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Abstract: As a clean energy resource, coalbed methane (CBM) is an important industry in China’s
dual-carbon strategic planning. Despite the immense potential of CBM resources in China, the current
exploration level remains low due to outdated survey technology, impeding large-scale exploration
and development. This study investigates the application of hyperspectral data in CBM enrichment
areas, specifically focusing on the extraction of alteration minerals in the Hudi coal mine area of the
Qinshui Basin using ZY-1 02D and Hyperion hyperspectral data. The hyperspectral alteration mineral
identification methods are summarized and analyzed. A method that combines spectral feature
matching and diagnostic characteristic parameters is proposed for mineral extraction based on the
spectral characteristics of different minerals. The extraction results are verified through field samples
using X-ray diffraction analysis. Results show that (1) both ZY-1 02D and Hyperion hyperspectral
data yield favorable extraction results for clay and carbonate minerals; (2) the overall accuracy of clay
and carbonate minerals extraction is higher using ZY-1 02D data compared with Hyperion data, with
accuracies of 81.67% and 79.03%, respectively; (3) the proposed method effectively extracts alteration
minerals in CBM enrichment areas using hyperspectral data, thereby providing valuable technical
support for the application of hyperspectral data.

Keywords: hyperspectral remote sensing; ZY-1-02D; Hyperion; alteration mineral; coalbed methane
enrichment areas

1. Introduction

In China’s dual-carbon strategic planning, coalbed methane (CBM) has emerged as an
important clean energy resource. More than 90% of CBM comprises methane (CH4), along
with other heavier hydrocarbons, such as CO2, N2, C3H8, C4H10, and others [1]. Neverthe-
less, methane remarkably contributes to the greenhouse effect, ozone layer depletion, global
warming, and environmental damage. As the world’s largest energy producer, China has
strongly supported and developed the exploration and development of CBM enrichment
areas [2]. However, traditional exploration methods for CBM enrichment areas mainly
rely on ground drilling, seismic exploration, geophysical techniques, and geochemical
surveys [3,4]. These methods suffer from exploration efficiency, limited scope, and the need
for substantial human, financial, and material resources. In particular, exploration risks in-
crease dramatically in mountainous areas. Efficient, economical, and accurate identification
of CBM enrichment areas has become an urgent problem.

Satellite remote sensing technology possesses the capability to detect and analyze
surface rock and mineral composition with precision [5–10]. Specifically, hyperspectral data
provide high-resolution images for ground object classification and enable detailed analysis
of the chemical composition of certain minerals [11–15]. In recent years, hyperspectral re-
mote sensing technology has played an important role in mineral identification [16–18], geo-
logical mapping [19], alteration anomaly zoning [20,21], and prospecting prediction [22,23].
For example, mineral mapping has been conducted in the Eastern Tien Shan, Xinjiang, and
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the Maherabad area in eastern Iran using HyMap data [24,25]. Fine mineral identifica-
tion has been applied in Liuyuan, Gansu, and Cuprite, USA, using GF-5 hyperspectral
imagery [26]. However, research on the hyperspectral characteristics of different alteration
minerals in CBM enrichment areas is scarce. Studies have revealed that hydrocarbon
microseepage phenomena exist in more than 85% of discovered oil and gas fields world-
wide [4]. These phenomena subject the surface soil and rock to prolongred exposure to
hydrocarbon substances, leading to alterations through various physical and chemical
processes, including the enrichment of clay minerals, carbonate minerals, and iron miner-
als [27]. The application of hyperspectral remote sensing technology holds the potential to
prospect CBM enrichment areas, effectively compensating for the limitations of traditional
exploration methods and providing an important technical method for the efficient and
rapid identification of CBM enrichment areas. While information about the abnormal
alteration of minerals is rare and easily affected by external interference, the difficulty of
identification of CBM enrichment areas has greatly increased.

The ZY-1 02D was successfully launched in China on 12 September 2019. It operates
in a solar synchronous orbit with a ground coverage width of 60 km, an average orbital
altitude of 778 km, and an inclination of 98.5◦ [28,29]. The satellite is equipped with a
visible near-infrared camera and a hyperspectral camera (AHSI). The AHSI data provides a
total of 166 visible near-infrared short-wave bands. This includes 76 visible near-infrared
(VNIR) bands with a wavelength range of 395–1040 nm and a spectral resolution of 10 nm,
and 90 short-wave infrared (SWIR) bands with a wavelength range of 1005–2501 nm and
a spectral resolution of 20 nm [30,31]. At present, ZY1-02D hyperspectral data have been
applied in land use classification and geological and mineral exploration [32,33].

