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Abstract: Accurate monitoring of water bodies is essential for the management and regulation of water
resources. Traditional methods for measuring water quality are always time-consuming and expensive;
furthermore, it can be very difficult capture the full spatiotemporal variations across regions. Many
studies have shown the possibility of remote-sensing-based water monitoring work in many areas,
especially for water quality monitoring. However, the use of optical remotely sensed imagery depends
on several factors, including weather, quality of images and the size of water bodies. Hence, in this
study, the feasibility of optical remote sensing for water quality monitoring in the Republic of Ireland
was investigated. To assess the value of remote sensing for water quality monitoring, it is critical to
know how well water bodies and the existing in situ monitoring stations are mapped. In this study, two
satellite platforms (Sentinel-2 MSI and Landsat-8 OLI) and four indices for separating water and land
pixel (Normalized Difference Vegetation Index—NDVI; Normalized Difference Water Index—NDWI;
Modified Normalized Difference Water Index—MNDWI; and Automated Water Extraction Index—
AWEI) have been used to create water masks for two scenarios. In the first scenario (Scenario 1), we
included all pixels classified as water, while for the second scenario (Scenario 2) accounts for potential
land contamination and only used water pixels that were completed surround by other water pixels.
The water masks for the different scenarios and combinations of platforms and indices were then
compared with the existing water quality monitoring station and to the shapefile of the river network,
lakes and coastal and transitional water bodies. We found that both platforms had potential for water
quality monitoring in the Republic of Ireland, with Sentinel-2 outperforming Landsat due to its finer
spatial resolution. Overall, Sentinel-2 was able to map ~25% of the existing monitoring station, while
Landsat-8 could only map ~21%. These percentages were heavily impacted by the large number
of river monitoring stations that were difficult to map with either satellite due to their location on
smaller rivers. Our results showed the importance of testing several indices. No index performed
the best across the different platforms. AWEInsh (Automated Water Extraction Index—no shadow)
and Sentinel-2 outperformed all other combinations and was able to map over 80% of the area of all
non-river water bodies across the Republic of Ireland. While MNDWI was the best index for Landsat-8,
it was the worst performer for Sentinel-2. This study showed that optical remote sensing has potential
for water monitoring in the Republic of Ireland, especially for larger rivers, lakes and transitional and
coastal water bodies.

Keywords: water resources monitoring; Republic of Ireland; remote sensing; Landsat-8; Sentinel-2

1. Introduction

It is critical that we sustain and improve our water resources as they are inseparable
from the ecosystems and are necessary for life [1]. The pressures on water resources are
increasing globally with ever-growing demands for freshwater, over-abstraction of water
resources, pollution and climate change [2]. One of the most effective controls to prevent
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water pollution is to identify the potential sources promptly [3]; therefore, it is crucial to
obtain timely access to water information, such as water quality and water quantity.

Under the European Union’s Water Framework Directive (WFD), which came into
force in 2000 [4], and the National Hydrometric Monitoring Program [5], information
on water quality and quantity across Ireland is collected periodically via conventional
methods [6]; for example, water flow in some locations is measured via the use of weirs
or handheld mechanical current meter, while water quality parameters are derived from
laboratory analyses undertaken on water samples collected at each monitoring station.
This approach provides precise information on water at discrete sampling points; however,
it cannot grasp the spatiotemporal aspects of water quality that occur in large water
bodies [7]. Across the Republic of Ireland, there are 4829 water bodies designated by the
WFD; however, only approximately two-thirds of these are included in the national WFD
monitoring program, and this does not include all water bodies. This can be broken down
to its constituent parts, with 74% of river bodies, 6.8% of lakes and 40% of coastal and
transitional waters currently monitored [6].

