metrics were initially used in a preliminary as-
sessment, including mean, variance, correlation, contrast, dissimilarity, angular second
moment, entropy, and homogeneity [16]. All texture metrics were calculated based on the
base indices using the ‘glcm’ package in R [52]. Choice of pixel window size (kernel) is
extensively discussed in the studies by Dorigo et al. (2012) and Franklin et al. (2000) [53,54].
For this study, several texture window sizes were initially systematically tested, including
all kernel window sizes from 3 to 11 (i.e., 3, 5, 7, 9, and 11). The maximum kernel size
generated smoothing effects across a window of 110 m × 110 m and was considered the
limit of useful accuracy in delineating practical fire boundaries on the ground. Following
a preliminary assessment using the random forest analysis of variable importance (corre-
sponding to a decrease in the Gini Index), a subset of the best-performing texture metrics
was selected for further testing. Variables with larger-sised kernels (i.e., 7 and 11) had
greater importance with respect to Sentinel 1 indices compared to those of Sentinel 2 (i.e., 5
and 7). The selected texture metrics based on Sentinel 1 were calculated using the VV and
VH difference indices for kernels of 7 and 11. The GLCM metrics based on Sentinel 2 were
calculated using the dNBR, dNBR2, and dFCB indices for kernels of 5 and 7. In addition,
a raster of random pixel values with a normal distribution was also generated for each
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case study fire to allow for statistical comparisons of the relative importance of each index
above the level of random chance (Table 2). A processing error for the Tathra SWIR-based
texture indices could not be rectified, so these indices were excluded from the analysis.

Table 2. Index definitions. Variable names are composed of the base index, an abbreviation of the
GLCM metric, and the kernel size. Abbreviations include ‘var’ (variance), ‘2mom’ (2nd moment),
con (contrast), ‘corr’ (correlation), ‘dissim’ (dissimilarity), and ‘hom’ (homogeneity).

Sensor Base Index Texture Metric Texture Type Kernels Variable Names

Sentinel 1 dVH None None None radar_inputVH
Sentinel 1 dVH Mean 1st order 7, 11 glcm_radarVH_mean_7 glcm_radarVH_mean_11
Sentinel 1 dVH Variance 1st order 7, 11 glcm_radarVH_var_7 glcm_radarVH_var_11
Sentinel 1 dVH 2nd moment 2nd order 7, 11 glcm_radarVH_2mom_7 glcm_radarVH_2mom_11
Sentinel 1 dVH Contrast 2nd order 7, 11 glcm_radarVH_con_7 glcm_radarVH_con_11
Sentinel 1 dVH Correlation 2nd order 7, 11 glcm_radarVH_corr_7 glcm_radarVH_corr_11
Sentinel 1 dVH Dissimilarity 2nd order 7, 11 glcm_radarVH_dissim_7 glcm_radarVH_dissim_11
Sentinel 1 dVH Homogeneity 2nd order 7, 11 glcm_radarVH_hom_7 glcm_radarVH_hom_11
Sentinel 1 dVV None None 7, 11 radar_inputVV
Sentinel 1 dVV Mean 1st order 7, 11 glcm_radarVV_mean_7 glcm_radarVV_mean_11
Sentinel 1 dVV Variance 1st order 7, 11 glcm_radarVV_var_7 glcm_radarVV_var_11
Sentinel 1 dVV 2nd moment 2nd order 7, 11 glcm_radarVV_2mom_7 glcm_radarVV_2mom_11
Sentinel 1 dVV Contrast 2nd order 7, 11 glcm_radarVV_con_7 glcm_radarVV_con_11
Sentinel 1 dVV Correlation 2nd order 7, 11 glcm_radarVV_corr_7 glcm_radarVV_corr_11
Sentinel 1 dVV Dissimilarity 2nd order 7, 11 glcm_radarVV_dissim_7 glcm_radarVV_dissim_11
Sentinel 1 dVV Homogeneity 2nd order 7, 11 glcm_radarVV_hom_7 glcm_radarVV_hom_11
Sentinel 2 NBR None None None dNBR RdNBR
Sentinel 2 NBR2 None None None SWIR_dNBR2 SWIR_RdNBR2
Sentinel 2 Fractional Cover None None None RdFCTotal dFCBare
Sentinel 2 dFCBare Mean 1st order 5, 7 mean_dFCBare_5 mean_dFCBare_7
Sentinel 2 dFCBare Variance 1st order 5, 7 var_dFCBare_5 var_dFCBare_7
Sentinel 2 dNBR Mean 1st order 5, 7 mean_dNBR_5 mean_dNBR_7
Sentinel 2 dNBR Variance 1st order 5, 7 var_dNBR_5 var_dNBR_7
Sentinel 2 SWIR_dNBR2 Mean 1st order 5, 7 glcm_SWIR_dNBR2_mean_5 glcm_SWIR_dNBR2_mean_7
Sentinel 2 SWIR_dNBR2 Variance 1st order 5, 7 glcm_SWIR_dNBR2_var_5 glcm_SWIR_dNBR2_var_7
Sentinel 2 SWIR_dNBR2 2nd moment 2nd order 5, 7 glcm_SWIR_dNBR2_2mom_5 glcm_SWIR_dNBR2_2mom_7
Sentinel 2 SWIR_dNBR2 Contrast 2nd order 5, 7 glcm_SWIR_dNBR2_con_5 glcm_SWIR_dNBR2_con_7
Sentinel 2 SWIR_dNBR2 Correlation 2nd order 5, 7 glcm_SWIR_dNBR2_corr_5 glcm_SWIR_dNBR2_corr_7
Sentinel 2 SWIR_dNBR2 Dissimilarity 2nd order 5, 7 glcm_SWIR_dNBR2_dissim_5 glcm_SWIR_dNBR2_dissim_7
Sentinel 2 SWIR_dNBR2 Homogeneity 2nd order 5, 7 glcm_SWIR_dNBR2_hom_5 glcm_SWIR_dNBR2_hom_7
NA Random pixels None None None random