ZY-1 02D hyperspectral data provide a basis for investigating the diagnostic spectral
characteristics of alteration minerals in CBM enrichment areas. To solve the problems of
tiny abnormal information extraction, the purpose of this study is to analyze the diagnostic
spectral characteristics of different alteration minerals in CBM using ZY-1 02D hyperspec-
tral data. This analysis aims to extract typical alteration minerals within the study area
through a method that combines spectral feature matching and diagnostic characteristic
parameters. Hyperion, the world’s first successfully launched civilian satellite hyperspec-
tral imaging spectrometer, is onboard the National Aeronautics and Space Administration
Earth Observer-1 (EO-1) satellite [34,35]. The study demonstrates the capability of domestic
data to extract alteration minerals through comparing the extraction results with Hyperion
data and conducting field verification. This research provides valuable support for the
identification of alteration minerals and the prediction of CBM enrichment areas.

2. Study Area and Data Sources
2.1. Study Area

Qinshui Basin, an important coal-bearing basin in China, is predominantly composed
of anthracite and medium-high metamorphic bituminous coal. It boasts abundant coal
resources, with a total reserves of approximately 2700 × 108 t [36]. The geological charac-
teristics of this basin provide a favorable foundation for the formation of CBM reservoirs.
The study area specifically encompasses the southeast margin of Qinshui Basin, located in
Hudi Town, Qinshui County, Jincheng City, Shanxi Province [37]. The geographical extent
of the study region spans from 112◦30′E to 112◦40′E and 35◦35′N to 35◦50′N, covering an
total area of approximately 500 km2 (Figure 1).

The study area is characterized by complex topography, featuring low mountains,
hills, and distinct loess landform. It is situated within a sedimentary basin formed through
the transformation and deformation of the Paleozoic Craton basin in North China. The
stratigraphic sequence includes Ordovician (O), Carboniferous (C), Permian (P), Triassic (T),
Paleogene (E), Neogene (N), and Quaternary (Q) formations, with a general trend of
NNE and a dip angle of less than 10◦ in the study area [26]. The lithology consists of
limestone, sandstone, siltstone, mudstone, sandy mudstone, and argillaceous sandstone.
The structural complexity in the study area is relatively low, primarily characterized by
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folds, with a limited occurrence of faults and no magmatic rock activity. The main coal-
bearing strata consist of the Carboniferous Taiyuan Formation and the Permian Shanxi
Formation, with coal seams found at depths of less than 800 m. The No. 3 coal seam of the
Shanxi Formation and the No. 15 coal seam of the Taiyuan Formation are the primary coal
seams being mined in the study area, renowned for their stable development and high gas
content [37].

In CBM enrichment areas, the presence of hydrocarbon microseepage leads to widespread
mineral alterations, such as clayization, carbonatization, and mineralization. Therefore, the
diagnostic hyperspectral response characteristics of clay and carbonate minerals are consid-
ered indicative features for distinguishing and extracting alteration information in CBM
enrichment areas using hyperspectral remote sensing techniques.
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2.2. Data
2.2.1. Hyperspectral Remote Sensing Data

The ZY-1 02D is China’s first independently developed civilian hyperspectral satellite.
AHSI is the one of the important payloads onboard the ZY-1 02D satellite. The SWIR
spectrum of AHSI data, in particular, exhibits excellent spectral features, making it well-
suited for distinguishing the diagnostic spectral features of ground objects. The ZY-1 02D
AHSI data used in this study were captured on 21 October 2020 and have no cloud coverage.

Hyperion data are highly suitable for extracting alteration minerals in CBM enrichment
areas due to their most useful spectral features in the NIR and SWIR bands. The Hyperion
image used for verification in this research was acquired on 6 October 2014, under cloud-
free conditions. A comparison of specific parameters between the ZY-1 02D AHSI and
EO-1 Hyperion is presented in Table 1.

Table 1. Comparison of specific parameters for the ZY-1 02D AHSI and EO-1 Hyperion.

Parameters ZY-1 02D AHSI EO-1 Hyperion

Average orbital altitude/km 778 705
Inclination/(◦) 98.5 98.7

Width/km 60 7.5
Spatial resolution/m 30 30

Band number 166 242

Band range/nm 395–1040 (VNIR);
1005–2501 (SWIR)

356–1058 (VNIR);
852–2577 (SWIR)

Spectral resolution/nm 10 (VNIR); 20 (SWIR) 10
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2.2.2. Field Sample Data

Abundant field data, including various types of rock and soil samples, were collected
in the study area in October 2014 and 2017, corresponding to the image acquisition time
to verify the extraction results from the hyperspectral remote sensing images. The field
measured spectra of these samples were obtained using an Analytical Spectral Devices
FieldSpec3 spectrometer on cloudless days between 10:00 and 14:00. During measurement,
the probe was held perpendicular to the detection target to eliminate the effects of various
interference factors. A standard white panel was used for calibration before each mea-
surement, and the average of five measurements was used as the final spectral curve after
applying Savitzky–Golay smooth filtering to remove noise. A total of 300 spectral curves
were obtained from 60 field samples, covering a wavelength range of 350 nm to 2500 nm in
the study area. An example of the spectral curves is shown in Figure 2. X-ray diffraction
(XRD) analysis was performed on the field samples for further quantitative analysis.
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Figure 2. Field spectra curves of rock and soil.

