
Citation: Huang, X.; Liu, F.; Cui, Y.;

Chen, P.; Li, L.; Li, P. Faster and

Better: A Lightweight Transformer

Network for Remote Sensing Scene

Classification. Remote Sens. 2023, 15,

3645. https://doi.org/10.3390/

rs15143645

Academic Editor: Danfeng Hong

Received: 15 June 2023

Revised: 17 July 2023

Accepted: 18 July 2023

Published: 21 July 2023

Copyright: © 2023 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

remote sensing

Article

Faster and Better: A Lightweight Transformer Network for
Remote Sensing Scene Classification
Xinyan Huang 1,2,3,4, Fang Liu 1,2,3,4,*, Yuanhao Cui 1,2,3,4, Puhua Chen 1,2,3,4, Lingling Li 1,2,3,4

and Pengfang Li 1,2,3,4

1 Key Laboratory of Intelligent Perception and Image Understanding of Ministry of Education,
Xidian University, Xi’an 710071, China; xinyanh@stu.xidian.edu.cn (X.H.); yhcui@stu.xidian.edu.cn (Y.C.);
phchen@xidian.edu.cn (P.C.); llli@xidian.edu.cn (L.L.); pfli33@stu.xidian.edu.cn (P.L.)

2 International Research Center for Intelligent Perception and Computation, Xidian University,
Xi’an 710071, China

3 Joint International Research Laboratory of Intelligent Perception and Computation, Xidian University,
Xi’an 710071, China

4 School of Artificial Intelligence, Xidian University, Xi’an 710071, China
* Correspondence: liuf63@xidian.edu.cn

Abstract: Remote sensing (RS) scene classification has received considerable attention due to its wide
applications in the RS community. Many methods based on convolutional neural networks (CNNs)
have been proposed to classify complex RS scenes, but they cannot fully capture the context in RS
images because of the lack of long-range dependencies (the dependency relationship between two
distant elements). Recently, some researchers fine-tuned the large pretrained vision transformer
(ViT) on small RS datasets to extract long-range dependencies effectively in RS scenes. However, it
usually takes more time to fine-tune the ViT on account of high computational complexity. The lack
of good local feature representation in the ViT limits classification performance improvement. To
this end, we propose a lightweight transformer network (LTNet) for RS scene classification. First, a
multi-level group convolution (MLGC) module is presented. It enriches the diversity of local features
and requires a lower computational cost by co-representing multi-level and multi-group features in a
single module. Then, based on the MLGC module, a lightweight transformer block, LightFormer, was
designed to capture global dependencies with fewer computing resources. Finally, the LTNet was
built using the MLGC and LightFormer. The experiments of fine-tuning the LTNet on four RS scene
classification datasets demonstrate that the proposed network achieves a competitive classification
performance under less training time.

Keywords: lightweight transformer; convolutional neural network; scene classification; remote sensing

1. Introduction

Remote sensing (RS) scene classification has attracted much attention due to its wide
application requirements in practical scenarios, such as urban planning [1], natural hazards
detection [2–4], land-cover classification [5], and geographic image retrieval [6,7]. Inspired
by the great success of convolutional neural networks (CNNs) [8–13] in the computer
vision research field, many CNN-based methods have been proposed to classify complex
RS scenes. Specifically, some researchers fine-tuned large pretrained CNNs on small RS
datasets [14–17], which improves the local feature representation capability in RS images.
In addition, some methods aggregate multi-layer convolutional features [18–23] or capture
contextual information [24,25] for RS scene classification. Although these CNN-based
methods have significantly improved the classification performance, they cannot fully
capture the long-range dependencies in complex RS scenes.

In 2017, Vaswani et al. [26] presented the well-known transformer architecture. It can
leverage the self-attention mechanism to extract long-range dependencies effectively. Af-
terward, Dosovitskiy et al. [27] applied the transformer to image recognition, establishing

Remote Sens. 2023, 15, 3645. https://doi.org/10.3390/rs15143645 https://www.mdpi.com/journal/remotesensing

https://doi.org/10.3390/rs15143645
https://doi.org/10.3390/rs15143645
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/remotesensing
https://www.mdpi.com
https://orcid.org/0000-0002-6130-2518
https://doi.org/10.3390/rs15143645
https://www.mdpi.com/journal/remotesensing
https://www.mdpi.com/article/10.3390/rs15143645?type=check_update&version=1

Remote Sens. 2023, 15, 3645 2 of 21

a pure transformer-based model (ViT) for the visual task. Motivated by it, many trans-
former architectures have been built for vision tasks, such as image classification [28,29],
object detection [30,31], segmentation [32–34], and Video Anomaly Detection [35]. As an
important vision task, some RS scene classification methods [36,37] attempted to introduce
transformer architectures for extracting long-range dependencies. Bazi et al. [36] fine-tuned
the large pretrained ViT on a small RS dataset. Ma et al. [37] used the ViT to learn global
context information. However, these pure transformer model lacks good local feature
representation, leading to limited performance improvements for RS scene classification.

For the complex RS scene classification task, extracting local representations and long-
range dependencies is crucial, and combining a CNN and transformer in one network is an
effective solution. CvT [28] and BoTNet [38] combine the transformer with the convolution
to build hybrid transformers, which have the ability to represent long-range dependencies
and local features simultaneously. However, their extraction processes require high-cost
computation. Consequently, designing a lightweight pretrained model is necessary for
RS scene classification. Some lightweight networks have been proposed to reduce the
computational complexity of the traditional convolution and transformer. For instance,
ordinary convolutions in MobileNets [39–41] are factorized into depthwise and pointwise
convolutions. To further reduce the computational cost, group convolution with channel
shuffle is introduced into pointwise convolutions in ShuffleNets [42,43]. Different from the
above works, Han et al. [44] considered that the redundancy in feature maps is essential
for a successful deep neural network and thus designed the cost-efficient Ghost module
that uses cheap operations to acquire the redundancy in output feature maps. In addition,
several approaches, such as ViT-Lite [45] and LeViT [46], focused on designing efficient
lightweight hybrid transformer networks. These methods are effective in processing
natural images. However, in RS scene classification, the question of how to design an
efficient model that can learn local representation and long-range dependencies remains to
be explored.

In this paper, we propose a lightweight transformer network (LTNet) for RS scene
classification. Please see Figure 1 for its overview. First, we designed an efficient multi-level
group convolution (MLGC) module in which multi-level and multi-group features are
co-represented, enriching the diversity of local features and reducing the computational
cost. Second, we developed a lightweight transformer (LightFormer) block based on the
MLGC module. It can efficiently capture the global dependencies of RS scenes. Finally, we
leveraged the proposed MLGC module and LightFormer block to construct an efficient
lightweight transformer network (LTNet), which efficiently aggregates multi-level local
features and long-range dependencies. We evaluated the LTNet on four common RS scene
classification datasets. The experimental results show that both its computational cost
and fine-tuning time are lower, while its performance is competitive in comparison with
its counterparts.

The main contributions of this paper are listed as follows:

• An MLGC module with a low computational cost is proposed, which utilizes the
co-representations of multi-level and multi-group features to enrich the diversity of
local features in the RS scene.

• By introducing the MLGC module into the ordinary transformer block, we designed
a LightFormer block with fewer parameters and FLOPs, which considers both rich
multi-level local features and long-range dependencies in RS images.

• We built the efficient LTNet based on the MLGC module and LightFormer block for
RS scene classification.

• Experiments on four RS scene classification datasets prove that the LTNet achieves a
competitive classification performance with less training time.

Remote Sens. 2023, 15, 3645 3 of 21

Input image

Bird

Dog

Cat

..
.

Class

Max pool,

FC

Light-weight feature extraction network

stacked MLGC

modules

LightFormer

block

capture long-range

dependencies
extract multi-level local features

Conv3

f f fh w cin in inh w c
f f fh w c

Input image

Beach

forest

Harbor

..
.

Class

Max pool,

FC

in in inh w c

1 1 cpc

1 1 cfc

Pre-trained light-weight feature extraction network

 fine-tuning

Natural image

Bird

Dog

Cat

..
.

Class

Max pool,

FC

Light-weight feature extraction network

stacked MLGC

modules

LightFormer

block

capture long-range

dependencies
extract multi-level local features

Conv3

f f fh w cin in inh w c
f f fh w c

RS image

Beach

forest

Harbor

..
.

Class

Max pool,

FC

in in inh w c

1 1 cpc

1 1 cfc

Pre-trained light-weight feature extraction network

Natural image

Bird

Dog

Cat

..
.

Class

 FC

Lightweight feature extraction network

stacked MLGC

modules

LightFormer

block

capture long-range

dependencies
extract multi-level local features

Conv7

f f fh w cin in inh w c
f f fh w c

RS image

Beach

forest

Harbor

..
.

Class

in in inh w c

1 1 cpc

1 1 cfc

Lightweight feature extraction network

Pre-trained weights

 FC

Figure 1. Overview of the LTNet. We first pretrained LTNet on the ImageNet dataset [47] and then
fine-tuned it on the RS scene classification datasets [15,24,48,49]. In the LTNet, we used convolution
with a 7× 7 kernel size (Conv7) and multiple stacked MLGC modules to extract multi-level local
features. These features were fed into a LightFormer block to capture long-range dependencies.

The remainder of this paper is described as follows. We briefly review the related
work in Section 2. In Section 3, we describe the proposed MLGC module, LightFormer
block, and efficient LTNet in detail. The experimental results and analysis are presented in
Section 4. Finally, the conclusion is drawn in Section 5.

2. Related Work

In this section, we briefly review CNN-based RS scene classification methods,
lightweight CNNs, and vision transformer networks, which are closely related to our work.