2.4. Independent Training and Validation Datasets

Random Forest model training and predictions were undertaken and made using the
caret package in R [55]. The number of trees was set to 500, and the number of predictor
variables at each node was the square root of the number of variables used in the model
(i.e., default values; [56]. Separate models were generated for Sentinel 1 and Sentinel 2,
with and without texture indices, and for fire severity classes (unburnt, low, moderate,
high, and extreme) and fire extent (burnt and unburnt). Regarding fire extent, the burnt
class is simply the amalgamation of the low to extreme severity classes. For each studied
fire, high-resolution (<50 cm) 4-band (blue, green, red, and NIR) post-fire digital aerial
photographs were provided by New South Wales (NSW) Rural Fire Service, RFS). Training
data points were generated from aerial photograph interpretation (API) using standardised
classification rules (Table 3) applied to hand-digitised sampling polygons in homogenous
sample areas of each fire severity classes using ArcMap v10.4. Random sampling points
were generated within the API severity class polygons such that points were >15 m from
the polygon edge to ensure sampling of Sentinel 2 pixels that fell entirely within the target
severity class. The number of sampling points generated was as large as possible while
also being randomly distributed and representative of the real-world occurrence of the fire
severity class for each fire [57,58]. For each sampling point in each fire, corresponding pixel
values were extracted for each index by using the raster and shapefile packages in R (v3.5.0)
to create a data-frame of training and validation data to be used as an input into a random
forest supervised classification method and accuracy assessment.
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Table 3. Fire severity class labels and definitions adapted from Hudak et al. (2004) [59], McCarthy
et al. (2017) [60], Collins et al. (2018) [32], and Gibson et al. (2020) [31].

Pixel Colour Severity Class Definition % Foliage Affected by Fire N Sampling Points
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2.5. Accuracy Assessment

The accuracy of the random forest algorithms was assessed in cross-validation tests,
wherein the target fire was excluded from the combined dataset composed of the rest of the
case study fires to build the model and then used to test the model for a robust, independent
assessment of modelling novel fires. In order to compare regional- vs. local-scale training
data, for the target-trained models, we included a random subset of 70% of the target-fire
sampling data to combine them with data from all other fires to train the model; then, the
remaining 30% of the target-fire sampling data were used for validation. While this method
does not use true independent testing data and, therefore, may be prone to overfitting, it
provides a means of comparison with the regional-scale independently tested models. For
both cross-validation and target-trained tests, accuracy metrics were generated for each fire
and averaged across all fires to obtain the mean accuracy results. Cross-validation models
were compared to target-trained models that included training data for the target fire,
which were segregated into subsets of training and validation datasets to independently
assess accuracy. This provided an assessment of the importance of local- vs. regional-scale
training data to the different sensors and input indices.