3. Methods

This methodology includes the following four steps: theoretical basis, data preprocess-
ing, alteration information extraction, and accuracy assessment. Firstly, the hydrocarbon
microseepage theory was introduced, and diagnostic hyperspectral characteristics of alter-
ation minerals, such as the typical clay and carbonate minerals, was analyzed. Secondly,
data preprocessing was performed. Next, integrated extraction method of spectral feature
matching and diagnostic characteristic parameters for alteration minerals was proposed.
Finally, accuracy assessment was carried out. The technical flowchart is shown in Figure 3.
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3.1. Hydrocarbon Microseepage Theory and Diagnostic Hyperspectral Characteristics of
Alteration Minerals

Hydrocarbon microseepage is a complex process that occurs in CBM enrichment areas.
Under a specific temperature, pressure, and hydrodynamic conditions, CBM remains rela-
tively stable. However, CBM undergoes diffusion and migration to the roof and floor when
external conditions change. The double-pore structure of matrix pores and cracks in coal
seams, along with the existence of fault structures, provides a channel for the migration of
CBM, allowing it to penetrate the cap rock and reach the surface [38]. Prolonged hydrocar-
bon microseepage alters the surface redox environment and promotes the enrichment of
altered minerals, such as ferrous iron mineralization, clayization, and carbonatization [39].
Hence, CBM enrichment areas can be identified using the diagnostic hyperspectral charac-
teristics of alteration minerals based on hydrocarbon microseepage theory.

Different minerals exhibit distinctive diagnostic spectral characteristics. For instance,
kaolinite, a clay mineral, displays a strong absorption feature at 2.2 µm in the SWIR region.
Siderite, which is both a ferrous iron and carbonate mineral, exhibits diagnostic spectral
characteristics at approximately 1.0–1.1 µm and 2.3 µm, respectively. The asymmetric
diagnostic absorption feature at 2.3 µm is particularly important for the identification of
carbonate minerals [40]. The spectral characteristics of typical clay and carbonate minerals
provided by the USGS_MIN spectral library are shown in Figure 4.
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3.1.1. Clay Minerals

Clay minerals are mainly silicate minerals containing aluminum, iron, and magnesium,
along with water. The long-term microseepage of hydrocarbons and hydrogen sulfide leads
to the alteration of feldspar minerals into clay minerals, enriching them on the surface redox
environment [41]. Typical clay minerals include kaolinite, montmorillonite, chlorite, and
muscovite. The main absorption characteristics of clay minerals are observed around 1.4,
1.9, and 2.2–2.3 µm. However, each mineral possesses its unique absorption characteristics,
as shown in Table 2.
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Table 2. Spectral characteristics of typical clay minerals (µm).

Name Wavelength of Absorption Wavelength of Reflection

Kaolinite 1.403, 1.915, 2.205 0.720–1.263, 1.513–1.780
Muscovite 1.403, 1.925, 2.205 0.933–1.343, 1.478–2.075
Montmorillonite 1.418, 1.905, 2.225 0.785–1.308, 1.570–1.825
Chlorite 1.388, 1.985, 2.315 1.825, 2.135

The spectral characteristics of kaolinite and muscovite are similar, showing strong
absorption spectra at 1.4 and 2.2 µm, along with weak absorption spectra at 1.9 µm.
Montmorillonite exhibits adsorption depths comparable to kaolinite at 1.4 and 2.2 µm,
while demonstrating strong absorption at 1.9 µm. However, the spectral characteristics
of chlorite are relatively different from the aforementioned three types. Chlorite exhibits
absorption at 2.3 µm, but does not show obvious adsorption at 1.4 and 1.9 µm.

3.1.2. Carbonate Minerals

The microseepage of hydrocarbons reaching the surface, combined with action of
oxygen, leads to the production of carbon dioxide. In a long-term acidic environment,
carbonate minerals, such as calcite, dolomite, and siderite, become enriched on the surface
due to the precipitation of various metal ions, forming carbonate mineralization halos [42].
The spectral characteristics of carbonate are mainly between 1.7–2.5 µm, with at least
5 absorption features observed, particularly at 2.3 and 2.5 µm, which serve as typical bands
for identifying carbonate minerals, as shown in Table 3.

Table 3. Spectral characteristics of typical carbonate minerals (µm).