Remote sensing (RS), with its frequent revisit time and large spatial coverage, is
an alternative approach to facilitating water monitoring [8]. The use of RS in water
quality monitoring started in the early 1970s [9], when the correlation between solar
radiation reflectance and sediment concentration was investigated [10]. Today, RS is
used in many aspects of water resources including flooding estimation, water erosion
assessment, water area detection, the phenology of water cycle, water quality derivation,
etc. [11]. In Ireland, very few studies have investigated the use of remote sensing for
water resources (e.g., [12–14]). Agarwal et al. [12] and Karki et al. [13], as part of the
Remote Sensing of Irish Surface Waters Project (INFER), used remote sensing to estimate
the chlorophyll-a content, turbidity, and algal coverage in some regional Irish transitional
and coastal (TraC) areas. However, the feasibility of RS at national scale for water quality
monitoring has not been established.

To establish if remote sensing has potential in water quality monitoring in Ireland, it
is first necessary to see if the spatial coverage is sufficient. One way to test this is via the
generation of water masks, which separate land and water pixels. The spectral, temporal,
radiometric and spatial resolutions of different satellite platforms are the determining
factors in this. Therefore, the choice of RS platforms is important. For example, MODIS
(Moderate Resolution Imaging Spectroradiometer), onboard the Terra and Aqua spacecrafts,
has the advantage of high temporal resolution (1–2 times/day), broad spectral range
(0.4–14.4 µm) and long tracking history (1999–present) [14]. It has been utilized in tracking
surface water evolutions [15–17]. However, its disadvantage is its spatial resolution, which
ranges from 250 to 1000 m, restricting application only to large areas [14]. The deployment
of different high-resolution platforms offers great possibilities in detecting smaller water
bodies. IKONOS, one of the first high-spatial resolution satellites, has been used to map
lake areas in Myanmar [18]. However, the presence of shadows on IKONOS images makes
water detection harder [19]. In recent years, high resolution data are becoming more easily
accessible, with more than 1600 CubeSats currently orbiting the Earth’s surfaces. These
CubeSat have approximately daily revisit times and their 3-m spatial resolution is much
higher than many of the other high-resolution products available [20]. CubeSats have
been used to monitor lake dynamics in Arctic-Boreal [21], in Yukon Flats, US [22] and
in the Tocantins–Araguaia hydrographic region, Brazil [23]. However, the relatively low
radiometric quality and inter-sensors inconsistencies of CubeSats have posed limitations in
water monitoring [24]. Two platforms that have been widely used in aquatic science are
the Landsat missions and Sentinel-2. These platforms, with their 30- and 20-m resolutions,
respectively, are freely available and have the ideal spectral range for aquatic science [25,26].
Some of the uses of Landsat include the generation of global river widths [27]; multi-
temporal global water masks [28]; and water masks and river widths in Congo [29] and
North America [30]. Sentinel-2, despite being a relatively newer platform has also had
a range of applications from coastal shoreline mapping [31] to surface water mapping
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across France [32] to mapping the tidal flat around the Bohai and Yellow Seas [33]. In some
cases, both Landsat and Sentinel-2 have been combined—e.g., Pardo-Pascual et al. [34]—for
mapping the shoreline of natural beaches.