Balanced accuracy statistics were generated in addition to overall accuracy and Kappa
values; these statistics determine the degree of statistical agreement between the model
and the validation data and allow for a comparison of the performance between models.
For each model, we calculated the mean decrease in Gini (Gini impurity criterion), which
measures the similarity of a given element with respect to the rest of the classes and is
used to find the best split selection at each node of a random forest decision tree [56].
The mean decrease in Gini was ordered from highest to lowest in order to rank the input
indices according to the importance of the variables. To compare the relative importance of
the Sentinel 1 and 2 indices, a global model was generated, and Gini index values were
ranked. Classified maps were also generated for each case study fire and visually inspected
against high-resolution post-fire aerial photography. A flowchart summarising the methods
employed is provided in Figure S1 in the Supplementary Materials.

3. Results
3.1. Fire Severity

With regard to Sentinel 1, the texture indices improved the mean balanced accuracy
across all severity classes for the target-trained models (Figure 2b). The classification
accuracy was very high for the unburnt (93–99% for seven sites) and the homogenous
canopy-level severity classes (high ~90% and extreme ~92%) but lower for the lower sever-
ity classes (low and moderate, 84–91%) in the target-trained texture models (Table S3,
Supplementary Material). However, for the Sentinel 1 cross-validation models, the tex-
ture indices did not consistently improve the mean balanced accuracy across fire severity
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classes, with high variability between case study fires (Figure 2a). The average classification
accuracy was highest for the unburnt severity class (66%), followed by the extreme-severity
(59%), high- (51%), and lower-severity classes (49–50%; Table S1, Supplementary Material).
The target-trained models consistently outperformed the cross-validation models in terms
of both the texture and non-texture models and across all severity classes. The poor pre-
dictive ability of the Sentinel 1 cross-validated models translated to poor spatial-mapping
accuracy of fire severity.
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Figure 2. Mean balanced accuracy metrics across texture indices and fire severity classes for Sentinel
1 (a) cross-validation models and (b) target-trained models.

For the Sentinel 2 models, texture indices consistently improved the mean balanced
accuracy for both the cross-validation models and the target-trained models (Figure 3).
The greatest improvement due to texture indices occurred in the moderate-severity classes
(10.7%, Figure 3a). The target-trained models were consistently better performing with
respect to both the texture and non-texture models and across all severity classes. However,
the magnitude of accuracy improvement in the target-trained models compared to the
cross-validation models was much higher for Sentinel 1 than for Sentinel 2 (27% and 13%,
respectively). The average classification accuracy was highest for unburnt class (99.7%) in
the target-trained texture models (Table S4 Supplementary Material). The average accura-
cies were high for all other severity classes, ranging between 92–98%. In the cross-validated
texture models, the average classification accuracy was highest for the unburnt class (94%),
followed by that of extreme severity (92%, Table S3 Supplementary material). Moderate
accuracies were obtained for the low-level-high-severity classes (70–79%). Compared to
Sentinel 1, the superior predictive ability of the optical cross-validated models resulted in
high severity mapping accuracy.
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Figure 3. Mean balanced accuracy metrics across texture indices and fire severity classes for Sentinel
2 (a) cross-validation models and (b) target-trained models.
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3.2. Fire Extent

The Sentinel 2 fire extent cross-validation models had 27–28% higher classification
accuracy compared to that of Sentinel 1 for both the texture and non-texture models
(Figure 4). Texture indices improved the mean balanced accuracy for both the Sentinel
1 and Sentinel 2 fire extent cross-validation models. However, there was high variation
between study fires for the Sentinel 1 models. The addition of texture indices improved
the classification accuracy at the Holsworthy (11%), Sir Ivan (22%), White Cedars (11%),
and Pilliga (25%) case study fires. However, the exclusion of texture indices improved
the fire extent classification accuracy at Sir Bertram (4%), Mt Canobolas (9%), Tathra
(13%), and Wollemi (1%; Figure 5a). For the Sentinel 2 models, only Mt Canobolas had
lower classification accuracy when employing texture models (Figure 5b). High burnt-
area-mapping accuracy was demonstrated in the Holsworthy example using Sentinel
2 (Figure 6h), presenting an improved delineation of the burnt perimeter compared to
Sentinel 1 (Figure 6d).
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3.3. Variable Importance