Name
Wavelength of Absorption Wavelength of Reflection

Weak Absorption Strong Absorption Weak Reflection Strong Reflection

Calcite 1.875, 1.995, 2.155 2.335, 2.528 1.915, 2.065, 2.185 2.386
Dolomite 1.855, 1.985 2.315, 2.528 1.885, 2.025 2.375
Siderite 1.945 2.335, 2.528 1.855, 2.145 2.400

The absorption characteristics of calcite exhibit strong absorption near 2.335 and
2.528 µm, and weak absorption near 1.875, 1.995, and 2.155 µm. Both dolomite and siderite
display consistent strong adsorption after 2.3 and 2.5 µm. However, siderite exhibits weak
absorption characteristics specifically at 1.945 µm. In summary, the absorption characteris-
tics of carbonate minerals are mainly observed in the range of 2.31–2.35 µm and 2.52 µm.
The content of carbonate minerals demonstrates a strong correlation with the absorption
depth, absorption area, and symmetry of the abovementioned spectral characteristics.
Therefore, the identification and extraction of carbonate minerals can be achieved through
considering the three absorption feature parameters of the characteristic spectrum.

3.2. Data Preprocessing

The main data preprocessing steps for ZY-1 02D AHSI data are as follows: (1) band syn-
thesis, (2) radiance calibration, (3) atmospheric correction, and (4) geometric correction [43].
The VNIR and SWIR bands were combined to create a spectral coverage ranging from
395 nm to 2 501 nm. Three overlapping bands (band 77–79) in the near–infrared range and
21 noise bands (band 97–103, 125–133, 137, 163–166) were eliminated, resulting in a total
of 142 bands. Radiance calibration was performed using the corresponding radiometric
coefficients for each band. FLAASH, a module in ENVI software, was used for atmospheric
correction. Geometric correction was applied to eliminate geometric distortions. For Hy-
perion data, in addition to the above processes, the following steps were performed due
to water vapor and noise influence, bad lines, and striping: (1) Ninety-three bands were
identified as invalid or useless and were removed, resulting in 149 retained bands. (2) Bad
lines were repaired using the average value of neighbor lines. (3) A global destriping
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method was employed to reduce striping artifacts [44–47]. The preprocessed results of ZY-1
02D AHSI data and Hyperion data are shown in Figure 5.
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image at the green point.

3.3. Extraction Method of Alteration Minerals

Currently, three main methods are used for extracting hyperspectral mineral infor-
mation: spectral matching, spectral characteristic parameters, and spectral unmixing [48].
Spectral matching methods include spectral angle mapping (SAM), matching filtering
(MF), and mixture-tuned matched filtering (MTMF). Representative methods of spectral
characteristic parameters include spectral feature fitting (SFF), spectral absorption index
(SAI), and absorption band positioning analysis [49,50]. Spectral unmixing involves using
linear or nonlinear unmixing methods to determine mineral content [51,52]. However,
these methods often fall short of achieving precise mineral identification and suffer from
low accuracy. The spectral matching method is not sensitive to tiny differences in mineral
spectra, and is easily affected by external interference such as terrain and background, so
it cannot highlight the importance of spectral absorption characteristics. Compared with
the spectral matching method, the spectral characteristic parameter method enhances the
ability of distinguishing ground objects, but in practical application, it is easily affected
by spectral signal-to-noise ratio and mineral mixing, and the spectral shape of mineral
characteristic absorption is not fully considered. Hence, in order to improve the recognition
accuracy of alteration minerals and reduce the influence of other interferences, an integrated
extraction method of hyperspectral mineral information that combines spectral feature
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matching and diagnostic characteristic parameters is proposed in this study, considering
the spectral characteristics of different minerals.

3.3.1. Spectral Feature Matching Method

The spectral matching method plays an important role in the identification and extrac-
tion of alteration minerals through comparing the full spectral curve with the reference
spectrum. In recent years, spectral feature matching has become more targeted, focusing
on subsections of the characteristic spectral curve of different minerals. Different spec-
tral matching methods involve selecting a similarity measure function, which is essential
for calculating the matching degree. Examples of similarity measure functions include
Euclidean distance, coefficient, and SAM. SAM calculates the spectral angle between the
target spectrum and the reference spectrum in an N-dimensional vector space [8]. The
formula is as follows:

θ = arccos

N
∑

i=1
xy√

N
∑

i=1
(x)2 N

∑
i=1

(y)2

(1)

where θ is the spectral angle, x is the target spectrum, y is the reference spectrum, and N is
the number of bands. A smaller angle indicates higher similarity. The MTMF method com-
bines hybrid modulation and MT on the basis of linear mixing and signal processing [23].
The results of MTMF include the MF score image, which compares every endmember spec-
trum with every pixel spectrum, and an infeasibility image. One constraint of this method
is that the content of each endmember must be positive and sum to 1. The advantages
of MTMF are that it does not require background endmember spectra and provides high
accuracy of in the extraction of alteration minerals.

Reference spectra typically come from three sources: laboratory-measured spectra
in standard spectral libraries, field-measured spectra, and pure pixel spectra extracted
from images. Endmember extraction involves identifying pure pixels in the image and
comparing them with the spectral library to determine the mineral type. In this study,
the following steps are performed using ENVI software: (1) applying minimum noise
fraction to reduce dimensionality and remove noise, (2) using pixel purity index to identify
pure pixels, (3) employing N-dimensional visualization to display the feature spectra of
endmembers, and (4) utilizing spectral analysis to determine the mineral type.