2.1. CNN-Based RS Scene Classification Methods

To exploit the utilization of existing CNNs for RS scene lassification, Nogueira et al. [14]
compared the performance of the three strategies, including full training, fine-tuning, and
using CNNs as feature extractors. Fine-tuning tends to be the best strategy in experiments, and
many methods for RS scene classification are based on pre-trained CNNs. Cheng et al. [15] in-
troduced the results of fine-tuning the existing AlexNet, GoogLeNet, and VGG. Bazi et al. [16]
presented a simple yet effective fine-tuning method of CNNs to tackle the vanishing gradient
problem of transferring knowledge to small datasets. Li et al. [17] proposed the deep convo-
lutional neural network (TL-DeCNN) model and fine-tuned the classification module. Due
to the complexity of RS scenes, some works aggregate multi-layer convolutional features or
capture contextual dependencies to improve classification accuracy. A feature aggregation
CNN (FACNN) [18] was designed to aggregate features according to different spatial structure
information. A gated bidirectional network (GBNet) [19] was presented to aggregate the
hierarchical features. He et al. [20] combined multi-layer feature maps obtained by pretrained
CNNs for RS scene classification. Liu et al. [21] adopted a two-stage deep feature fusion
model, which integrates two converted CNNs for RS scene classification. Xue et al. [22]
developed a multi-structure deep features fusion (MSDFF) to fuse the deep features from three
CNNs. Two-branch deep feature fusion (TDFF) is adopted in an enhanced feature pyramid
network (EFPN) [23] to aggregate the features at different levels. Wang et al. [24] proposed
an attention recurrent convolutional network (ARCNet) to select a series of attention regions
adaptively. Tang et al. [25] developed an attention consistent network (ACNet) based on the
Siamese network. However, these methods do not fully capture the long-range dependencies
of complex RS scenes.

2.2. Vision Transformer Networks

The ViT [27], a pure transformer model, performs significantly well on the image
classification task due to the ability to extract long-range dependencies. Based on this work,
more researchers [50–53] focused on vision transformers. The ability is also important

Remote Sens. 2023, 15, 3645 4 of 21

for the complex RS scene classification task. Bazi et al. [36] used the ViT for RS scene
classification. Ma et al. [37] proposed a homo–heterogenous transformer learning (HHTL)
framework based on a vision transformer to obtain the context information. However,
numerous parameters and FLOPs consume enormous computation resources and make
fine-tuning the network take a long time. The lack of good local feature representation in the
ViT limits the classification performance of the RS scene. Hence, some hybrid transformer
models are proposed based on convolutions and transformers to solve the above issues.
CvT [28] incorporates the convolutional token embedding and convolutional projection into
the ViT. BoTNet [38] uses self-attention to replace convolutions in the last three bottleneck
blocks of a ResNet. Graham et al. [46] applied convolutions to transformers and introduced
the attention bias for the trade-off between accuracy and efficiency. Hassani et al. [45]
presented three different models, ViT-Lite, CVT, and CCT, to address the "data-hungry"
issue for the transformer. MobileViT [54] leverages the strengths of CNNs and ViTs to build
a lightweight network for mobile vision tasks. Inspired by the above work, this paper
introduces an LTNet for RS scene classification, and the LightFormer block was designed
in the network to capture long-range dependencies.

2.3. Lightweight CNNs

Lightweight CNNs [55–59] ensure the accuracy of the model while effectively reducing
the computational cost. Especially in recent years, lightweight architecture design has
achieved remarkable performances. Howard et al. [39] used depthwise separable convolu-
tions to build efficient MobileNets. Sandler et al. [40] presented an inverted residual with
a linear bottleneck for MobileNetV2. Howard et al. [41] utilized a network architecture
search (NAS) to search for the global network structures of MobileNetV3. Zhang et al. [42]
described pointwise group convolution and channel shuffle to reduce the computational
cost. Ma et al. [43] provided several practical guidelines for efficient network design and
proposed ShuffleNetV2 according to these guidelines. Han et al. [44] established an efficient
neural architecture, GhostNet, based on the Ghost module that generates more feature
maps from cheap operations. Inspired by the above works that designed efficient convolu-
tional operations or only acquired the redundancy of output feature maps cost-efficiently,
the redundancy in the input and output feature maps is simultaneously considered in the
proposed MLGC module to reduce the computational cost further.

3. Method

In this section, we first present an efficient MLGC module with a low computational
cost. Then, based on the MLGC module, we outline a designed LightFormer block that
learns long-range dependencies with fewer parameters. Finally, we introduce our LTNet.

As shown in Figure 1, for the original input image X ∈ Rhin×win×cin , where hin and win
represent the height and width of the input image with cin channels. Features extracted
through stacked MLGC modules are denoted as Z ∈ Rh f×w f×c f , where h f and w f represent
the height and width of the obtained feature maps, respectively. c f is the number of
channels. Then, local features Z are fed into the LightFormer block to capture global
features Z1 ∈ Rh f×w f×c f .

3.1. MLGC Module

In an ordinary convolutional layer, rich local features that contain much redun-
dancy can be extracted by a large number of convolution kernels. As mentioned in the
literature [44], redundancy is essential for a successful deep neural network, but it also
increases the computational burden. The proper retention of redundancy features can
increase the model complexity and improve the model’s ability to fit complex data, thus
improving the network’s performance. There exists much redundancy (i.e., some similar
feature map pairs) in output feature maps. Instead of avoiding the redundant feature maps,
the Ghost module generates them in a low-cost way. The output feature maps of the Ghost
module are split into s parts (s = 2, 3, 4, or 5). The first part is calculated by the ordinary

Remote Sens. 2023, 15, 3645 5 of 21

convolutions from all input feature maps, and the other parts are obtained by linear op-
erations (depthwise convolutions) from the first part. Depthwise convolution is to apply
a single filter for each input channel. The Ghost module obtains a superior performance
at s = 2. As shown in Figure 2a, given the input feature maps F ∈ Rh×w×c, where h and
w represent the height and width of the input feature map with c input channels, it can
be seen that the output feature maps F′ ∈ Rh′×w′×c′ are obtained by concatenating two
parts, F′1 ∈ Rh′×w′×(c′/2) and F′2 ∈ Rh′×w′×(c′/2), where h′ and w′, respectively, represent
the height and width of the output feature maps and c′ is the number of channels.

Dwise

h

w

h'

w'

2c'

h'

w'

2c' c'

Conv

Concat

c

h'

w'

F
1F' 2F ' F'

(a)

2c

h

w

h'

w'

4c'

h'

w'

c'

2c 4c'

Concat

4c'

4c'
h'

w'

GConv1 GConv21(2)g
2(2)gF

1F' 2F '

F'

(b)

Figure 2. An illustration of the Ghost module and our MLGC module: (a) Ghost module (s = 2)
and (b) MLGC module (g1 = 2, g2 = 2). The output feature maps F′ are made up of s = 2 parts (F′1
and F′2). F′1 and F′2 are generated from all input features F and the first output part F′1, respectively.
Instead of using the ordinary convolution (Conv) and depthwise convolution (Dwise) to calculate
two output parts like the Ghost module, we use two group convolutions, GConv1 with g1 groups
and GConv2 with g2 groups, in our MLGC module.

Generate the output feature maps F′ formulated as

F1
′ = Conv(F), (1)

F2
′ = Dwise(F1

′), (2)

F′ = Concat(F1
′, F2

′), (3)

where k1 × k1 convolution operator Conv() could produce the intrinsic feature map F1
′

from all input data F. Dwise() is a k2 × k2 depthwise convolution, which generates Ghost
feature maps F2

′ from the first part F1
′. Feature maps F1

′ and F2
′ are concatenated to

acquire F′.

Remote Sens. 2023, 15, 3645 6 of 21

The parameters of the Ghost module are

PG = k1 · k1 · c ·
c′

2
+ k2 · k2 ·

c′

2
=

c′

2
·
(

c · k1
2 + k2

2
)

. (4)

The computational cost of the Ghost module is

CG = h · w · k1 · k1 · c ·
c′

2
+ h · w · k2 · k2 ·

c′

2
=

c′

2
· h · w ·

(
c · k1

2 + k2
2
)

. (5)

Although the GhostNet achieves a great performance, only the redundancy in the
output feature maps F′ of convolutional layers is considered in the Ghost module. As
described in Equation (1), the first part F1

′ of the output feature maps F′ is calculated by
the ordinary convolutions for all input feature maps (i.e., the output feature maps of the
previous layer). Hence, input feature maps also have much redundancy, which is not
considered in the Ghost module. Furthermore, the second part F2

′ is obtained by linear
operations (depthwise convolutions) from the first part (Equation (2)), but each channel in
the first part of the output feature maps is not always similar to one channel in the second
part. Using linear operations reduces the diversity of output features.

To solve the above issues, this paper presents an MLGC module that simultaneously
considers the redundancy in the input and output feature maps, as shown in Figure 2b.
The module retains sufficient redundancy in the output feature maps. Specifically, in the
MLGC module, besides considering much redundancy in the output features F′ (split F′

into two parts F1
′ and F2

′), the group convolution is used to generate the first part F1
′ from

all input feature maps F (Equation (6)), which simultaneously considers the redundancy
of input feature maps. In addition, the group convolution on F1

′ is utilized to acquire F2
′

(Equation (7)). Each feature map in the second part is a combination of multiple feature
maps in the first part, which captures rich features and helps the network achieve an
excellent performance. We call F1

′ and F2
′ first-level and second-level features, respectively.

The output feature maps F′ of each MLGC module include multi-level information.
Generate output feature maps F′ formulated as

F1
′ = GConv1(F), (6)

F2
′ = GConv2(F1

′), (7)

where GConv1() and GConv2() denote the k1 × k1 group convolution operator with g1
group and k2 × k2 group convolution operator with g2 group, respectively. Two-level
feature maps F1

′ and F2
′ are concatenated to obtain F′, which is composed of two parts at

different levels.
The parameters of the MLGC module are

PM =k1 · k1 ·
c
g1
· c′

2g1
· g1 + k2 · k2 ·

c′

2g2
· c′

2g2
· g2

=
c′

2
·
(

c
g1
· k1

2 +
c′

2g2
· k2

2
)

.
(8)

The computational cost of the MLGC module is

CM =h · w · k1 · k1 ·
c
g1
· c′

2g1
· g1 + h · w · k2 · k2 ·

c′

2g2
· c′

2g2
· g2

=
c′

2
· h · w ·

(
c
g1
· k1

2 +
c′

2g2
· k2

2
)

.
(9)

Remote Sens. 2023, 15, 3645 7 of 21

The ratio of the Ghost module and MLGC module in the computational cost is

R =
CG
CM

=

c′

2
· h · w ·

(
c · k1

2 + k2
2
)

c′

2
· h · w ·

(
c
g1
· k1

2 +
c′

2g2
· k2

2
) ≈ 2g1 · g2 · (c + 1)

g1 · c′ + 2g2 · c
, (10)

where the value of k1 is equal to or similar to k2, such as 1 or 3, so k1 ≈ k2 = k. If R > 1, the
computational cost of the proposed MLGC module is lower than that of the Ghost Module.
A larger R indicates that the advantage of our module is more obvious than the Ghost
module.