Variable importance was strongly dominated by optical rather than radar variables
in the global combined model of fire severity (Table 4). The mean texture indices for bare
cover and dNBR ranked highest among the top 10 variables, followed by non-texture NBR
and fractional cover indices. The highest-ranked Sentinel 1 variable (18th) was the VH
contrast index.

The highest-ranked variable of importance in the Sentinel 1 fire severity models was
the texture index of mean VH across a kernel of 11 (Table 5). The first-order texture metrics
and the mean and variance in VH and VV for kernels of both 11 and 7 were all in the top
10 indices (Table 5). Texture metrics estimated using a kernel of 11 ranked higher than
those estimated using a kernel of 7 (Table S7, Supplementary Materials), and the texture
metrics calculated using VH polarization more frequently occurred in the top 10. The
VH and VV backscatter were also included in the top 10 variables in terms of importance,
with VH ranked higher. The highest-ranked variable of importance in the Sentinel 2 fire
severity models was the non-texture index, RdNBR, followed by the texture indices of
mean dNBR and mean dFCBare across kernels of both five and seven (Table 6). Along with
the SWIR-based RdNBR2, these indices all ranked higher than the commonly used dNBR.
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Table 4. Mean decrease in the Gini Index and corresponding relative rank positions for the combined
Sentinel 1 and Sentinel 2 global fire severity model. * denotes the highest-ranked Sentinel 1 index.

Indices Mean Decrease Gini Relative Rank

mean_dFCBare7 1262 1
mean_dFCBare5 1112 2
mean_dNBR7 832 3
mean_dNBR5 803 4
RdNBR 762 5
dFCBare 731 6
RdFCTotal 557 7
dNBR 542 8
SWIR_RdNBR2 384 9
SWIR_dNBR2 327 10
glcm_SWIR_dNBR2_mean_7 273 11
glcm_SWIR_dNBR2_var_7 268 12
var_dFCBare7 249 13
glcm_SWIR_dNBR2_mean_5 241 14
glcm_SWIR_dNBR2_var_5 226 15
var_dFCBare5 168 16
var_dNBR7 106 17
glcm_radarVH_con_11 101 18 *
glcm_radarVH_mean_11 99 19
var_dNBR5 97 20
. . . . . . . . .

rndm 31 61
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Table 5. Top-10-ranking Gini index values for Sentinel 1 cross-validation fire severity models.

Sentinel 1 Fire Severity Indices Average Rank

glcm_radarVH_mean_11 1.5
glcm_radarVH_var_11 1.8
glcm_radarVV_var_11 4.1
glcm_radarVV_mean_11 4.3
glcm_radarVH_var_7 5.6
glcm_radarVH_mean_7 5.9
VHbackscatter 7.0
glcm_radarVH_con_11 9.1
VVbackscatter 9.4
glcm_radarVV_var_7 10.1

Table 6. Top 10 Gini index values for Sentinel 2 cross-validation fire severity models.

Sentinel 2 Fire Severity Indices Average Rank

RdNBR 1.3
mean_dNBR5 3.1
mean_dNBR7 3.1
mean_dBare7 3.6
mean_dBare5 4.1
SWIR_RdNBR2 6.5
dNBR 7.5
dBare 8.3
glcm_SWIR_dNBR2_var_7 9.6
SWIR_dNBR2 10.1

The variable-of-importance ranks for Sentinel 1 were similar between the fire severity
and fire extent models, with the mean and variance texture indices for kernels of both 7 and
11 ranked high in terms of importance. However, the Sentinel 1 VH difference index was
ranked among the top 10 with respect to fire extent but not regarding fire severity (Table 7).
In contrast, for Sentinel 2, a greater number of texture indices were more highly ranked
than RdNBR and dNBR in the fire extent models compared to the fire severity models
(Table 8).