To generate water masks from remote sensing, there are various approaches available.
Yang et al. [32] has classified these approaches into two groups: (1) sample-based methods;
and (2) rule-based methods. Sample-based methods classify the water pixels based on
the supervised classification at pixel and object levels within the same groups [35]. The
accuracy of this method depends on prior reliable knowledge, which is usually acquired at
a high cost. Rule-based approaches, on the other hand, are faster and more convenient to
use than sample-based methods and are therefore more widely used. Rule-based methods
normally rely on proven algorithms based on comparing the surface reflectance of spectral
bands [32]. While there is a large selection of water spectral indices, the Normalized
Difference Water index (NDWI) was the first index proposed for water extraction. Though
it suffers from noise in build-up areas, which affects accuracy, the Modified Normalized
Difference Water Index (MNDWI) was created to address this issue [1]. However, it cannot
distinguish between water and snow [36]. To further improve water mapping accuracy, the
Automated Water Extraction Index (AWEI) was then created, which includes two indices
capable of shadow and non-shadow scenarios, respectively [37]. While the above are
the most commonly used water indices, many more have been created to address other
shortcomings. For example, the Water Index2015 (WI2015) [38] was developed to improve
the performance of classifying water pixels via Landsat. The Water Ratio Index (WRI),
High Resolution Water Index (HRWI) and Enhanced Water Index (EWI) were developed
for urban areas and cities and have been shown to perform better than other more widely
used water indices [39–41]. Recently, to improve upon the MNDWI, the Contrast Difference
Water Index (CDWI) and the Shadow Difference Water Index (SDWI) were created for
built-up and non-built-up areas, respectively, and the BDWI (Background Difference Water
Index) was designed for complex background [42]. Other indices, such as the NDVI
(Normalized Difference Vegetation Index) and EVI (Enhanced Vegetation Index), which
were developed for extracting land pixel areas, have been used in distinguishing water
from land [43,44]. Memon et al. [45] compared NDWI with two other indices—Red and
Short-Wave Infra-Red (RSWIR) and MNDWI in Pakistan—and showed the tendencies
of NDWI to underestimate the inundated area. Acharya, Subedi and Lee [43] compared
the same indices for Nepal and found that NDVI and NDWI showed better results than
MNDWI and AWEI for pure water pixels. Liu et al. [46] and Du et al. [47] compared various
water indices (NDWI, MNDWI, AWEI and WI2015) in Guangzhou and the Venice coastland,
respectively, and demonstrated that pan-sharpened WI2015 and MNDWI provide more
accurate results than the other indices. The AWEI was compared with both MNDWI and
Maximum Likelihood (ML) for Denmark, Switzerland, Ethiopia, South Africa and New
Zealand, and the results showed that the accuracy of the AWEI was much higher than
the other two indices [37]. Furthermore, Sivanpillai et al. [48] showed that the MNDWI
outperformed NDWI in calculating pre- and post-flood inundation extents in the US. In
addition to the use of these indices, machine learning methods are also becoming popular
for the extraction of water bodies. These machine learning methods include regression
trees, neural networks and support vector machines, and several studies have compared
these methods [49–51].

The overall objective of this study is to help assess the value of remote sensing optical
imagery for water quality monitoring of water bodies across the Republic of Ireland. To
answer this objective, it is critical to know the extent to which remote sensing can map the
different water bodies, and three sub-objectives will be addressed:

1. What percentages of water bodies are mapped by the different remote sensing plat-
forms? What is the difference between using Landsat-8 or Sentinel-2?

2. Which is the best water index for detecting water pixels across Ireland? Does this vary
by water body type?
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3. How well does remote sensing map the existing in situ monitoring points? This is
critical for the calibration of water quality estimates from remote sensing.

2. Study Area and Methodology
2.1. Study Area

In this study, we focus on the Republic of Ireland, which is in the northwest of Europe
(Figure 1). The Republic of Ireland covers five-sixths of Ireland’s surface, with a total area
of 70,273 km2, and the remainder is Northern Ireland [52]. The Republic of Ireland has
over 12,200 lakes; however, only 812 have been designated as lake water bodies by the
WFD [53]. These lake water bodies are predominately small (66% < 1 ha) and mostly in
Western Ireland. Furthermore, Ireland has more than 74,000 km of river channels [54],
where first- and second-order streams account for 95.8% of the total (https://gis.epa.ie/,
accessed on 22 July 2023).
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Figure 1. Location map showing the Republic of Ireland and its river, lakes and coastal and transi-
tional water bodies.

Water quality is monitored in the Republic of Ireland by the Irish Environmental
Agency (EPA) [55] to ensure that it adheres to European legislation such as the WFD
and directives pertaining to nitrates, habitats, groundwater, drinking water and bathing
water [56]. The Republic of Ireland is currently in the third cycle (2022–2027) of the
WFD directive [57]. However, at the end of the second WFD cycle, the EPA reported
that while almost half of Ireland’s rivers and lakes (50% and 69%, respectively) meet
or exceed the mandatory ‘good ecological status’, 64% of estuaries failed to meet the
WFD’s mandatory ‘good ecological status’ standard (https://www.epa.ie/publications/
monitoring{-}{-}assessment/freshwater{-}{-}marine/).