3.3.2. Diagnostic Characteristic Parameters

The full spectral curve can be regarded as the superposition of spectral features caused
by different components within an object. Therefore, various local spectral absorption
characteristics can be utilized as diagnostic characteristic parameters to identify different
minerals. A local absorption feature diagram is shown in Figure 6 [24]. The absorption
characteristics of the spectral curve are mainly composed of two reflection points (S1 and
S2) and an absorption valley point (M).

In the figure, λS1, RS1, λS2, RS2, λM, and RM represent the wavelength and reflectivity
of the points (S1, S2, and M). The main diagnostic characteristic parameters include (1) ab-
sorption position (λM), which is the wavelength of the maximum absorption value of the
spectral curve; (2) absorption reflectivity (RM), which is the reflectivity of the maximum
absorption value of the spectral curve; (3) absorption width (W), which is the wavelength
width between the two reflection points, S1 and S2; (4) absorption depth (H), which is
the distance between the absorption valley point (M) and the connecting line between
the two reflection points (S1 and S2), known as the nonabsorbing baseline; (5) absorption
area (A), which is the area enclosed by the nonabsorbing baseline and the spectral curve;
(6) absorption symmetry (S), which is the ratio of the area on the left side of the adsorption
position to the area on the right side, divided by the vertical line of the absorption position.
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The continuum removal algorithm is adopted for information extraction to further highlight
the diagnostic spectral characteristics of alteration minerals.
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3.3.3. Integrated Method of Spectral Feature Matching and Diagnostic
Characteristic Parameters

A method of comprehensive spectral features matching and diagnostic characteristic
parameters based on mineral hierarchical identification theory was proposed to extract
alternation mineral information in the study area. The main steps are as follows. (1) Analyze
the position, width, depth, area, and symmetry of the main characteristic absorption based
on the spectral characteristics of minerals. (2) Calculate the spectral feature matching
degree between the spectral characteristics of different minerals and their corresponding
standard spectra. (3) Obtain the main diagnostic characteristic parameters of different
minerals. (4) Set threshold values for the above parameters to obtain the distribution of
mineral information. The technical flowchart of this study is shown in Figure 7.

Remote Sens. 2023, 15, x FOR PEER REVIEW 11 of 21 
 

 

Diagnostic feature spectrum

  Spectra of USGS Library

 Field measured spectra of 
samples by ASD

Alteration mineral extraction 

 Spectral feature matching 
>Threshold 

whether they satisfied?

diagnostic characteristic 
parameters

Yes

Yes
Verification

MNF 

N-dimensional visualization

Spectra of endmembers

PPI

Spectral analyst 

Comparison

Endmembers extraction  Integrated method 

 
Figure 7. Technical flowchart of integrated method in this research. 

3.4. Accuracy Assessment 
Sixty field samples collected in the study area (Figure 5a) were used to evaluate the 

extraction results of alteration minerals based on the XRD analysis and quantitatively an-
alyze the identification effects. Using the confusion matrix, the extracted results of alter-
nation minerals were compared with the results of XRD analysis to calculate the pro-
ducer’s accuracy (PA), user’s accuracy (UA), and overall accuracy (OA) [53–57]. 

4. Results and Analysis 
4.1. Extraction Results of the Diagnostic Characteristic Parameters of Typical Minerals 
4.1.1. Clay Mineral 

Using the mentioned method of endmember extraction, the endmembers of the clay 
mineral were obtained from hyperspectral remote sensing imagery, as shown in Figure 8. 
The continuum removal algorithm was utilized to enhance the diagnostic spectral charac-
teristics of clay minerals [58]. The spectral curve exhibits absorption characteristics of clay 
minerals at 2200 nm, which are similar to the characteristics of kaolinite and montmoril-
lonite in the spectral library. The diagnostic absorption characteristics were further ana-
lyzed through calculating the diagnostic characteristic parameters using the IDL language 
as shown in Table 4. 

  
(a) (b) 

Figure 8. Comparison of the endmember spectra of clay minerals extracted from the hyperspectral 
imagery and the standard spectra in USGS_MIN spectral library. (a) Endmember 1 and kaolinite; 
(b) Endmember 2 and montmorillonite. 

Endmember 1 
Kaolinite 

Montmorillonite 
 
 
Endmember 2 

 
 
 

Figure 7. Technical flowchart of integrated method in this research.

3.4. Accuracy Assessment

Sixty field samples collected in the study area (Figure 5a) were used to evaluate the
extraction results of alteration minerals based on the XRD analysis and quantitatively
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analyze the identification effects. Using the confusion matrix, the extracted results of
alternation minerals were compared with the results of XRD analysis to calculate the
producer’s accuracy (PA), user’s accuracy (UA), and overall accuracy (OA) [53–57].