3.2. LightFormer Block

Recently, based on the self-attention mechanism, transformers have built long-range
dependencies and have been successfully applied to vision tasks. In this paper, we designed
a LightFormer block, which consumes less computing resources to capture the long-range
dependencies. Figure 3 shows the LightFormer block. It has five differences from the
ViT [27]: (i) The linear operation in the ViT was replaced by the MLGC module (the kernel
size of 1× 1), reducing parameters and FLOPs. We also tried MLGC with a kernel size of
3× 3 in the experiment. It was found that the accuracy was not improved over the 1× 1
MLGC module; (ii) Because of the strong multi-level feature representation ability of the
MLGC module, we removed MLP layers that need many computational resources; (iii)
Since batch normalization is used in the MLGC module, layer normalization in the ViT
was removed; (iv) Adding class tokens to the sequence is unnecessary. The LightFormer
block is followed by the FC layer for classification; (v) The MLGC module already contains
position information. Since the local context structure can be acquired by convolutions, the
MLGC module can learn local spatial information. It is not necessary to preserve position
embedding for the LightFormer block.

Embedded

Features

Lite

Multi-Head

Attention



TMLGC Module

Concat

MLGC

Embedded

Features

Lightweight

Multi-Head

Attention

Scaled Dot-Product

Attention

MLGCMLGC MLGC

V K Q



Figure 3. LightFormer block. We utilized MLGC modules for replacing linear projection, and the
LayerNorm (LN) and MLP layers were removed. The local features extracted by the stacked MLGC
module were fed into the LightFormer block as embedded features.

In Figure 3, the lightweight multi-head attention (LMHA) is given in the proposed
LightFormer block and is followed by the use of the residual connection.

Z1 = LMHA(Z) + Z, (11)

Remote Sens. 2023, 15, 3645 8 of 21

LMHA(Q, K, V) = MLGCA(Concat(head1, . . . , headm)), (12)

headj = Attention(MLGCQ
j (Q), MLGCK

j (K), MLGCV
j (V)), (13)

where MLGCQ
j (), MLGCK

j (), and MLGCV
j () are MLGC convolution operations for query

matrix Q, key matrix K, and value matrix V with the jth head. The number of heads is
m = 8. MLGCA() is an MLGC convolution operation for all heads.

3.3. LTNet

In this work, we aim to develop a lightweight vision transformer network for RS scene
classification. To simply and clearly show how we design the network based on the MLGC
module and LightFormer block, we give the details of building the LightFormer-VGG-16
and then further present the details of building LTNet for RS scene classification.

As shown in Table 1, VGG-16 [60] is a common convolutional neural network, which
is built on the ordinary convolution, and Ghost-VGG-16 [44] is obtained by plugging the
Ghost module into VGG-16. We replaced each Ghost module in Ghost-VGG-16 with the
MLGC module to acquire MLGC-VGG-16. The LightFormer block was introduced into
our MLGC-VGG-16 to establish the LightFormer-VGG-16, which uses fewer layers than
the other three networks. The stacked MLGC modules can be used to learn the ability of
the inductive biases and extract richer local features that are fed into a single LightFormer
block to capture long-range dependencies. Given g1 = g2 = 2, the ratio between the Ghost

module and MLGC module in the computational cost is R =
4(c + 1)
2c + c′

. Since most layers

in Ghost-VGG-16 or MLGC-VGG-16 have the same number of input and output channels

(c′ = c) and a few other layers is c′ = 2c, the corresponding R is calculated as R =
4(c + 1)

3c
and R =

c + 1
c

. On the whole, R > 1 shows that the computational cost of the MLGC
module is reduced. It can be seen from Table 1 that our LightFormer-VGG-16 uses fewer
layers, weights, and FLOPs than the VGG-16 and Ghost-VGG-16.

Table 1. Architectures, weights, and FLOPs of VGG-16 [60], Ghost-VGG-16 [44], MLGC-VGG-16, and
LightFormer-VGG-16 on CIFAR-10 [61]. Conv, Ghost, and MLGC denote the ordinary convolution,
Ghost module, and MLGC module, respectively. The value before and after the hyphen (-) represents
the kernel size and the number of output channels, respectively. For example, Conv3-64 means the
ordinary convolution with a 3× 3 kernel size and 64 output channels. LightFormer-512 represents
the LightFormer block with 512 channels based on the 1× 1 MLGC module.

Layer
Name

Output
Size VGG-16 Ghost-VGG-16 MLGC-VGG-16 LightFormer-VGG-16

v1 Conv3-64

v2 32 × 32 Conv3-64 Ghost3-64 MLGC3-64 MLGC3-64

Max pool

v3 Conv3-128 Ghost3-128 MLGC3-128 MLGC3-128
v4

16 × 16
Conv3-128 Ghost3-128 MLGC3-128 MLGC3-128

Max pool

v5 Conv3-256 Ghost3-256 MLGC3-256 MLGC3-256
v6 Conv3-256 Ghost3-256 MLGC3-256 -
v7

8 × 8

Conv3-256 Ghost3-256 MLGC3-256 -

Remote Sens. 2023, 15, 3645 9 of 21

Table 1. Cont.

Layer
Name

Output
Size VGG-16 Ghost-VGG-16 MLGC-VGG-16 LightFormer-VGG-16

Max pool

v8 Conv3-512 Ghost3-512 MLGC3-512 LightFormer-512
v9 Conv3-512 Ghost3-512 MLGC3-512 -

v10

4 × 4

Conv3-512 Ghost3-512 MLGC3-512 -

Max pool

v11 Conv3-512 Ghost3-512 MLGC3-512 -
v12 Conv3-512 Ghost3-512 MLGC3-512 -
v13

2 × 2

Conv3-512 Ghost3-512 MLGC3-512 -

Max pool, FC-512, FC-10, Soft-max

Weights (M) 15.0 7.7 6.0 0.8
FLOPs (M) 315 159 127 55

As shown in Table 2, a building block [·] with three ordinary convolutions was used to
build ResNet-50 [62]. Ghost-ResNet-50 [44] is obtained by plugging the Ghost module into
ResNet-50. We replaced the Ghost module in Ghost-ResNet-50 with the MLGC module
and obtained MLGC-ResNet-50 to maintain the richer diversity of feature maps, given
g1 = 2 and g2 = 1. The computational cost ratio of the Ghost module and MLGC module is

R =
2(c + 1)

c + c′
. It has three types of relations between input and output channels, including

c′ =
1
2

c, c′ = c, and c′ = 4c. The values of R for each of them are
4(c + 1)

3c
,

c + 1
c

, and

2(c + 1)
5c

, respectively. Since R of the first two types is R > 1, which can reduce the
network computational cost, we use the MLGC module to replace the Ghost module on the

corresponding c′ =
1
2

c and c′ = c layers. In other words, our module has an advantage
when the input channels are greater than or equal to the output channels. Combining two
MLGC modules with one Ghost module in a building block can reduce computational
costs. By plugging the LightFormer block into MLGC-ResNet-50, we established the LTNet,
which is pretrained on the ImageNet dataset and fine-tuned on RS scene classification
datasets. When fine-tuning, change the 1000 classes of the FC layer in Table 2 to the number
of classes on the RS dataset. For example, we used FC-21 for the Merced dataset. Compared
with the Ghost-ResNet-50 and MLGC-ResNet-50, the LTNet only has one building block in
layer r5, which uses fewer layers, weights, and FLOPs.

Table 2. Architectures, weights, and FLOPs of ResNet-50 [62], Ghost-ResNet-50 [44], MLGC-ResNet-
50, and LTNet on ImageNet [47]. The square brackets [·] before the multiplication sign × denote
a building block of the network, and the value after × represents the number of stackings in this
building block.

Layer Name Output Size ResNet-50 Ghost-ResNet-50 MLGC-ResNet-50 LTNet

r1 112 × 112 Conv7-64, Stride 2

r2 56 × 56 Max pool, Stride2 Conv1-64
Conv3-64
Conv1-256

× 3

 Ghost1-64
Ghost3-64
Ghost1-256

× 3

 MLGC1-64
MLGC3-64
Ghost1-256

× 3

 MLGC1-64
MLGC3-64
Ghost1-256

× 3

r3 28 × 28

 Conv1-128
Conv3-128
Conv1-512

× 4

 Ghost1-128
Ghost3-128
Ghost1-512

× 4

 MLGC1-128
MLGC3-128
Ghost1-512

× 4

 MLGC1-128
MLGC3-128
Ghost1-512

× 4

Remote Sens. 2023, 15, 3645 10 of 21

Table 2. Cont.

Layer
Name

Output
Size ResNet-50 Ghost-ResNet-50 MLGC-ResNet-50 LTNet

r4 14 × 14

 Conv1-256
Conv3-256
Conv1-1024

× 6

 Ghost1-256
Ghost3-256
Ghost1-1024

× 6

 MLGC1-256
MLGC3-256
Ghost1-1024

× 6

 MLGC1-256
MLGC3-256
Ghost1-1024

× 6

r5 7 × 7

 Conv1-512
Conv3-512
Conv1-2048

× 3

 Ghost1-512
Ghost3-512
Ghost1-2048

× 3

 MLGC1-512
MLGC3-512
Ghost1-2048

× 3

 MLGC1-512
LightFormer-512
Ghost1-2048

× 1

Average pool, FC-1000, Soft-max

Weights (M) 25.6 13.9 13.1 8.2
FLOPs (B) 4.1 2.2 1.9 1.7

4. Experiments

We conducted extensive experiments on four common RS scene classification datasets
and two natural image classification benchmarks to evaluate the performance of the pro-
posed method. First, to confirm the efficacy of the LTNet for RS scene classification, we
performed experiments on four RS datasets (Merced [48], AID [49], Optimal-31 [24], and
NWPU [15] datasets). Then, to verify the effectiveness of the proposed MLGC module
and LightFormer block and the designed network architecture of the LTNet in detail, we
performed experiments on two natural image classification benchmarks (CIFAR-10 [61]
and ImageNet ILSVRC 2012 [47] datasets).

4.1. Experiments on Four RS Scene Classification Datasets
4.1.1. Dataset Description

Merced dataset (Figure 4): The University of California (UC) Merced land-use dataset
contains 2100 RGB images of size 256 × 256 pixels, extracted from the United States
Geological Survey National Map. The dataset is composed of 21 scenes, and each class
consists of 100 images.