Under the third WFD cycle, the EPA has broken down the Republic of Ireland into
46 catchments and 583 sub-catchment units for reporting purposes. There are a total of
4842 water bodies, with 3–15 water bodies in each sub-catchment [58]. The total area
of transitional, coastal and lake water bodies monitored in this cycle are 842.37 km2,
13,642.07 km2 and 1200.31 km2, respectively. The total number of monitoring points is
14,097, with 13,706 of them monitoring surface water bodies. The physical, chemical
and biological changes in each water body are monitored with the sampling frequency
depending on parameter and water types. For example, chemical oxygen demand (COD) is
sampled an average of 80 times per month nationally, while the sampling time for nitrogen
is 229 times per month nationally.

https://gis.epa.ie/
https://www.epa.ie/publications/monitoring{-}{-}assessment/freshwater{-}{-}marine/
https://www.epa.ie/publications/monitoring{-}{-}assessment/freshwater{-}{-}marine/
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2.2. Earth Observation Platforms

Two satellites missions with publicly available data—Sentinel-2A/B multi-spectral
instrument (MSI) and Landsat-8 Operational Land Imager (OLI)—were used in this study.
Sentinel-2A/B are two identical Earth Observation satellites launched in June 2015 and
March 2017 by the European Space Agency as part of the Copernicus Project (GMES). These
satellites have spectral bands that span from the visible (VIS) to the short wave infrared
(SWIR) (458–2280 nm) at high spatial resolution (10 m to 60 m), with a revisit time of 5 days
at the equator [59].

Landsat-8 was launched by the U.S. Geological Survey (USGS) in February 2013 and
carries a two-sensor payload (Operational Land Imager (OLI) and the Thermal Infrared
Sensor (TIRS)) with a revisit time of 16 days [60]. Landsat-8 OLI was used, and it has a
spectral range of Landsat-8 OLI (435–2294 nm) with a spatial resolution of 30 m. Detailed
band information of each platform is listed in Table 1.

Table 1. Sentinel-2A/B MSI and Landsat-8 OLI band characteristics.

Sentinel-2A/B MSI Landsat-8 OLI

Band Wavelength
Range (nm) Resolution (m) Band Wavelength

Range (nm) Resolution (m)

Band 1: Coastal aerosol 442.2–442.7 60 Band 1: Coastal/Aerosol 435–451

30

Band 2: Blue 492.1–492.4 10 Band 2: Blue 452–512
Band 3: Green 559.0–559.8 10 Band 3: Green 533–590
Band 4: Red 664.6–664.9 10 Band 4: Red 636–673

Band 5—Vegetation red
edge 703.8–704.1 20 Band 5: Near Infrared

Red (NIR) 851–879

Band 6—Vegetation red
edge 739.1–740.5 20 Band 6: Shortwave

Infrared 1 (SWIR1) 1566–1651

Band 7—Vegetation red
edge 779.7–782.8 20 Band 7: Shortwave

Infrared 2 (SWIR2) 2107–2294

Band 8: Near Infrared
Red (NIR) 832.8–832.9 10 Band 8: Panchromatic 500–680 15

Band 8A—Narrow
Near Infrared Red 864.0–864.7 20 Band 9: Cirrus 1360–1390 30

Band 9—Water vapor 943.2–945.1 60
Band

10—SWIR—Cirrus 1373.5–1376.9 60

Band 11: Shortwave
Infrared (SWIR1) 1613.7–1610.4 20

Band 12: Shortwave
Infrared (SWIR2) 2185.7–2202.4 20

2.3. Methodology

The method used in this research is depicted in Figure 2. In the following sections,
the different stages of the research will be explained as follows: (a) two datasets have
been pre-processed in the Google Earth Engine (GEE); the pre-process includes image
selection, band selection and the creation of image catalogs; (b) to fit different resolutions
of Sentinel-2, pan-sharpening was used in upscaling the 20-m band of Sentinel-2 to 10-m;
(c) the calculation of the water indices: NDVI, NDWI, MNDWI and AWEI; and (d) the
comparison of the maps from satellites with EPA datasets.
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2.3.1. Pre-Processing