Table 7. Top 10 Gini index values for Sentinel 1 cross-validation fire extent models.

Sentinel 1 Fire Extent Indices Average Rank

glcm_radarVH_var_11 3
glcm_radarVV_mean_11 5.9
glcm_radarVH_mean_11 6
glcm_radarVV_var_11 6.2
glcm_radarVH_var_7 7.4
glcm_radarVH_mean_7 9.2
radar_inputVH 9.2
glcm_radarVV_mean_7 10.7
glcm_radarVV_var_7 11.5
glcm_radarVH_2mom_11 11.7
VHbackscatter 12.2
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Table 8. Top 10 Gini index values for Sentinel 2 cross-validation fire extent models.

Sentinel 2 Fire Extent Indices Average Rank

mean_dBare7 6.0
mean_dNBR7 6.0
glcm_SWIR_dNBR2_mean_7 6.4
glcm_SWIR_dNBR2_var_7 6.8
mean_dNBR5 6.9
mean_dBare5 7.3
glcm_SWIR_dNBR2_var_5 8.4
glcm_SWIR_dNBR2_mean_5 8.9
RdNBR 9.0
dNBR 10.8

4. Discussion
4.1. Sensitivity to Texture Indices

For the Sentinel 2 models, the texture indices increased the classification accuracy
across all the severity classes. This constitutes a significant improvement in fire sever-
ity mapping following a classical pixel-wise approach [31]. The texture indices added
additional information about the neighbourhood context and change in structural char-
acteristics [13] that greatly improved the clustering of pixels belonging to the low- and
moderate-severity classes. This result was predicted due to the inherently more het-
erogenous landscape patterns of these classes compared to the more homogenous higher
severities. The greatest proportion of increase in accuracy with the addition of texture
indices occurred in the moderate-severity class. Partial canopy scorching presents an
inherently high variation in spectral values due to the natural mixture of green (unburnt)
and varying degrees of dry (scorched) fractions. The low-severity class, characterised by
unburnt canopy surrounded by a matrix of burnt understory, was also endowed with large
gains in accuracy with the addition of texture indices for the Sentinel 2 models. Texture
indices provide greater sensitivity to small changes in reflectance that may be detected
through gaps in the canopy anywhere within the neighbourhood window. By contrast,
non-texture indices solely rely on information from a single pixel, which is more likely to
be intercepted by the dense canopy. Field validation data would be needed to quantify
the limits for mapping low-severity areas under very dense canopy cover, particularly for
hazard reduction burns that can typically have areas of unburnt intermixed with patchy
very low severity.

The influence of texture indices on the classification accuracy for the Sentinel 1 models
was more variable. The addition of texture indices increased the accuracy across all severity
classes for the target-trained models only. Increasing fire severity tends to homogenise
the landscape, with greater variance in backscatter values in lower-severity classes and
unburnt forest regions. The texture information contributed to highlighting the boundary
between and magnitude of the backscatter difference between severely burnt and less-
impacted forest. Mutai (2019) also demonstrated sensitivity to textural variation using
GLCM texture indices derived using the backscattering coefficient to distinguish burnt and
unburnt areas [40].