Agricultural Airplane Baseball Diamond Beach Buildings Chaparral Dense Residential Forest Freeway Golf Course Harbor

Intersection Medium Residential Mobile Home Park Overpass Parking Lot River Runway Sparse Residential Storage Tanks Tennis Court

(a)

Airport Bare Land Baseball Field Beach Bridge Center Church Commercial Dense Residential Desert

Farmland Forest Industrial Meadow Medium Residential Mountain Park Parking Playground Pond

Port Railway Station Resort River School Sparse Residential Square Stadium Storage Tanks Viaduct

(b)

Airplane Airport Baseball Diamond Basketball Court Beach Bridge Chaparral Church Circular Farmland Cloud Commercial Area Dense Residential

Desert Forest Freeway Golf Course Ground Track Field Harbor Industrial Area Intersection Island Lake Meadow Medium Residential

Mobile Home Park Mountain Overpass Palace Parking Lot Railway Railway Station Rectangular Farmland River Roundabout Runway Sea Ice

Ship Snowberg Sparse ResidentialStadium Storage Tank Tennis Court Terrace Thermal Power Station Wetland

(c)

Round Farmland Business District Dense Houses

Desert Forest Freeway Golf Field Playground Harbor Factory Crossroads Island Lake Meadow

Medium Houses Mobile House Area Mountain Overpass Parking Lot Railway Square Farmland Roundabout Runway

(d)

Airplane Airport Baseball Field Basketball Court Beach Bridge Bushes Church

Figure 4. Some examples of the Merced dataset.

AID dataset (Figure 5): The aerial image dataset (AID) contains 10,000 aerial scene
images of size 600 × 600 pixels extracted from Google Earth imagery. The dataset is
composed of 30 different classes, and each class consists of 220 to 420 images.

Optimal-31 dataset (Figure 6): The Optimal-31 dataset contains 1860 RS images of
size 256 × 256 pixels, extracted from Google Earth imagery. The dataset is composed of
31 classes, and each class consists of 60 images.

NWPU dataset (Figure 7): The NWPU-RESISC45 (NWPU) dataset contains 31,500
RGB images of size 256 × 256 pixels extracted from Google Earth imagery. The dataset is
composed of 45 scene classes, and each class consists of 700 images.

Remote Sens. 2023, 15, 3645 11 of 21

Agricultural Airplane Baseball Diamond Beach Buildings Chaparral Dense Residential Forest Freeway Golf Course Harbor

Intersection Medium Residential Mobile Home Park Overpass Parking Lot River Runway Sparse Residential Storage Tanks Tennis Court

(a)

Airport Bare Land Baseball Field Beach Bridge Center Church Commercial Dense Residential Desert

Farmland Forest Industrial Meadow Medium Residential Mountain Park Parking Playground Pond

Port Railway Station Resort River School Sparse Residential Square Stadium Storage Tanks Viaduct

(b)

Airplane Airport Baseball Diamond Basketball Court Beach Bridge Chaparral Church Circular Farmland Cloud Commercial Area Dense Residential

Desert Forest Freeway Golf Course Ground Track Field Harbor Industrial Area Intersection Island Lake Meadow Medium Residential

Mobile Home Park Mountain Overpass Palace Parking Lot Railway Railway Station Rectangular Farmland River Roundabout Runway Sea Ice

Ship Snowberg Sparse ResidentialStadium Storage Tank Tennis Court Terrace Thermal Power Station Wetland

(c)

Round Farmland Business District Dense Houses

Desert Forest Freeway Golf Field Playground Harbor Factory Crossroads Island Lake Meadow

Medium Houses Mobile House Area Mountain Overpass Parking Lot Railway Square Farmland Roundabout Runway

(d)

Airplane Airport Baseball Field Basketball Court Beach Bridge Bushes Church

Figure 5. Some examples of the AID dataset.

Agricultural Airplane Baseball Diamond Beach Buildings Chaparral Dense Residential Forest Freeway Golf Course Harbor

Intersection Medium Residential Mobile Home Park Overpass Parking Lot River Runway Sparse Residential Storage Tanks Tennis Court

(a)

Airport Bare Land Baseball Field Beach Bridge Center Church Commercial Dense Residential Desert

Farmland Forest Industrial Meadow Medium Residential Mountain Park Parking Playground Pond

Port Railway Station Resort River School Sparse Residential Square Stadium Storage Tanks Viaduct

(b)

Airplane Airport Baseball Diamond Basketball Court Beach Bridge Chaparral Church Circular Farmland Cloud Commercial Area Dense Residential

Desert Forest Freeway Golf Course Ground Track Field Harbor Industrial Area Intersection Island Lake Meadow Medium Residential

Mobile Home Park Mountain Overpass Palace Parking Lot Railway Railway Station Rectangular Farmland River Roundabout Runway Sea Ice

Ship Snowberg Sparse ResidentialStadium Storage Tank Tennis Court Terrace Thermal Power Station Wetland

(c)

Round Farmland Business District Dense Houses

Desert Forest Freeway Golf Field Playground Harbor Factory Crossroads Island Lake Meadow

Medium Houses Mobile House Area Mountain Overpass Parking Lot Railway Square Farmland Roundabout Runway

(d)

Airplane Airport Baseball Field Basketball Court Beach Bridge Bushes Church

Figure 6. Some examples of the Optimal-31 dataset.

Agricultural Airplane Baseball Diamond Beach Buildings Chaparral Dense Residential Forest Freeway Golf Course Harbor

Intersection Medium Residential Mobile Home Park Overpass Parking Lot River Runway Sparse Residential Storage Tanks Tennis Court

(a)

Airport Bare Land Baseball Field Beach Bridge Center Church Commercial Dense Residential Desert

Farmland Forest Industrial Meadow Medium Residential Mountain Park Parking Playground Pond

Port Railway Station Resort River School Sparse Residential Square Stadium Storage Tanks Viaduct

(b)

Airplane Airport Baseball Diamond Basketball Court Beach Bridge Chaparral Church Circular Farmland Cloud Commercial Area Dense Residential

Desert Forest Freeway Golf Course Ground Track Field Harbor Industrial Area Intersection Island Lake Meadow Medium Residential

Mobile Home Park Mountain Overpass Palace Parking Lot Railway Railway Station Rectangular Farmland River Roundabout Runway Sea Ice

Ship Snowberg Sparse Residential Stadium Storage Tank Tennis Court Terrace Thermal Power Station Wetland

(c)

Round Farmland Business District Dense Houses

Desert Forest Freeway Golf Field Playground Harbor Factory Crossroads Island Lake Meadow

Medium Houses Mobile House Area Mountain Overpass Parking Lot Railway Square Farmland Roundabout Runway

(d)

Airplane Airport Baseball Field Basketball Court Beach Bridge Bushes Church

Figure 7. Some examples of the NWPU dataset.

4.1.2. Experimental Settings

We used the Adam optimizer to train our model for 100 iterations and resize all the
input images into 224 × 224 on four RS scene classification datasets. We set the batch size to
32, the initial learning rate to 0.0001, and adopted a cosine decay learning rate scheduler
with a linear warm-up. Random rotation and horizontal and vertical flipping were used for

Remote Sens. 2023, 15, 3645 12 of 21

data augmentation. All the experiments for RS scene classification were implemented on
Pytorch [63] with NVIDIA TITAN Xp. In addition, following the experimental setup in [36],
50%, 20%, 10%, and 80% of the images in each scene category of the Merced, AID, NWPU,
and Optimal-31 datasets were randomly selected to train our models, respectively. The
experimental results are presented in overall accuracy (OA) to evaluate the performance
of our models. We randomly sampled the dataset based on the same training sample
proportion in [36]. All the experiments were run five times, and we report the mean and
standard deviation of the overall accuracies (OAs).

4.1.3. Experimental Results

On four RS scene classification datasets, we fine-tuned the proposed MLGC-ResNet-50 and
LTNet, which are initialized by the pretrained parameters training on the ImageNet dataset [47].
For the MLGC-ResNet-50 and LTNet, g1 = 2 and g2 = 1. Table 3 shows weights and FLOPs
for common networks based on pretrained CNNs and ViTs and the OA of different RS scene
classification methods based on these networks. The experimental results in Table 3 present the
effectiveness of our models. Specifically, fine-tuning the pretrained MLGC-ResNet-50 achieves
the best performance for the Merced dataset, by using similar or fewer computing resources
than methods based on pretrained VGG-16 [60], AlexNet [64], Inception-v3 [65], ResNet-34 [62],
Ghost-ResNet-50 [44], EfficientNet-B3 [66], ViT-L/16 [27], and ViT-B/16 [27]. Fine-tuning the
LTNet achieves the second-best performance with lower computational complexity. Fine-tuning
the pre-trained LTNet on the AID and Optimal31 datasets achieves the best performance.

Table 3. Comparison of experimental results (%) on the Merced, AID, Optimal-31, and NWPU
datasets.

PreTrained Network Weights FLOPs Method Merced
(50% Train)

AID
(20% Train)

Optimal31
(80% Train)

NWPU
(10% Train)

VGG-16 [60] 138.4 M 15.5 G

Fine-tuning [19] 96.57 ± 0.38 89.49 ± 0.34 89.52 ± 0.26 -
Fine-tuning [15] - - - 87.15 ± 0.45
ARCNet-VGG16 [24] 96.81 ± 0.14 88.75 ± 0.40 92.70 ± 0.35 -
GBNet + global feature [19] 97.05 ± 0.19 92.20 ± 0.23 93.28 ± 0.27 -
+MSCP [20] - 91.52 ± 0.21 - 85.33 ± 0.17
ACNet [25] - 93.33 ± 0.29 - 91.09 ± 0.13

AlexNet [64] 61.0 M 724 M
Fine-tuning [15] - - - 81.22 ± 0.19
ARCNet-AlexNet [24] - - 85.75 ± 0.35 -
+MSCP [20] - 88.99 ± 0.38 - 81.70 ± 0.23

Inception-v3 [65] 24 M 5.7 G Inception-v3-aux [16] 97.63 ± 0.20 93.52 ± 0.21 94.13 ± 0.35 89.32 ± 0.33

ResNet-34 [62] 21.8 M 3.7 G ARCNet-ResNet34 [24] - - 91.28 ± 0.45 -

Ghost-ResNet-50 [44] 13.9 M 2.0 G Fine-tuning 98.25 ± 0.22 94.66±0.12 94.73 ± 0.58 91.79 ± 0.16

EfficientNet-B3 [66] 12 M 1.8 G EfficientNet-B3-aux [16] 98.22 ± 0.49 94.19 ± 0.15 94.51 ± 0.75 91.08 ± 0.14