Sentinel-2A/B MSI and Landsat-8 OLI, from January 2018 to December 2019, were
initially processed on the Google Earth Engine (GEE) platform (https://code.earthengine.
google.com/). GEE is a cloud-based geospatial analysis platform used for geographical
computing and analysis, which allows academic users free access to the process and to
analyze large amounts of data as they need [61], and the time period was chosen to ensure
that a cloud free mosaic was able to be produce across the entire Republic of Ireland.

The Sentinel-2A/B level 2A and Landsat-8 Tier 1 datasets were used in this study.
Level 2A is bottom-of-atmosphere (BOA) dataset, which are produced from level-1C data
(top of atmosphere) via Sen2Cor [62], while Landsat-8 Collection 2 Tier 1 is the highest
quality radiometric and positional data available.

The first step in pre-processing was to select images with cloud coverage less than 20%;
then, cloud pixels were removed from Sentinel-2A/B and Landsat-8 imagery using the
QA60 band and CFMask, respectively. The QA60 band is a bitmask band which contains
cloud mask information, while CFMask is the C implementation of function of Mask,
initially created by Zhu [63]. It is currently utilized by USGS to identify clouds, cloud
shadows, cirrus, snow and ice during OLI data processing [64]. Its accuracy has been
tested and compared with the other cloud detection algorithms (See5, Automated Cloud
Cover Assessment (ACCA), Artificial Thermal-Automated Cloud Cover Algorithm (AT-
ACCA), Fixed Temperature-Automated Cloud Cover Algorithm (FT-ACCA)) [65]. Results

https://code.earthengine.google.com/
https://code.earthengine.google.com/
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showed that CFMask outperforms other methods, producing the highest accuracy for
cloud shadow results and working without geographic restrictions. While CFMask is a
spectral characteristic-based multi-pass algorithm which used decision trees to produce
two potential cloud masks, cloud mask was produced by combining these two potential
cloud masks together [63].

2.3.2. Panchromatic Sharpening

An additional processing step was required for Sentinel-2 data to ensure that the
spatial resolution of all bands in generating water masks are identical. Sentinel’s SWIR1
and SWIR2 (Table 1) bands have a spatial resolution of 20 m, while Bands 2, 3, 4 and
8 are all at 10 m. Therefore, to obtain more explicit spatial information from Sentinel-2,
panchromatic sharpening or pan-sharpening was necessary to upscale SWIR1 and SWIR2,
and the overview of the process is shown in Figure 3.
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Band 11 and Band 12 have first been resampled to 10 m via nearest neighbor interpola-
tion because nearest neighbor interpolation reserves the properties of the original dataset
and is highly efficient compared to other resampling techniques over large areas. Addition-
ally, previous research has shown that the selection of different resampling methods will not
have a significant effect on the final visual appearance of fused images. Pan-sharpening is
a technique that combines high-resolution detail from a panchromatic band with the lower-
resolution color information of coarse bands, and it can help obtain a higher resolution map,
which is crucial in some studies [66]. First, the lower resolution bands were needed to re-
sample to obtain the same resolution with high-resolution band [67]. Many pan-sharpening
approaches have been used and compared in extracting water masks [68,69]. One of the
most common methods is the High Pass Filter (HPF) [70]. The HPF uses a filter to add
information from the high-resolution image to the low-resolution image. This filter has a
specified weight, and there are many kinds of soothing filters, including the Box (used in
this study), Gaussian, and Laplacian. Du et al. [47] tested different image pan-sharpening
approaches to generate the water masks at the Venice coastland, Italy, and showed that
HPF was the most accurate method.