Overall, image texture information enhanced the accuracy of fire extent mapping for
both the Sentinel 1 and 2 models, although variation between fires occurred. However, the
high variation in the accuracy of the Sentinel 1 texture models between case study fires
demonstrates a complex interplay of environmental variables with model performance.
Several of the case study fires for which classification accuracy was improved with the
implementation of the Sentinel 1 texture models occurred in relatively drier landscapes
with more open woodland vegetation structures (e.g., Holsworthy, Sir Ivan, White Cedars,
and the Pilliga). There is a tendency toward a larger pre-/post-fire backscatter difference in
more open, lower-biomass forest, with greater potential contribution of surface scattering
at co-polarizations in severely burnt areas. The inclusion of texture metrics and the mean
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and variance of the post-fire VH and VH difference improved the discrimination of burnt
areas in these open forests. In contrast, the case study fires for which lower classification
accuracies were observed with the inclusion of texture indices were generally more topo-
graphically complex, occurring in areas with tall, dense, moist forest types (Tathra, Wollemi,
and Mt Canobolas). More dense vegetation reduces penetration at the C-band, and satura-
tion is reached more rapidly in high-biomass forests, thereby decreasing the pre-/post-fire
backscatter difference and increasing the difficulty of detecting burnt areas. Tanase et al.
(2015) also demonstrated greater SAR penetration in drier and sparser canopies than dense,
moist canopies [61]. Furthermore, in steeper terrain, it is difficult to detect burnt areas on
back-slopes that are within radar shadow. In other studies on SAR texture indices for burnt
area mapping, higher entropy was observed over steep burnt areas; however, separability
was limited with increasing steepness, with the backscatter affected by incidence angles
and shadows. Homogeneity was similarly affected, with limited differences in texture
between burnt and unburnt classes in steep areas. Contrast metrics presented the poorest
results in steep terrain [40]. Texture metrics cannot significantly improve classification
accuracies under these conditions. Indeed, our results show that the case study fires in
steeper terrain were superiorly classified without texture indices. Texture indices may
increase the neighbourhood window excessively in topographically complex regions, thus
rendering pixel-wise approaches superior.

Large window sizes (e.g., 11 × 11 compared to 3 × 3) can decrease random error
but may encompass more than one stand type that could introduce systematic error. The
data-driven customization of window sizes in lieu of the employment of arbitrary windows
has improved estimates of Leaf Area Index (LAI), stand density, and volume [13,54]. The
most suitable neighbourhood window size may vary depending on a landscape’s features.
Larger window sizes have been used to improve land cover classification accuracies using
SAR [62] and more accurately capture homogeneous patterns over large areas [63]. Radar
texture indices calculated using a larger window size (11 × 11 compared to 7 × 7) ranked
higher in fire severity and burnt extent models. Window size seems more significant in
optical burnt area extent models (7 × 7 ranked higher than 5 × 5) compared to fire severity
models. Smaller window sizes capture the heterogeneity across small extents [12] but may
also increase noise. Texture indices calculated based on more than one window size feature
in the top 10 ranked variables in both radar and optical models. This aligns with previous
studies showing that land cover classification accuracy is higher when multiple texture
features and different window sizes are used [63]. Thus, selecting texture window sizes
requires careful consideration and testing with respect to the specific landscape features
being targeted.

4.2. Differences Due to Sensor Type

The ability of C-band SAR to detect burnt areas and characterise fire severity is linked
to a sensitivity to structural changes. The removal of leaves and twigs in the canopy
directly influences the C-band backscattering response, with cross-polarised backscatter
decreasing and co-polarised backscatter increasing with fire severity. In the absence of
structural change, i.e., in forest areas with only low levels of fire severity, these areas
are difficult to distinguish from unburnt forest. This contrasts with the phenomenon
observed with optical data, where strong spectral sensitivity is found across the fire severity
spectrum [40]. The mechanisms used to detect change are different for SAR and optical
data. SAR demonstrates a sensitivity to structural change (physical) within the limits of
wavelength, while optical sensors can detect colour changes (bio-chemical) in partially
scorched vegetation that remains structurally unchanged. Indeed, in this study, higher
mapping accuracies were obtained for all fire severity classes using Sentinel 2.

There are some commonalities between the sensors’ performances across the landscape.
The accuracy of fire severity mapping using both optical and SAR data is compromised
by topographic complexity and high canopy cover. Radar is also strongly affected by
differences in soil and vegetation moisture, which exert a stronger influence in more
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severely burnt areas with an exposed ground surface. In this study, lower mapping
accuracies were observed in topographically complex environments and denser forests
using both Sentinel 1 and Sentinel 2; this result aligns with previously reported lower
accuracies for low-moderate severity classes in such environments [31].

The target-trained models had greater accuracy than the cross-validation models for
both Sentinel 1 and 2, but the increase was much larger for Sentinel 1 with the addition
of texture indices. The results indicate the importance of local- vs. regional-scale training
data that differ between sensors. The case study sites were highly variable in terms of
forest density and structure. This resulted in high variation in the C-band backscattering
response, particularly in unburnt and low–moderate severity classes. As radar is more
sensitive to forest structural attributes than optical sensors, training data need to capture a
wide range of forest types. This would require the use of accurate forest type mapping and
may limit the potential of Sentinel 1 in broad-scale applications of fire severity mapping,
wherein a robust regional model can be applied to novel fires across the landscape. Even
with comprehensive training data, if fire severity differs greatly between sites, so will the
ability of C-band SAR to detect burnt areas.