4. Results and Analysis
4.1. Extraction Results of the Diagnostic Characteristic Parameters of Typical Minerals
4.1.1. Clay Mineral

Using the mentioned method of endmember extraction, the endmembers of the clay
mineral were obtained from hyperspectral remote sensing imagery, as shown in Figure 8.
The continuum removal algorithm was utilized to enhance the diagnostic spectral charac-
teristics of clay minerals [58]. The spectral curve exhibits absorption characteristics of clay
minerals at 2200 nm, which are similar to the characteristics of kaolinite and montmoril-
lonite in the spectral library. The diagnostic absorption characteristics were further analyzed
through calculating the diagnostic characteristic parameters using the IDL language as
shown in Table 4.
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Figure 8. Comparison of the endmember spectra of clay minerals extracted from the hyperspectral
imagery and the standard spectra in USGS_MIN spectral library. (a) Endmember 1 and kaolinite; (b)
Endmember 2 and montmorillonite.

Table 4. Comparison of diagnostic characteristic parameters of the endmember spectra of clay miner-
als extracted from the hyperspectral imagery and standard spectra in USGS_MIN spectral library.

Name λM/nm RM
1 W/nm H A S

Endmember 1 2203 0.1392 162 0.2882 141.62 1.58
Endmember 2 2203 0.1446 121 0.2297 103.97 1.33
Kaolinite 2203 0.3824 202 0.3589 175.70 2.23
Montmorillonite 2203 0.5230 141 0.2132 128.23 1.02

1 Except for RM, which represents the actual reflectance value at the absorption position, the other parameters are
calculated after continuum removal.

The quantitative calculation results of the diagnostic characteristic parameters clearly
indicate that the spectral absorption position is completely consistent. However, the spec-
tral reflectance of the endmember spectra is slightly low because they are obtained from
hyperspectral satellite remote sensing images and affected by atmospheric interference, af-
fecting the absorption depth and area to some extent. However, the difference in absorption
width and depth between endmember 2 and montmorillonite, obtained after continuum
removal, is only 14.18% and 7.74%, respectively. Therefore, the diagnostic characteristic
parameters of the extracted mineral endmember spectra are consistent with the spectra in
the spectral library. Specifically, the absorption position, width, and depth of endmember 1
and endmember 2 are consistent with kaolinite and montmorillonite in the spectral library,
respectively, allowing for a preliminary identification as clay minerals.
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4.1.2. Carbonate Mineral

For carbonate minerals, the classical diagnostic characteristic parameters of the spectral
curves mainly occur at 2300 nm, considering the remarkable influence of atmospheric water
vapor. Therefore, noise bands at 1400 and 1900 nm in the hyperspectral images were
eliminated. After continuum removal, the diagnostic absorption spectral characteristics
of the endmembers extracted from the hyperspectral satellite remote sensing image were
compared with typical carbonate minerals in the spectral library, as shown in Figure 9.
The quantitative analysis results of the diagnostic characteristic parameters of carbonate
minerals are shown in Table 5.
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Figure 9. Comparison of the endmember spectra of carbonate minerals extracted from the hyperspec-
tral imagery and the standard spectra in USGS_MIN spectral library. (a) Endmember 3 and siderite;
(b) Endmember 4 and calcite.

Table 5. Comparison of diagnostic characteristic parameters of the endmember spectra of car-
bonate minerals extracted from the hyperspectral imagery and standard spectra in USGS_MIN
spectral library.

Name λM/nm RM
1 W/nm H A S

Endmember 3 2335 0.2013 131 0.1274 112.19 2.98
Endmember 4 2335 0.5301 101 0.2358 93.68 2.64
Siderite 2335 0.4119 202 0.1390 186.79 2.36
Calcite 2335 0.5718 192 0.3286 161.09 2.92

1 Except for RM, which represents the actual reflectance value of the absorption position, the other parameters are
calculated after continuum removal.

The results show that the spectral absorption position of the endmember is exactly the
same as that of calcite and siderite. However, the reflectivity of the endmember obtained
from the hyperspectral imagery is low due to atmospheric interference during image
acquisition, resulting in slightly lower absorption depth and absorption area. In particular,
the absorption reflectivity of endmember 3 is only 51.13% of that of siderite in the spectral
library. The absorption width of the endmember spectrum is narrow, and the absorption
area is small overall. However, the absorption depth of endmember 3 is consistent with
siderite, with a difference of only 8.34%. The absorption reflectivity and symmetry of
endmember 3 are similar to that of calcite, with differences of only 7.29% and 9.59%,
respectively. Therefore, the absorption position, depth, and symmetry of the extracted
endmember 3 and endmember 4 are consistent with calcite and siderite in the spectral
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library, respectively, allowing for a preliminary determination that these endmembers
represent carbonate minerals.