2.3.3. Water Mask Creation

The water indices from Landsat-8 were created directly on GEE, while Matlab2022a
was used for Sentinel-2 to overcome the computation limit of GEE and the need for
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pan-sharpening Sentinel-2 images prior to water mask creation. For both Landsat-8 and
Sentinel-2, water masks were created for four different indices: NDVI, NDWI, MNDWI
and AWEI ((1)–(6)).

NDVI =
NIR − Red
NIR + Red

(1)

NDWI =
Green − NIR
Green + NIR

(2)

MNDWI1 =
Green − SWIR1
Green + SWIR1

(3)

MNDWI2 =
Green − SWIR1
Green + SWIR2

(4)

AWEIsh = Blue + 2.5 × Green − 1.5 × (NIR + SWIR1)− 0.25 × SWIR2 (5)

AWEInsh = 4 × (Green − SWIR1)− (0.25 × NIR + 2.75 × SWIR2). (6)

For each of these indices’, binary maps, where 1 is water and 0 is land, were produced
using the Bottom Valley threshold approach. This approach locates the lowest point
between the two peaks, which is deemed the threshold for separating water and land pixels.
The Otsu threshold approach [71] was also tested; however, this method resulted in the
incorrect classification of pixels as land or water. Previous studies have noted this same
issue with Ostu when the amplitudes of the bimodal are largely different, which causes the
Ostu threshold to become biased [69,72]. Figure 4 shows the different thresholds calculated
using the Otsu and the Bottom Valley approaches and shows the bias in the Ostu threshold.
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2.3.4. Comparison of Binary Water Masks

Two sets of binary maps were created for two different scenarios. Scenario 1 ignores
many potential sources of errors, including boundary effects such as land contamination at
the edge of water pixels [73], and assumes that if a pixel is classified as water, it is water.
However, Scenario 2 aims to account for these boundary effects by only classifying a pixel
as water if it classified as a water pixel itself and is also surrounded by other classified
water pixels. This approach was previously applied to remove the boundary effect on
ICESat [74].
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Scenario 1 and Scenario 2 for the detection of water were compared with datasets
available from the Irish EPA to investigate the spatial coverage of water bodies by the two
remote sensing platforms and the impact of using different indices in distinguishing water
land pixels. Comparison datasets include national water monitoring stations, shapefile of
river net-routes, lake, coastal and transitional water bodies, and all were downloaded from
the EPA website (https://gis.epa.ie/EPAMaps/). These datasets are for third-cycle WFD
and are shown in Figure 2 gray frame.

The national water monitoring station map includes all 9736 rivers, 2883 lakes,
603 transitional, 484 coastal and 391 groundwater monitoring stations (although the
groundwater stations were not applicable to this study). These monitoring stations are
used for the WFD to periodically monitor water quality (e.g., concentration of chlorophyll-
a and phosphorus). Therefore, it is important that remote sensing imagery is able to map
these locations so that relationships between in situ measurements and remotely sensed
optical properties can be developed. The river shapefile comprises over 100,000 polylines
with the stream order information. The lakes, transitional and coastal maps comprise 810,
108 and 194 polygons, respectively. Since this study focused on the Republic of Ireland,
the water bodies which lie entirely in Northern Ireland have been removed manually.

The binary maps for each scenario and for every index used for each platform were
compared with the EPA data, and the following percentages were calculated:

• Percentage of water cells which overlay water monitoring stations;
• The percentage of lakes mapped and their areas;
• The percentage of rivers mapped and their stream order;
• Percentage of coastal and transitional areas mapped.