GoogLeNet [67] 6.7 M 1.5G Fine-tuning [15] - - - 82.57 ± 0.12
GoogLeNet-aux [16] 97.90 ± 0.34 93.25 ± 0.33 93.11 ± 0.55 89.22 ± 0.25

EfficientNet-B0 [66] 5.3 M 0.4 G EfficientNet-B0-aux [16] 98.01 ± 0.45 93.69 ± 0.11 93.97 ± 0.13 89.96 ± 0.27

ViT-L/16 [27] 304.4 M 61.6 G Fine-tuning 98.24 ± 0.21 94.44 ± 0.26 94.89 ± 0.24 90.85 ± 0.16

ViT-B/16 [27] 86.6 M 17.6 G Fine-tuning [36] 98.14 ± 0.47 94.97 ± 0.01 95.07 ± 0.12 92.60 ± 0.10

MLGC-ResNet-50
(g1 = 2, g2 = 1) 13.1 M 1.9 G Fine-tuning 98.48 ± 0.28 94.73 ± 0.15 95.27 ± 0.36 92.16 ± 0.08

LTNet
(g1 = 2, g2 = 1) 8.2 M 1.7 G Fine-tuning 98.36 ± 0.25 94.98 ± 0.08 95.70 ± 0.29 92.21 ± 0.11

Although the OA of the proposed method on the NWPU dataset is slightly lower
than that of ViT-B/16, the weights, and FLOPs are significantly reduced. The parameters
and FLOPs of ViT-L/16 are about 37 and 36 times that of LTNet, and the parameters and
FLOPs of ViT-B/16 are about 11 and 10 times that of MLGC-ResNet-50, respectively. In
addition, fine-tuning the ViT-L/16 and ViT-B/16 requires a longer time-frame than LTNet,

Remote Sens. 2023, 15, 3645 13 of 21

as shown in Table 4. While the pretrained networks GoogLeNet [67] and EfficientNet-
B0 [66] are lower than LTNet in terms of parameters and FLOPs, their performance is
significantly lower. Especially on Optimal31 and NWPU datasets, compared to the LTNet,
the classification accuracy of using GoogLeNet as a pretraining network is decreased by
2.59% and 2.99%, respectively, and the classification accuracy of using EfficientNet as a
pretraining network is reduced by 1.93% and 2.25%, respectively. The inference times of
ViT-L/16, ViT-B/16, MLGC-ResNet-50 (g1 = 2, g2 = 1), and LTNet (g1 = 2, g2 = 1) are
shown in Figure 8. We can see that our method can achieve both lower FLOPs and less
inference time.

Table 4. Training times on the Merced, AID, Optimal-31, and NWPU datasets.

PreTrained Network Weights FLOPs Method Merced
(50% Train)

AID
(20% Train)

Optimal31
(80% Train)

NWPU
(10% Train)

ViT-L/16 [27] 304.4 M 61.6 G

Fine-tuning

70 min 234 min 80 min 629 min

ViT-B/16 [27] 86.6 M 17.6 G 40 min 132 min 45 min 336 min

MLGC-ResNet-50
(g1 = 2, g2 = 1) 13.1 M 1.9 G 16 min 59 min 18 min 117 min

LTNet
(g1 = 2, g2 = 1) 8.2 M 1.7 G 17 min 61 min 20 min 124 min

2

3

4

5

6

7

8

9

10

11

12

0 10 20 30 40 50 60 70

L
at

en
cy

 (
m

s)

FLOPs (G)

ViT-L/16

ViT-B/16

MLGC-ResNet-50

LTNet

Figure 8. Inference time of ViT-L/16, ViT-B/16, MLGC-ResNet-50 (g1 = 2, g2 = 1), and LTNet
(g1 = 2, g2 = 1).

4.2. Experiments on Two Natural Image Classification Datasets
4.2.1. Dataset Description

We verified the effectiveness of the proposed MLGC module, LightFormer block, and
designed LTNet on two image classification benchmarks, CIFAR-10 [61] and ImageNet
ILSVRC 2012 [47] datasets. The CIFAR-10 dataset consists of 32× 32 pixel RGB images
corresponding to 10 classes, including 50,000 training and 10,000 test images. Random
crops were used as a standard data augmentation scheme. The ImageNet dataset contains
1000 classes with 1.2 million training images and 50,000 validation images. Random crop
and flip [62] were used as the data preprocessing strategy.

4.2.2. Experimental Settings

All experiments were implemented using the PyTorch [63] deep learning library and
we used stochastic gradient descent (SGD) to optimize the module. The momentum was
0.9, and the weight decay was 0.0001. The mini-batch sizes for CIFAR-10 and ImageNet
were 96 on 2 GPUs and 2048 on 8 GPUs, respectively. We utilized cosine shape learning
rates for VGG-16-based and ResNet-56-based networks, starting at 0.1 with 400 trained
epochs, and for ResNet-50-based networks we started at 0.8 and 300 epochs. In addition,
according to [27], we used eight heads in lightweight multi-head attention.

Remote Sens. 2023, 15, 3645 14 of 21

4.2.3. Comparison Experiments on CIFAR-10 and ImageNet

We trained the proposed MLGC-VGG-16 and LightFormer-VGG-16 on the CIFAR-10
dataset. In Table 5, the proposed models achieve competitive performances with lower
computational costs than the Ghost-VGG-16. In particular, the LightFormer-VGG-16 only
has 0.8 M weights (about 1/10 of the Ghost-VGG-16 and about 1/4 of the CCT-6/3 × 2).
In addition, for ResNet-56 we replaced the Ghost module in Ghost-ResNet-56 with the
MLGC module to obtain MLGC-ResNet-56 and then plugged the LightForm block into
MLGC-ResNet-56 to acquire LightForm-ResNet-56.The experimental comparison results
are shown in Table 6. The LightFormer-ResNet-56 achieves a higher performance with
fewer computations.

Table 5. Comparison experiments on CIFAR-10.

Model Weights (M) FLOPs (M) Acc. (%)

MobileNetV1 [39] 3.2 47 92.5
MobileNetV2 [40] 2.3 68 93.2

ShuffleNetV1(g = 3) [42] 0.9 45 92.8
ShuffleNetV2 [43] 1.3 45 93.5

EfficientNet-B0 [66] 4.0 64 93.8
Ghost-VGG-16 [44] 7.7 160 93.5

GhostV2-VGG-16 [68] 9.4 188 93.6
CCT-6/3 × 2 [45] 3.3 241 93.6
CCT-4/3 × 2 [45] 0.5 46 91.5

MLGC-VGG-16 (g1 = 2, g2 = 2) 2.8 97 93.8
LightFormer-VGG-16 (g1 = 2, g2 = 2) 0.8 55 93.9

Table 6. Weights, FLOPs, and accuracy of replacing the corresponding layer in Ghost-ResNet-56 with
MLGC module and LightFormer Block on CIFAR-10.

Model Weights (M) FLOPs (M) Acc. (%)

Ghost-ResNet-56 0.44 67 92.7

MLGC-ResNet-56 (g1 = 2, g2 = 1) 0.43 65 93.0
LightFormer-ResNet-56 (g1 = 2, g2 = 1) 0.33 58 93.1

The ResNet-50, Ghost-ResNet-50, MLGC-ResNet-50, and LTNet network architectures
for ImageNet are shown in Table 2. Our MLGC-ResNet-50 and LTNet have fewer weights
and FLOPs than Ghost-VGG-16 [44]. As can be seen from the results in Table 7, the proposed
MLGC-ResNet-50 (g1 = 2, g2 = 1) and LTNet (g1 = 2, g2 = 1) achieve a lower number
of parameters while improving the accuracy of the Ghost-ResNet-50. Compared with the
advanced methods, such as Thinet [69], and the universal filter [70], our method can achieve
a better performance. Observing the experiment on CIFAR-10 shows that g1 = 2 works
best. For ImageNet, a richer diversity of feature maps is needed, so g2 = 1. Experiments
on the ImageNet dataset demonstrate that the LTNet model with 8.2 M weights achieves
better results than the Ghost-ResNet-50 model with 13.9 M weights. The best results came
from MLGC-ResNet-56 (75.5%) and LightFormer-ResNet-56 (75.4%), but the latter needs
less weight and FLOPs.

Table 7. Top-1 validation accuracy, weights, and FLOPs comparisons for compressing ResNet-50 on
ImageNet dataset.

Model Weights (M) FLOPs (B) Top-1 Acc. (%)

Thinet-ResNet-50 [69] 16.9 24.9 72.0
Versatile-ResNet-50 [70] 11.0 3.0 74.5

Ghost-ResNet-50 (s = 2) [44] 13.9 2.2 74.7

MLGC-ResNet-50 (g1 = 2, g2 = 1) 13.1 1.9 75.5
LTNet (g1 = 2, g2 = 1) 8.2 1.7 75.4

Remote Sens. 2023, 15, 3645 15 of 21

4.2.4. Ablation Experiments on CIFAR-10

We used the MLGC module to replace the Ghost module in the Ghost-VGG-16 to
obtain the MLGC-VGG-16. The experimental comparison results of different s for the
Ghost-VGG-16 and g1 and g2 for the MLGC-VGG-16 are shown in Table 8. It can be found
that the overall results of the MLGC-VGG-16 with g1 = 2 have a superior performance. In
particular, the MLGC-VGG-16 obtained a higher accuracy when g1 = g2 = 2, with fewer
weights and FLOPs than the Ghost-VGG-16 (s = 2). The weights/FLOPs decreased from
Ghost-VGG-16 with 7.7 M/160 M to the MLGC-VGG-16 with 6.0 M/127 M, proving the
MLGC module’s effectiveness. In addition, we observe that there is a significant drop in
accuracy particularly when g1 is high (16 or 32) and g2 is low (1). This is because g1 is high
(16 or 32), which weakens the representation ability of first-level features and further affects
the learning of the second-level features. Therefore, even if g2 is low (1) and the network
has higher FLOPs it still has a lower performance. For Ghost-VGG-16 (s = 4), its output
feature maps are divided into four parts. The first part is learned from all input feature
maps through ordinary convolution. The feature representation ability is strong. Based on
this, the other three parts of the output feature map can learn better feature representation.

Table 8. Weights, FLOPs, and accuracy of Ghost module with different s and the proposed MLGC
module with different g1 and g2 on CIFAR-10. Split the output channels of the ordinary convolutional
layer into s parts of each Ghost module, and g1 and g2 are the number of groups of two group
convolutions in the MLGC module.