The differences between the sensors may also be explained in part by the technical
framework that was used. The simple pre- and post-fire image-differencing method may be
better suited to optical sensors with respect to characterising fire effects. Image-differencing
techniques for supervised classification have been widely applied in detecting the effects of
fires using passive optical data, e.g., Landsat [22,32] and Sentinel 2 [31]. In contrast, studies
have demonstrated the adeptness of SAR data with respect to detecting fire effects using
deep learning techniques based on multiple data acquisitions across time series to better
characterize pre-fire temporal backscatter variations [38] and Sentinel 1 time-series-based
burnt area mapping [64]. Speckle noise limits SAR image differencing, particularly in
low-severity classes [36].

4.3. Data Fusion

Technological advancements are enabling greater access to high-performance compu-
tational capacity, and advances in data fusion approaches are increasingly being realised.
Our study demonstrates that the fusion of techniques, namely, per pixel and neighbourhood
statistical approaches, into one supervised classification algorithm enhances the accuracy
of fire extent and severity mapping using Sentinel 2 and, to a lesser degree, Sentinel 1. Per
pixel approaches summarise the pixel values and are less computationally demanding than
neighbourhood approaches. However, neighbourhood approaches including texture are
useful for characterising vegetation structures [12]. The combination of per pixel and neigh-
bourhood statistical approaches has also been shown to provide additional accuracy in the
estimation of forest structure variables such as crown closure, LAI, and stand age [13,54].

Data fusion techniques combining optical and SAR sensors could also offer advan-
tages, as an object or feature that is not seen in a passive sensor image might be seen in
an active sensor image and vice versa. There is great potential in leveraging the comple-
mentary information provided by the two sensor types [65]). Using multiple sensors can
help overcome the limitations of each individual sensor, for example, cloud and smoke
limitations in optical images and speckle and variable moisture limitations in SAR [66].
However, comprehensive comparative testing is required to harness the advantages of each
sensor type. As our study shows, the random forest supervised classification framework is
well suited to Sentinel 2 optical imagery, delivering high accuracy measures with respect to
both fire extent and severity. However, when this framework used training data applied to
novel fires (cross-validation), severity and burnt area were underestimated using Sentinel 1
due to high variability in the backscattering response with vegetation type and structure,
topography, and moisture content.

Deep learning data fusion approaches to image classification using SAR and optical
data have recently gained popularity [67,68]. In particular, convolutional neural network
(CNN) classifiers demonstrate superior abilities in land cover classification and burnt area
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mapping compared to traditional machine learning approaches [69]. The use of a CNN has
been demonstrated to be advantageous for feature extraction and learning in large-scale
analyses involving data fusion [38]. For example, Zhang et al. (2021) demonstrated im-
proved burnt area mapping in California through the synergistic use of Sentinel 2 surface
reflectance and Sentinel 1 interferometric coherence in a Siamese Self-Attention (SSA) classi-
fier compared to a random forest (RF) classifier [66]. Lestari et al. (2021) also demonstrated
improved burnt-area-mapping performance through the combined classification of SAR
and optical data and when using a CNN compared to RF and multilayer perceptron (MLP)
classifiers [39]. A hybrid approach developed by Sudiana et al. (2023) involving the employ-
ment of a CNN for feature extraction and RF for classification achieved high accuracy (97%)
in detecting burnt areas in Central Kalimantan [70]. Precise delineation of burnt areas was
achieved through post-processing morphological filtering applied to a U-net classification
of Sentinel 1 coherence and Sentinel 2 indices in northern NSW, Australia [69]. Ban et al.
(2020) demonstrated effective wildfire progression monitoring using multi-temporal Sen-
tinel 1 data and a CNN framework [38]. The CNN classifier outperformed the traditional
log-ratio operator, presenting higher accuracy and better discrimination of the burnt area.
Further research into the data fusion of Sentinel 1 and 2 data for mapping severity and the
post-fire monitoring of vegetation recovery is recommended.