3. Results
3.1. Water Masks

Two regions in the Republic of Ireland were chosen to show the detailed results of the
impact of using the different platforms and indices (Figure 5). The first region, as shown in
Figure 5b, is Lough Derg. Lough Derg is the third-largest lake in the Republic of Ireland
and is in the Lower Shannon River basin. This area is predominately rural. The second
region is centered around Dublin City and Bay (Figure 5c). Dublin is the capital city of the
Republic of Ireland, is heavily urbanized and is located on the east coast of Ireland.
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The water masks of Lough Derg and Dublin Bay mapped via Landsat-8 are depicted
in Figure 6, corresponding to Scenario 1 and Scenario 2, while Figure 7 depicts those
derived from Sentinel-2. The shape of Lough Derg was clearly mapped by all indices
and platforms and for both scenarios, as was the river meander just south of Lough
Derg, except for MNDWI2 via Sentinel-2. Although Sentinel-2 did map more details due
to its higher spatial resolution, as expected, more of the river network was mapped in
the Sentinel-2 water masks compared with those derived from Landsat. However, all
indices did not perform equally across the platforms. By comparing Figures 6 and 7, it is
clear that for Landsat, MNDWI1 was able to map more of the river network compared
with the other indices, while for Sentinel-2, AWEIsh outperformed the other indices. The
results for Dublin Bay region showed that both transitional and coastal areas were obvious
and similar for all scenarios and indices, indicating that coastal and transitional waters
were easily mapped by all cases. Unlike Lough Derg, NDVI and NDWI can map most
of the river network (compared with other methods). However, there was significant
noise from these methods where pixels were incorrectly identified as water when they
corresponded to the built environment. This noise was minimal for MNDWI and AWEI,
which was expected, as these methods were designed to reduce this type of noise and
misclassification. For Sentinel-2 and the Dublin Bay region, AWEInsh was the best for both
scenarios, 0outperforming Landsat water masks.

3.2. Comparison with In Situ Monitoring Points

Figure 8 shows the mapped water monitoring stations under different indices and
different satellites, with Table 2 stating the percentage of water monitoring stations visible
via the different platforms. Figure 8b shows the full extent of the surface water monitoring
stations operated under Cycle 3 of the WFD across the Republic of Ireland, with over half
(9736 out of 13,706) of the stations located on rivers; stations located on lakes account for
over 20% (2883); while coastal and transitional water bodies account for only 10% of the
total number of stations. Figure 8a,c shows the mapped stations calculated from MNDWI1
via Landsat-8 and AWEInsh via Sentinel-2, respectively. These were the best performing
indices for their corresponding platform. Figure 8 shows that a far greater percentage of
costal and transitional stations were mapped with remote sensing than other water bodies,
with river stations being the water bodies which were harder to see via remote sensing.
This visual finding is supported by Table 2.

Table 2 shows the percentage of monitoring stations mapped by Landsat-8 and
Sentinel-2 for all six indices and for Scenario 1 and Scenario 2. Overall, Sentinel-2 and
AWEInsh performed best at capturing the most monitoring stations, with 24.78% of station
mapped under the Scenario 1, and this dropped to 17.8% under Scenario 2. For Landsat-8,
MNDWI1 was the best performing index, mapping 20.59% under the Scenario 1, and this
dropped to 12.81% for Scenario 2.

As expected, coastal stations and their monitoring stations were the easiest to map via
remote sensing, with an average rate of 80% across all platforms and indices. This dropped
to ~57% of transitional water bodies and dropped again to ~43% for lakes. River water
bodies were the hardest to map, with an overall average of 1.63%. However, for Scenario 1,
Sentinel-2 and AWEInsh were able to map 6.19%, while Landsat-8 and MNDWI1 were only
able to map 2.43% of monitoring stations on river water bodies.
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Table 2. Percentage (%) of mapped water monitoring stations from Landsat-8 and Sentinel-2 for both
Scenario 1 and Scenario 2. Scenario 2 percentages are within brackets.