Model s g1 g2 Weights (M) FLOPs (M) Acc. (%)

Ghost-VGG-16 2 - - 7.7 160 93.5

MLGC- VGG-16 -

2 1 8.0 173 94.2
4 1 6.2 134 93.4
2 2 6.0 127 93.6
8 1 5.3 115 92.7
2 4 5.0 104 93.5

Ghost-VGG-16 3 - - 5.2 109 92.8

MLGC- VGG-16 -

16 1 4.8 105 90.8
32 1 4.6 100 90.4
2 8 4.5 92 93.1
2 16 4.2 87 93.1
4 2 4.1 88 92.9
2 32 4.1 84 93.0

Ghost-VGG-16 4 - - 4.0 82 92.6

As seen from Table 9, to acquire LightFormer-VGG-16, we replaced the MLGC module
with the LightFormer block from deep to shallow in MLGC-VGG-16. v8–v18 are the
layer names for the VGG-16, Ghost-VGG-16, MLGC-VGG-16, and LightFormer-VGG-16
(see the first column in Table 1). The best performance was achieved when we replaced
MLGC modules of v8–v13 layers in MLGC-VGG-16 with the LightFormer block. The
weights/FLOPs decreased from the MLGC-VGG-16 with 6.0 M/127 M to the LightFormer-
VGG-16 with 2.80 M/97 M with similar accuracies. Referring to the inflection point in
Figure 9, our method can achieve an accuracy of 93.8% with the FLOPs of 97 M.

In CNNs, the receptive field of the feature maps will increase as the networks get
deeper. This can be beneficial to CNNs. For example, Dilated/Atrous Convolution [71,72]
is proposed to increase the receptive field. Considering that the LightFormer block has
captured long-range dependencies, can we remove some layers in LightFormer-VGG-16 to
reduce the weights and FLOPs of the network? In Table 10, we removed layers from the
deep to the shallow of the LightFormer-VGG-16 (layer v8–v13 with the LightFormer block).
First, the accuracy of removing v11–v13 or v10–v13 is similar to v9–v13, so v11–v13 and
v10–v13 are not shown in Table 10 for simplicity. Only one LightFormer block (v8) used
in the LightFormer-VGG-16 can be obtained with a great performance. We continued to
remove the layers before v8 in the network. When we removed v6–v7&v9–v13, a higher

Remote Sens. 2023, 15, 3645 16 of 21

performance was maintained at a lower computational expense. If the number of layers
continues to be reduced, the accuracy will decrease. The experimental results show that
the final architecture of LightFormer-VGG-16 is the last column in Table 1. LightFormer-
VGG-16 uses four MLGC modules and one LightFormer block. It shows that the designed
network only needs to put a LightFormer block on the deep layer of the network to achieve
an outstanding performance. Referring to the inflection point in Figure 10, our method can
achieve an accuracy of 93.9% with the FLOPs of 55 M.

Table 9. Weights, FLOPs, and accuracy of replacing the corresponding layer in MLGC-VGG-16 (g1 = 2
and g2 = 2) with the LightFormer Block.

Model MLGC-VGG-16 Layer Name Weights (M) FLOPs (M) Acc. (%)

LightFormer-VGG-16
(g1 = 2, g2 = 2)

- 6.0 127 93.6
v11 5.4 125 93.7
v12 5.4 125 93.6
v13 5.4 125 93.7

v11–v13 4.3 120 93.8
v8–v13 2.8 97 93.8
v7–v13 2.7 88 93.3
v6–v13 2.5 79 92.9

92.6

92.8

93

93.2

93.4

93.6

93.8

94

70 80 90 100 110 120 130

A
cc

.
(%

)

FLOPs (M)

Figure 9. Accuracy vs. FLOPs of MLGC-VGG-16 (g1 = 2, g2 = 2) with the LightFormer Block.

Table 10. Removed layers in LightFormer-VGG-16 (v8–v13).

Model Removed Layer Name Weights (M) FLOPs (M) Acc. (%)

LightFormer-VGG-16
(g1 = 2, g2 = 2)

- 2.8 97 93.8
v9–v13 1.2 83 93.8

v7&v9–v13 1.0 69 93.8
v6–v7&v9–v13 0.8 55 93.9

v4&v6–v7&v9–v13 0.8 40 92.9
v2&v4&v6–v7&v9–v13 0.7 26 92.1

91

91.4

91.8

92.2

92.6

93

93.4

93.8

94.2

94.6

95

20 30 40 50 60 70 80 90 100

A
cc

.
(%

)

FLOPs (M)

Figure 10. Accuracy vs. FLOPs of LightFormer-VGG-16 (v8–v13).

Remote Sens. 2023, 15, 3645 17 of 21

As seen from the experimental results in Table 11, whether position embedding is
added has little influence on the model accuracy. The MLGC module already contains
position information, so we removed the position embedding in the LightFormer block.

Table 11. Impact of position embedding on performance.

Model Position Embedding Weights (M) FLOPs (M) Acc. (%)

LightFormer-VGG-16
(g1 = 2, g2 = 2)

Yes 0.8 55 93.8
No 93.9

We further demonstrated that our lightweight LightFormer-VGG-16 is also suitable for
small datasets, which is very important for research in the field with limited datasets [45]. The
experiments in Table 12 demonstrate that the LightFormer-VGG-16/0.5 can have as little as
0.2 M weights to achieve a better result (improve 1.9%) than the CCT-2/3 × 2 [45] with 0.3 M
weights on CIFAR-10. The LightFormer-VGG-16/0.5 means that the number of channels
for all output feature maps in each layer is reduced by half. Considering that multi-head
attention in CCT-2/3 × 2 uses four heads, we attempted to use four heads in our method and
obtained similar results to eight heads. In addition, the positional encoder had little effect. We
reduced the amount of training data on CIFAR-10 for LightFormer-VGG-16/0.5 to measure
whether the proposed method is a data-hungry [45] model. In Figure 11, we compare the
accuracy of the model on the number of samples (500, 1000, 2000, 3000, 4000, or 5000) per
class. Experiments show that our model is more robust and accurate on very small datasets
compared to CCT-2/3 × 2.

Table 12. Impact of number of heads and position embedding on performance.

Model Heads Positional Embedding Weights (M) Acc. (%)

MobileNetV2/0.5[1] - - 0.7 84.8

CCT-2/3 × 2[2] 4 Yes 0.3 88.9

LightFormer-VGG-16/0.5
(g1 = 2, g2 = 2)

8 Yes
0.2

90.8
4 Yes 90.7
4 No 90.7

65

70

75

80

85

90

95

0 500 1000 2000 3000 4000 5000

T
o

p
-1

 v
al

id
at

io
n

 a
cc

u
ra

cy
 (

%
)

Samples per class

CCT-2/3×2

LightFormer-VGG-16/0.5

Figure 11. Results on CIFAR-10 with the reduced number of samples per class.

5. Conclusions

In this paper, we proposed a lightweight transformer network (LTNet) for RS scene
classification. First, we presented a simple and efficient MLGC module with the ability of
multi-level feature representation with a lower computational cost. In the MLGC module,
not only is the redundancy of both input and output feature maps considered to reduce
computing resources but the diversity of the output features is also maintained. Second,
based on the strong ability of the feature representation of the MLGC module, we designed
a lightweight transformer block named LightFormer without MLP layers. Finally, we built
an efficient LTNet using the MLGC module and LightFormer block. In the LTNet, richer

Remote Sens. 2023, 15, 3645 18 of 21

local features extracted by the stacked MLGC modules are fed into one LightFormer block
to capture long-range dependencies. Experiments on four common RS scene classification
datasets demonstrated the efficacy of our LTNet.

Author Contributions: Conceptualization, F.L. and X.H.; methodology, X.H.; software, X.H. and
Y.C.; validation, F.L. and X.H.; formal analysis, P.L. and X.H.; investigation, L.L.; resources, P.C.;
writing—original draft preparation, X.H. and Y.C.; writing—review and editing, X.H., Y.C. and F.L.;
supervision, F.L.; funding acquisition, F.L. All authors have read and agreed to the published version
of the manuscript.

Funding: This work was supported in part by the National Natural Science Foundation of China
(No. 62076192), the State Key Program of National Natural Science of China (No. 61836009), in part by
the Program for Cheung Kong Scholars and Innovative Research Team in University (No. IRT_15R53),
in part by the Fund for Foreign Scholars in University Research and Teaching Programs (the 111
Project) (No. B07048), in part by the Key Scientific Technological Innovation Research Project by
Ministry of Education, and the CAAI Huawei MindSpore Open Fund.

Data Availability Statement: Not applicable.

Conflicts of Interest: The authors declare no conflict of interest.

References
1. Xiao, Y.; Zhan, Q. A review of remote sensing applications in urban planning and management in China. In Proceedings of the

2009 Joint Urban Remote Sensing Event, Shanghai, China, 20–22 May 2009 ; IEEE: Piscataway Township, NJ, USA, 2009; pp. 1–5.
2. Martha, T.R.; Kerle, N.; Van Westen, C.J.; Jetten, V.; Kumar, K.V. Segment optimization and data-driven thresholding for

knowledge-based landslide detection by object-based image analysis. IEEE Trans. Geosci. Remote. Sens. 2011, 49, 4928–4943.
[CrossRef]

3. Stumpf, A.; Kerle, N. Object-oriented mapping of landslides using Random Forests. Remote. Sens. Environ. 2011, 115, 2564–2577.
[CrossRef]

4. Cheng, G.; Guo, L.; Zhao, T.; Han, J.; Li, H.; Fang, J. Automatic landslide detection from remote-sensing imagery using a scene
classification method based on BoVW and pLSA. Int. J. Remote. Sens. 2013, 34, 45–59. [CrossRef]

5. Tong, X.Y.; Xia, G.S.; Lu, Q.; Shen, H.; Li, S.; You, S.; Zhang, L. Land-cover classification with high-resolution remote sensing
images using transferable deep models. Remote. Sens. Environ. 2020, 237, 111322. [CrossRef]

6. Li, Y.; Zhang, Y.; Tao, C.; Zhu, H. Content-based high-resolution remote sensing image retrieval via unsupervised feature learning
and collaborative affinity metric fusion. Remote Sens. 2016, 8, 709. [CrossRef]

7. Du, Z.; Li, X.; Lu, X. Local structure learning in high resolution remote sensing image retrieval. Neurocomputing 2016, 207, 813–822.
[CrossRef]