4.2. Extraction Results Using the Integrated Method of Spectral Feature Matching and Diagnostic
Characteristic Parameters
4.2.1. Clay Minerals

Clay minerals were extracted using the proposed integrated method based on the
indications of clay minerals, such as the distinct spectral feature from 2100 nm to 2300 nm
and the diagnostic characteristic parameters, including the absorption position, width, and
depth at 2203 nm. The spectral feature matching degrees were obtained using the SAM
within the 2100–2300 range. The absorption position, width, and depth of pixels with a high
matching degree were calculated at 2203 nm. If these thresholds of diagnostic characteristic
parameters were met, then the pixels were identified as clay minerals. The distribution of
clay minerals in the study area is illustrated in Figure 10, which compares the extraction
results from ZY-1 02D data and Hyperion data.

Figure 10. Comparison of the extraction results of clay minerals extracted from ZY-1 02D data and
Hyperion data. The distributions of clay minerals are denoted in blue. (a) The extraction result of
ZY-1 02D data; (b) The extraction result of Hyperion data; (c–e) The zoom-in detailed subfigures of
region A, B, and C of ZY-1 02D data, respectively; (f–h) The zoom-in detailed subfigures of region A,
B, and C of Hyperion data, respectively.

As shown in Figure 9, clay minerals are mainly concentrated in the central and
southern areas of the study area, with sporadic distribution in the northwest part. Several
obvious anomalies can be observed. In accordance with the actual geological data, the
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central region of the study area corresponds to the Hudi coal mine area of Qinshui Basin,
Jincheng, Shanxi, China, which is consistent with the extraction results of clay minerals.
In addition, the distribution of clay minerals is relatively consistent when comparing the
extraction results from Hyperion data, with both datasets showing concentrations in the
central and southern parts of the study area.

4.2.2. Carbonate Minerals

Using the proposed method, carbonate minerals were identified on the basis of the
spectral feature matching degree within the 2200 nm to 2400 nm range and the diagnostic
characteristic parameters, including the absorption position, depth, and symmetry at
2335 nm. First, the spectral feature matching degrees were acquired using the MTMF
within 2200–2400 nm. Second, the absorption position, depth, and symmetry of pixels
with a high matching degree were calculated at 2335 nm. Finally, carbonate minerals were
extracted in the study area when the parameters reached the defined thresholds, as shown
in Figure 11.
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Figure 11. Comparison of the extraction results of carbonate minerals extracted from ZY-1 02D and
Hyperion data. The distributions of carbonate minerals are denoted in magenta (a) The extraction
result of ZY-1 02D data; (b) The extraction result of Hyperion data; (c–e) The zoom-in detailed
subfigures of region A, B, and C of ZY-1 02D data, respectively; (f–h) The zoom-in detailed subfigures
of region A, B, and C of Hyperion data, respectively.
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Carbonate minerals are widespread in the central and southwest of the study area, with
a thin distribution in the northern part. The central region of the study area corresponds
to the Hudi coal mine area. However, a large number of anomalies in the southwest
have not been effectively verified. Field surveys indicate that no CBM mining has been
conducted although coal seams distributed underground exist. Overall, the extraction
results of carbonate minerals using ZY-1 02D data are relatively consistent with the results
obtained from Hyperion data in the middle and southern parts of the study area.

4.3. Accuracy Assessment

Four evaluation factors, such as PA, UA, and OA, were used to quantitatively analyze
the extraction results of alteration minerals from ZY-1 02D and Hyperion data. These
factors were compared with the results of XRD analysis, as shown in Table 6.

Table 6. Accuracy assessment of ZY-1 02D and Hyperion data.

Data Minerals PA (%) UA (%) OA (%)

ZY-1 02D
Clay 81.25 83.87 81.67
Carbonate 79.41 81.82 79.03

Hyperion Clay 78.12 80.64 78.33
Carbonate 73.53 83.33 76.67

The overall accuracy of clay and carbonate mineral extraction results from ZY-1 02D
data is 81.67% and 79.03%, respectively, which is better than the Hyperion data (78.33% and
76.67%). However, all accuracy values are greater than 75%, confirming the reliability of
alteration mineral extraction using hyperspectral remote sensing technology. Furthermore,
the user’s accuracy of clay minerals from ZY-1 02D data and carbonate minerals from
Hyperion data reached 83.87% and 83.33%, respectively. This further demonstrates that
different data have their unique advantages for the extraction of different minerals.

5. Discussion
5.1. Analysis of the Influence of Different Hyperspectral Satellite Remote Sensing Data

In this research, both ZY-1 02D and Hyperion images were used to extract alteration
minerals. Although the two datasets have the same spatial resolution and a large num-
ber of bands as hyperspectral satellite remote sensing data, several differences are still
observed. Hyperion data contain 76 more bands than ZY-1 02D data due to the higher
spectral resolution of SWIR bands in Hyperion data (10 nm) compared with ZY-1 02D data
(20 nm) [59]. This results in Hyperion data having more spectral details but also containing
a larger amount of redundant information. For example, although the vegetation spectral
curves at the same location exhibit a similar waveform, the SWIR bands of Hyperion data
may exhibit slight fluctuations, which can be either a spectral characteristic or noise, as
shown in Figure 5c,d. In addition, the reflectivity of Hyperion data is universally higher
than ZY-1 02D data, making the Hyperion images appear brighter (Figure 12). However,
the advantage of ZY-1 02D data is their 60 km width, allowing for large-scale observation.
Furthermore, the Hyperion data may contain bad lines and striping due to detector element
malfunctions and systematic noise, which can affect the extraction results.
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Figure 12. Data quality comparison of the ZY-1 02D (a) and Hyperion (b) images.