The integration of data from differing sources enables the generation of complex or
derived ecological attributes. For instance, a third dimension can be incorporated into tra-
ditional two-dimensional remotely sensed data by using LiDAR [71] and multi-frequency
SAR. Airborne and terrestrial laser scanning (TLS) permit the analysis of structural differ-
ences beneath the canopy. Depending on the vegetation type, the highest biomass losses
can occur in the ground layer, which is not detectable in satellite imagery [36]. Longer-
wavelength L-band SAR has been shown to provide better differentiation of fire severity
levels, which is largely attributed to the greater penetration depth and sensitivity to woody
structures [35]. Post-fire impacts on canopy volume and lower vegetation strata may be
discerned using L-band SAR. S-band SAR (9.4 cm wavelength) acquired via NovaSAR
and P-band SAR (70 cm) following the launch of BIOMASS may also warrant further
investigation for potential application in fire extent and severity mapping. A much longer
wavelength, the P-band, may be linked to changes in the understory in fire-affected forests.
The coherence of repeat-pass interferometric SAR (InSAR) using pre- and post-fire images
may also add useful information about fire severity [72]. Despite the irregular observa-
tions, polarimetric decomposition provides information on the scattering mechanisms
linked to structural change [73], and further studies are needed to evaluate its use in fire
severity estimation.

5. Conclusions

Choosing which set of remotely sensed data to use in ecological studies and land
management is a function of what is needed and what is possible. With rapidly chang-
ing needs and ever-expanding information resources, advanced image analysis and data
fusion techniques are increasing the number of available possibilities for extracting de-
tailed information from a multitude of sources for high-resolution imagery to provided
information about forest structures, functions, and ecosystem processes. In this study, we
compared the performance of Sentinel 1 (radar) and Sentinel 2 (optical) data with respect
to fire severity and extent mapping over a diverse range of forests and topographies in
NSW, Australia. The study has contributed new information on the use of SAR-derived
GLCM texture metrics for fire severity mapping; such information is not prevalent in
the scientific literature. The inclusion of texture indices alongside standard pixel-based
metrics was found to increase classification accuracies for both sensor types. The greatest
improvements were observed in the higher-severity class when using SAR data and the
moderate-severity class when using optical data in the target-trained models. Sentinel
1 texture indices including mean and variance contributed the most to fire severity and
extent mapping. The mean dNBR and dFCBare featured prominently in the Sentinel 2
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severity models, while a higher number of texture indices contributed to Sentinel 2 extent
mapping. Smaller window sizes (5 × 5 or 7 × 7 pixels) were suitable for Sentinel 2, while
a larger window size (11 × 11 pixels) was optimal for the computation of texture indices
using Sentinel 1 data, although this phenomenon may vary with forest canopy density and
topographic complexity.

The influences of dense cover, high biomass, and steep terrain were more evident in the
Sentinel 1 models, with the short wavelength of the C-band limiting the detection of burnt
areas and severity. Multi-sensor performance was demonstrated using a novel approach to
accuracy assessment based on target-trained and cross-validation strategies. Given the high
variability in the radar backscattering response to burnt areas, we demonstrated that the
use of local training data that capture the difference in relative intensity at a given location
and time is important. Our cross-validation results indicate that Sentinel 2 has greater
potential to map the fire extent and severity of novel fires compared to Sentinel 1. Future
monitoring scenarios will likely continue to focus on the use of optical sensor data for fire
extent and severity estimation. Currently, C-band SAR may be useful in instances wherein
cloud and smoke limit optical observations, offering the potential to capture most of the
severely impacted area. The combined potential of future generations of multi-frequency
SAR for severity estimation and for use in analysing specific types of land cover (e.g., heath
and grasslands) is the subject of future work. An integrated fire-mapping system that
incorporates both active and passive remote sensing for detecting and monitoring changes
in vegetation cover and structure would be a valuable resource for future fire management.
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severity class training and validation data derived from high resolution aerial photography; Table
S1: Sentinel 1 fire severity cross validation models a. with texture indices, b. without texture indices;
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