8. Duan, Y.; Liu, F.; Jiao, L.; Zhao, P.; Zhang, L. SAR image segmentation based on convolutional-wavelet neural network and
Markov random field. Pattern Recognit. 2017, 64, 255–267. [CrossRef]

9. Jiao, L.; Zhang, S.; Li, L.; Liu, F.; Ma, W. A modified convolutional neural network for face sketch synthesis. Pattern Recognit.
2018, 76, 125–136. [CrossRef]

10. Li, L.; Ma, L.; Jiao, L.; Liu, F.; Sun, Q.; Zhao, J. Complex Contourlet-CNN for polarimetric SAR image classification. Pattern
Recognit. 2020, 100, 107110. [CrossRef]

11. Wang, J.; Duan, Y.; Tao, X.; Xu, M.; Lu, J. Semantic perceptual image compression with a laplacian pyramid of convolutional
networks. IEEE Trans. Image Process. 2021, 30, 4225–4237. [CrossRef]

12. Singh, P.; Mazumder, P.; Namboodiri, V.P. Context extraction module for deep convolutional neural networks. Pattern Recognit.
2022, 122, 108284. [CrossRef]

13. Cui, Y.; Liu, F.; Jiao, L.; Guo, Y.; Liang, X.; Li, L.; Yang, S.; Qian, X. Polarimetric multipath convolutional neural network for
PolSAR image classification. IEEE Trans. Geosci. Remote. Sens. 2021, 60, 1–18. [CrossRef]

14. Nogueira, K.; Penatti, O.A.; Dos Santos, J.A. Towards better exploiting convolutional neural networks for remote sensing scene
classification. Pattern Recognit. 2017, 61, 539–556. [CrossRef]

15. Cheng, G.; Han, J.; Lu, X. Remote sensing image scene classification: Benchmark and state of the art. Proc. IEEE 2017,
105, 1865–1883. [CrossRef]

16. Bazi, Y.; Al Rahhal, M.M.; Alhichri, H.; Alajlan, N. Simple yet effective fine-tuning of deep CNNs using an auxiliary classification
loss for remote sensing scene classification. Remote Sens. 2019, 11, 2908. [CrossRef]

17. Li, W.; Wang, Z.; Wang, Y.; Wu, J.; Wang, J.; Jia, Y.; Gui, G. Classification of high-spatial-resolution remote sensing scenes method
using transfer learning and deep convolutional neural network. IEEE J. Sel. Top. Appl. Earth Obs. Remote. Sens. 2020, 13, 1986–1995.
[CrossRef]

18. Lu, X.; Sun, H.; Zheng, X. A feature aggregation convolutional neural network for remote sensing scene classification. IEEE Trans.
Geosci. Remote. Sens. 2019, 57, 7894–7906. [CrossRef]

http://doi.org/10.1109/TGRS.2011.2151866
http://dx.doi.org/10.1016/j.rse.2011.05.013
http://dx.doi.org/10.1080/01431161.2012.705443
http://dx.doi.org/10.1016/j.rse.2019.111322
http://dx.doi.org/10.3390/rs8090709
http://dx.doi.org/10.1016/j.neucom.2016.05.061
http://dx.doi.org/10.1016/j.patcog.2016.11.015
http://dx.doi.org/10.1016/j.patcog.2017.10.025
http://dx.doi.org/10.1016/j.patcog.2019.107110
http://dx.doi.org/10.1109/TIP.2021.3065244
http://dx.doi.org/10.1016/j.patcog.2021.108284
http://dx.doi.org/10.1109/TGRS.2021.3071559
http://dx.doi.org/10.1016/j.patcog.2016.07.001
http://dx.doi.org/10.1109/JPROC.2017.2675998
http://dx.doi.org/10.3390/rs11242908
http://dx.doi.org/10.1109/JSTARS.2020.2988477
http://dx.doi.org/10.1109/TGRS.2019.2917161

Remote Sens. 2023, 15, 3645 19 of 21

19. Sun, H.; Li, S.; Zheng, X.; Lu, X. Remote sensing scene classification by gated bidirectional network. IEEE Trans. Geosci. Remote.
Sens. 2019, 58, 82–96. [CrossRef]

20. He, N.; Fang, L.; Li, S.; Plaza, A.; Plaza, J. Remote sensing scene classification using multilayer stacked covariance pooling. IEEE
Trans. Geosci. Remote. Sens. 2018, 56, 6899–6910. [CrossRef]

21. Liu, Y.; Liu, Y.; Ding, L. Scene classification based on two-stage deep feature fusion. IEEE Geosci. Remote. Sens. Lett. 2017,
15, 183–186. [CrossRef]

22. Xue, W.; Dai, X.; Liu, L. Remote sensing scene classification based on multi-structure deep features fusion. IEEE Access 2020,
8, 28746–28755. [CrossRef]

23. Wang, X.; Wang, S.; Ning, C.; Zhou, H. Enhanced feature pyramid network with deep semantic embedding for remote sensing
scene classification. IEEE Trans. Geosci. Remote. Sens. 2021, 59, 7918–7932. [CrossRef]

24. Wang, Q.; Liu, S.; Chanussot, J.; Li, X. Scene classification with recurrent attention of VHR remote sensing images. IEEE Trans.
Geosci. Remote. Sens. 2019, 57, 1155–1167. [CrossRef]

25. Tang, X.; Ma, Q.; Zhang, X.; Liu, F.; Ma, J.; Jiao, L. Attention consistent network for remote sensing scene classification. IEEE J. Sel.
Top. Appl. Earth Obs. Remote. Sens. 2021, 14, 2030–2045. [CrossRef]

26. Vaswani, A.; Shazeer, N.; Parmar, N.; Uszkoreit, J.; Jones, L.; Gomez, A.N.; Kaiser, Ł.; Polosukhin, I. Attention is all you need. In
Proceedings of the Advances in Neural Information Processing Systems 30 (NIPS), Long Beach, CA, USA, 4–9 December 2017.

27. Dosovitskiy, A.; Beyer, L.; Kolesnikov, A.; Weissenborn, D.; Zhai, X.; Unterthiner, T.; Dehghani, M.; Minderer, M.; Heigold,
G.; Gelly, S.; et al. An image is worth 16x16 words: Transformers for image recognition at scale. In Proceedings of the 9th
International Conference on Learning Representations (ICLR), Vienna, Austria, 4 May 2021.

28. Wu, H.; Xiao, B.; Codella, N.; Liu, M.; Dai, X.; Yuan, L.; Zhang, L. Cvt: Introducing convolutions to vision transformers. In
Proceedings of the IEEE/CVF International Conference on Computer Vision (ICCV), Montreal, BC, Canada, 11–17 October 2021;
pp. 22–31.

29. Yuan, L.; Chen, Y.; Wang, T.; Yu, W.; Shi, Y.; Jiang, Z.H.; Tay, F.E.; Feng, J.; Yan, S. Tokens-to-token vit: Training vision transformers
from scratch on imagenet. In Proceedings of the IEEE/CVF International Conference on Computer Vision, Montreal, BC, Canada,
11–17 October 2021; pp. 558–567.

30. Carion, N.; Massa, F.; Synnaeve, G.; Usunier, N.; Kirillov, A.; Zagoruyko, S. End-to-end object detection with transformers. In
Proceedings of the European Conference on Computer Vision (ECCV), Glasgow, UK, 23–28 August 2020; pp. 213–229.

31. Sun, Z.; Cao, S.; Yang, Y.; Kitani, K.M. Rethinking transformer-based set prediction for object detection. In Proceedings of the
IEEE/CVF International Conference on Computer Vision (ICCV), Montreal, BC, Canada, 11–17 October 2021; pp. 3611–3620.

32. Chen, H.; Wang, Y.; Guo, T.; Xu, C.; Deng, Y.; Liu, Z.; Ma, S.; Xu, C.; Xu, C.; Gao, W. Pre-trained image processing transformer. In
Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), Nashville, TN, USA, 20–25 June
2021; pp. 12299–12310.

33. Wang, Y.; Xu, Z.; Wang, X.; Shen, C.; Cheng, B.; Shen, H.; Xia, H. End-to-end video instance segmentation with transformers. In
Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), Nashville, TN, USA, 20–25 June
2021; pp. 8741–8750.

34. Zheng, S.; Lu, J.; Zhao, H.; Zhu, X.; Luo, Z.; Wang, Y.; Fu, Y.; Feng, J.; Xiang, T.; Torr, P.H.; et al. Rethinking semantic segmentation
from a sequence-to-sequence perspective with transformers. In Proceedings of the IEEE/CVF Conference on Computer Vision
and Pattern Recognition (CVPR), Nashville, TN, USA, 20–25 June 2021; pp. 6881–6890.

35. Li, S.; Liu, F.; Jiao, L. Self-Training Multi-Sequence Learning with Transformer for Weakly Supervised Video Anomaly Detection.
In Proceedings of the AAAI Conference on Artificial Intelligence (AAAI), Virtual Event, 22 February–1 March 2022 .

36. Bazi, Y.; Bashmal, L.; Rahhal, M.M.A.; Dayil, R.A.; Ajlan, N.A. Vision transformers for remote sensing image classification. Remote
Sens. 2021, 13, 516. [CrossRef]

37. Ma, J.; Li, M.; Tang, X.; Zhang, X.; Liu, F.; Jiao, L. Homo–heterogenous transformer learning framework for RS scene classification.
IEEE J. Sel. Top. Appl. Earth Obs. Remote. Sens. 2022, 15, 2223–2239. [CrossRef]

38. Srinivas, A.; Lin, T.Y.; Parmar, N.; Shlens, J.; Abbeel, P.; Vaswani, A. Bottleneck transformers for visual recognition. In Proceedings
of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), Nashville, TN, USA, 20–25 June 2021; pp.
16519–16529.

39. Howard, A.G.; Zhu, M.; Chen, B.; Kalenichenko, D.; Wang, W.; Weyand, T.; Andreetto, M.; Adam, H. Mobilenets: Efficient
convolutional neural networks for mobile vision applications. arXiv 2017, arXiv:1704.04861

40. Sandler, M.; Howard, A.; Zhu, M.; Zhmoginov, A.; Chen, L.C. Mobilenetv2: Inverted residuals and linear bottlenecks. In
Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR), Salt Lake City, UT, USA, 18–23 June
2018; pp. 4510–4520.

41. Howard, A.; Sandler, M.; Chu, G.; Chen, L.C.; Chen, B.; Tan, M.; Wang, W.; Zhu, Y.; Pang, R.; Vasudevan, V.; et al. Searching for
mobilenetv3. In Proceedings of the IEEE/CVF International Conference on Computer Vision (ICCV), Seoul, Republic of Korea,
27 October–2 November 2019; pp. 1314–1324.