5.2. Analysis of Extraction Efficiency of Different Alteration Minerals

The normalized difference vegetation index was utilized to eliminate vegetation and
reduce its influence on alteration mineral extraction. The extraction results of clay and
carbonate minerals from the ZY-1 02D and Hyperion images were obtained in the bare areas
of the study area using an integrated method of spectral feature matching and diagnostic
characteristic parameters. The alteration minerals were predominantly distributed in the
central and southern regions. On the basis of the regional geology, seismic data, and well
logging information in the study area, the central region was identified as the Jincheng
Hudi mine area of the Qinshui Basin [60]. The distribution of clay and carbonate minerals
was consistent between the two different hyperspectral imageries in the middle of the study
area. However, clay minerals still exhibited distribution in the northwest part of the study
area, with several obvious anomalies in the ZY-1 02D image. They cannot be extracted in
the Hyperion data due to the narrower width. Apparent false anomalies were observed
along the river in the southwest of the Hyperion image. For the carbonate minerals, a
large number of anomalies existed in the southwestern part of the study area, but they had
not been effectively verified. Although coal seams were indeed distributed based on field
surveys, CBM was not being extracted.

Quantitative assessment of the extraction results showed that the PA, UA, and OA of
clay minerals extracted using ZY-1 02D data were higher than those obtained from Hyperion
data. Specifically, the OA was 3.34% higher. Except for the UA of carbonate minerals
extracted using ZY-1 02D data, which was 1.51% lower, the other factors were higher than
Hyperion data. Overall, the extraction efficiency of ZY-1 02D data was better than that of
Hyperion data for the two different minerals. In terms of different minerals, the extraction
efficiency of clay minerals was better than that of carbonate minerals. This difference can
be attributed to the spectral characteristics of carbonate minerals falling between 2200 and
2400 nm, where the data quality of these bands is poorer compared with the range from
2100 nm to 2300 nm, which severely limits the quality of the extraction results.

However, the extraction results of alteration minerals are highly affected by other
interfering factors, such as fertilizer, acid rain, and chemical pollution, due to the feeble and
imperceptible nature of the alteration minerals caused by CBM microseepages. Moreover,
distributions of alteration minerals many not necessarily correlate the regions of CBM
enrichment because microseepage can be controlled using drainage and structure [61]. Thus,
the mineral alterations in this study area were only caused by CBM microseepages to the
ground surface. Further experiments are required to investigate the spectral characteristics
of alteration minerals in more CBM enrichment areas [62].

Consequently, some works should be studied in the future. First, the analysis and
comparison of spectra from a larger number of field samples should be conducted. Second,
further fieldwork is necessary to verify the universality and generalizability of this method
in other regions. Specifically, geochemical analysis is required in the future to investigate
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the alteration minerals caused by CBM hydrocarbon microseepage. Finally, the study did
not involve the extraction of altered vegetation due to the immaturity of extraction methods.
The diagnostic spectral features of altered vegetation should be explored in future research.
Therefore, additional investigation into the potential geological application of hyperspectral
data is crucial and promising.

6. Conclusions

In this study, alteration minerals were successfully extracted from civilian ZY-1 02D
hyperspectral data and Hyperion data in the Hudi coal mine area of the Qinshui Basin.
A mineral identification method that combines spectral feature matching and diagnostic
characteristic parameters was adopted on the basis of the spectral characteristics of clay
minerals and carbonate minerals. The extraction results of ZY-1 02D and Hyperion data
were compared with geological data to effectively extract alteration minerals in CBM enrich-
ment areas. This research demonstrates the application potential of domestic hyperspectral
data in CBM identification and provides valuable technical support for large-scale and
rapid CBM exploration.

The following conclusions were obtained:

(1) The extraction of alteration minerals, including clay and carbonate minerals, was
successfully achieved using ZY-1 02D and Hyperion data. The distribution of clay
and carbonate minerals exhibited good accuracy (81.67% and 79.03%, respectively)
when analyzed using XRD.

(2) Comparing the extraction results of Hyperion data and ZY-1 02D data, the PA, UA, and
OA for clay mineral extraction were higher with ZY-1 02D data than with Hyperion
data. However, the UA for carbonate mineral extraction using ZY-1 02D data was
1.51% lower than with Hyperion data.

(3) The study illustrated the potential geological application of hyperspectral satellite
remote sensing data in identifying CBM enrichment regions. This method offers
a large-scale, convenient, and highly efficient approach compared with traditional
seismic exploration and drilling methods.
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