42. Zhang, X.; Zhou, X.; Lin, M.; Sun, J. Shufflenet: An extremely efficient convolutional neural network for mobile devices. In
Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR), Salt Lake City, UT, USA, 18–23 June
2018; pp. 6848–6856.

http://dx.doi.org/10.1109/TGRS.2019.2931801
http://dx.doi.org/10.1109/TGRS.2018.2845668
http://dx.doi.org/10.1109/LGRS.2017.2779469
http://dx.doi.org/10.1109/ACCESS.2020.2968771
http://dx.doi.org/10.1109/TGRS.2020.3044655
http://dx.doi.org/10.1109/TGRS.2018.2864987
http://dx.doi.org/10.1109/JSTARS.2021.3051569
http://dx.doi.org/10.3390/rs13030516
http://dx.doi.org/10.1109/JSTARS.2022.3155665

Remote Sens. 2023, 15, 3645 20 of 21

43. Ma, N.; Zhang, X.; Zheng, H.T.; Sun, J. Shufflenet v2: Practical guidelines for efficient cnn architecture design. In Proceedings of
the European Conference on Computer Vision (ECCV), Munich, Germany, 8–14 September 2018; pp. 116–131.

44. Han, K.; Wang, Y.; Tian, Q.; Guo, J.; Xu, C.; Xu, C. Ghostnet: More features from cheap operations. In Proceedings of the
IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), Seattle, WA, USA, 13–19 June 2020; pp. 1580–1589.

45. Hassani, A.; Walton, S.; Shah, N.; Abuduweili, A.; Li, J.; Shi, H. Escaping the Big Data Paradigm with Compact Transformers.
arXiv 2021, arXiv:2104.05704.

46. Graham, B.; El-Nouby, A.; Touvron, H.; Stock, P.; Joulin, A.; Jégou, H.; Douze, M. LeViT: a Vision Transformer in ConvNet’s
Clothing for Faster Inference. In Proceedings of the IEEE/CVF International Conference on Computer Vision (ICCV), Montreal,
BC, Canada, 11–17 October 2021; pp. 12259–12269.

47. Deng, J.; Dong, W.; Socher, R.; Li, L.J.; Li, K.; Fei-Fei, L. Imagenet: A large-scale hierarchical image database. In Proceedings of the
2009 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), Miami, FL, USA, 20–25 June 2009; IEEE: Piscataway
Township, NJ, USA, 2009; pp. 248–255.

48. Yang, Y.; Newsam, S. Bag-of-visual-words and spatial extensions for land-use classification. In Proceedings of the 18th
SIGSPATIAL International Conference on Advances in Geographic Information Systems, San Jose, CA, USA, 2–5 November 2010;
pp. 270–279.

49. Xia, G.S.; Hu, J.; Hu, F.; Shi, B.; Bai, X.; Zhong, Y.; Zhang, L.; Lu, X. AID: A benchmark data set for performance evaluation of
aerial scene classification. IEEE Trans. Geosci. Remote. Sens. 2017, 55, 3965–3981. [CrossRef]

50. Touvron, H.; Cord, M.; Douze, M.; Massa, F.; Sablayrolles, A.; Jégou, H. Training data-efficient image transformers & distillation
through attention. In Proceedings of the International Conference on Machine Learning (ICML), Virtual Event, 18–24 July 2021;
pp. 10347–10357.

51. Chen, C.F.R.; Fan, Q.; Panda, R. Crossvit: Cross-attention multi-scale vision transformer for image classification. In Proceedings
of the IEEE/CVF International Conference on Computer Vision (ICCV), Montreal, BC, Canada, 11–17 October 2021; pp. 357–366.

52. Dai, Z.; Cai, B.; Lin, Y.; Chen, J. Up-detr: Unsupervised pre-training for object detection with transformers. In Proceedings
of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), Nashville, TN, USA, 20–25 June 2021; pp.
1601–1610.

53. Zhu, X.; Su, W.; Lu, L.; Li, B.; Wang, X.; Dai, J. Deformable detr: Deformable transformers for end-to-end object detection. In
Proceedings of the 9th International Conference on Learning Representations (ICLR), Virtual Event, 3–7 May 2021.

54. Mehta, S.; Rastegari, M. Mobilevit: light-weight, general-purpose, and mobile-friendly vision transformer. In Proceedings of the
10th International Conference on Learning Representations (ICLR), Virtual Event, 25–29 April 2022.

55. He, Z.; Yuan, Z.; An, P.; Zhao, J.; Du, B. MFB-LANN: A lightweight and updatable myocardial infarction diagnosis system based
on convolutional neural networks and active learning. Comput. Methods Programs Biomed. 2021, 210, 106379. [CrossRef]

56. Jiang, X.; Wang, N.; Xin, J.; Xia, X.; Yang, X.; Gao, X. Learning lightweight super-resolution networks with weight pruning. Neural
Networks 2021, 144, 21–32. [CrossRef]

57. Qian, X.; Liu, F.; Jiao, L.; Zhang, X.; Guo, Y.; Liu, X.; Cui, Y. Ridgelet-Nets With Speckle Reduction Regularization for SAR Image
Scene Classification. IEEE Trans. Geosci. Remote. Sens. 2021, 59, 9290–9306. [CrossRef]

58. Ma, H.; Yang, S.; Feng, D.; Jiao, L.; Zhang, L. Progressive Mimic Learning: A new perspective to train lightweight CNN models.
Neurocomputing 2021, 456, 220–231. [CrossRef]

59. Ioannou, Y.; Robertson, D.; Cipolla, R.; Criminisi, A. Deep roots: Improving cnn efficiency with hierarchical filter groups. In
Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR), Honolulu, HI, USA, 21–26 July 2017;
pp. 1231–1240.

60. Simonyan, K.; Zisserman, A. Very deep convolutional networks for large-scale image recognition. In Proceedings of the 3rd
International Conference on Learning Representations (ICLR), San Diego, CA, USA, 7–9 May 2015.

61. Krizhevsky, A.; Hinton, G. Learning Multiple Layers of Features from Tiny Images; Technical Report; University of Toronto: Toronto,
ON, Canada, 2009 .

62. He, K.; Zhang, X.; Ren, S.; Sun, J. Deep residual learning for image recognition. In Proceedings of the IEEE Conference on
Computer Vision and Pattern Recognition (CVPR), Las Vegas, NV, USA, 27–30 June 2016; pp. 770–778.

63. Paszke, A.; Gross, S.; Massa, F.; Lerer, A.; Bradbury, J.; Chanan, G.; Killeen, T.; Lin, Z.; Gimelshein, N.; Antiga, L.; et al. Pytorch:
An imperative style, high-performance deep learning library. In Proceedings of the Advances in Neural Information Processing
Systems 32 (NIPS), Vancouver, BC, Canada, 8–14 December 2019.

64. Krizhevsky, A.; Sutskever, I.; Hinton, G.E. ImageNet Classification with Deep Convolutional Neural Networks. In Proceedings of
the Advances in Neural Information Processing Systems 25 (NIPS), Lake Tahoe, NV, USA, 3–6 December 2012 .

65. Szegedy, C.; Vanhoucke, V.; Ioffe, S.; Shlens, J.; Wojna, Z. Rethinking the inception architecture for computer vision. In
Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR), Las Vegas, NV, USA, 27–30 June 2016;
pp. 2818–2826.

66. Tan, M.; Le, Q. Efficientnet: Rethinking model scaling for convolutional neural networks. In Proceedings of the International
Conference on Machine Learning (ICML). PMLR, Long Beach, CA, USA, 9–15 June 2019; pp. 6105–6114.

67. Szegedy, C.; Liu, W.; Jia, Y.; Sermanet, P.; Reed, S.; Anguelov, D.; Erhan, D.; Vanhoucke, V.; Rabinovich, A. Going deeper with
convolutions. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR), Boston, MA, USA,
7–12 June 2015; pp. 1–9.

http://dx.doi.org/10.1109/TGRS.2017.2685945
http://dx.doi.org/10.1016/j.cmpb.2021.106379
http://dx.doi.org/10.1016/j.neunet.2021.08.002
http://dx.doi.org/10.1109/TGRS.2021.3051057
http://dx.doi.org/10.1016/j.neucom.2021.04.086

Remote Sens. 2023, 15, 3645 21 of 21

68. Tang, Y.; Han, K.; Guo, J.; Xu, C.; Xu, C.; Wang, Y. GhostNetv2: enhance cheap operation with long-range attention. Adv. Neural
Inf. Process. Syst. (NIPS) 2022, 35, 9969–9982.

69. Luo, J.H.; Wu, J.; Lin, W. Thinet: A filter level pruning method for deep neural network compression. In Proceedings of the IEEE
International Conference on Computer Vision (ICCV), Venice, Italy, 22–29 October 2017; pp. 5058–5066.

70. Wang, Y.; Xu, C.; Xu, C.; Xu, C.; Tao, D. Learning versatile filters for efficient convolutional neural networks. In Proceedings of
the Advances in Neural Information Processing Systems 31 (NIPS), 3–8 December 2018, Montréal, QC, Canada.

71. Chen, L.C.; Papandreou, G.; Kokkinos, I.; Murphy, K.; Yuille, A.L. Semantic image segmentation with deep convolutional nets
and fully connected crfs. In Proceedings of the 3rd International Conference on Learning Representations (ICLR), San Diego, CA,
USA, 7–9 May 2015.

72. Chen, L.C.; Papandreou, G.; Kokkinos, I.; Murphy, K.; Yuille, A.L. Deeplab: Semantic image segmentation with deep convolutional
nets, atrous convolution, and fully connected crfs. IEEE Trans. Pattern Anal. Mach. Intell. 2018, 40, 834–848. [CrossRef]

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

http://dx.doi.org/10.1109/TPAMI.2017.2699184

	Introduction
	Related Work
	CNN-Based RS Scene Classification Methods
	Vision Transformer Networks
	Lightweight CNNs

	Method
	MLGC Module
	LightFormer Block
	LTNet

	Experiments
	Experiments on Four RS Scene Classification Datasets
	Dataset Description
	Experimental Settings
	Experimental Results

	Experiments on Two Natural Image Classification Datasets
	Dataset Description
	Experimental Settings
	Comparison Experiments on CIFAR-10 and ImageNet
	Ablation Experiments on CIFAR-10

	Conclusions
	References