Platform Indices Total Coastal Lake River Transition

Landsat-8

NDWI
17.7 83.68 50.99 1.83 61.86

(12.02) (73.76) (32.64) (0.7) (46.6)

NDVI
17.68 84.71 49.29 2.07 64.68

(12.22) (75.62) (32.74) (0.68) (49.59)

MNDWI1
20.59 85.12 61.95 2.43 64.18

(12.81) (75.21) (35.62) (0.73) (48.76)

MNDWI2
18.1 83.47 53.9 1.64 60.2

(12.12) (73.97) (33.54) (0.62) (45.77)

AWEIsh
19.26 86.57 56.64 2.06 64.18

(12.54) (75.83) (33.96) (0.76) (49.59)

AWEInsh
19.36 85.95 58.06 1.93 62.35

(12.46) (75.41) (34.41) (0.67) (47.43)

Sentinel-2

NDWI
17.1 77.69 49.12 2.11 57.55

(13.73) (74.59) (37.25) (1.45) (50.75)

NDVI
18.14 80.99 50.47 2.61 63.85

(14.29) (77.48) (37.32) (1.67) (57.21)

MNDWI1
12.88 83.26 32.74 0.65 58.87

(10.45) (77.27) (24.63) (0.26) (53.57)

MNDWI2
14.91 86.16 37.98 1.46 64.51
(10.9) (78.72) (25.42) (0.44) (55.89)

AWEIsh
17.66 82.44 50.78 1.99 60.36

(14.13) (76.86) (38.61) (1.28) (54.06)

AWEInsh
24.78 85.33 67.74 6.19 70.98
(17.8) (80.17) (48.21) (2.92) (62.52)

3.3. River Network

In the shapefile of river net-routes available from the Irish EPA, a total of 108,180 segments
are fully contained inside the Republic of Ireland. The stream order for each segment is avail-
able, and they were used in this study to explore how the size of a river (stream order) impacts
the visibility of that river via remote sensing. The majority of river segments corresponded to
smaller stream orders, with ~51% corresponding to order 1 stream and ~25% corresponding to
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order 2 stream. These percentages continued to reduce by approximately half for each increase
in stream order, with only ~1.5% of segments corresponding to stream order 6 and 7.

Table 3 illustrates how many river segments were mapped under the different scenarios
and by different approaches with respect to their river order. Except for the indices
MNDWI1 and MNDWI2, the overall performance of Sentinel-2 was better than that of
Landsat-8 for river segments under both scenarios.

Table 3. Percentage (%) of river net-routes which were mapped from Landsat-8 and Sentinel-2 with
respect to the river order for both scenarios. Scenario 2 percentages are within brackets.

Platform River Order NDVI NDWI MNDWI1 MNDWI2 AWEIsh AWEInsh

Landsat-8

1
2.17 2.05 4.51 2.29 2.37 2.56
(1.5) (1.43) (2.42) (1.55) (1.64) (1.69)

2
3.69 3.55 5.26 3.73 3.87 3.96

(2.78) (2.7) (3.38) (2.81) (2.95) (2.97)

3
5.17 5.01 6.42 5.11 5.35 5.38

(4.06) (3.95) (4.5) (4.0) (4.23) (4.21)

4
8.42 8.17 9.17 8.23 8.53 8.5

(7.17) (6.92) (7.42) (7.01) (7.32) (7.26)

5
17.67 17.63 20.42 18.12 18.65 18.93

(14.68) (14.48) (15.08) (14.57) (15.07) (15)

6
37.36 37.86 43.25 38.82 39.58 40.49

(28.13) (28.02) (30.04) (27.98) (29.17) (29.05)

7
82.01 82.76 87.37 83.81 84.6 85.32

(71.52) (72.12) (76.08) (73.34) (74.05) (74.48)

Sentinel-2

1
2.2 2.02 1.42 2.46 2.09 2.65

(1.87) (1.75) (1.17) (1.51) (1.77) (2.23)

2
3.7 3.42 2.57 3.35 3.53 4.23

(3.32) (3.1) (2.21) (2.41) (3.14) (3.74)

3
5.22 4.88 3.74 4.46 5.02 5.9

(4.72) (4.44) (3.21) (3.41) (4.51) (5.29)

4
8.56 7.97 6.83 7.36 8.11 9.7

(7.91) (7.37) (6.14) (6.12) (7.58) (8.57)

5
18.93 18.46 14.6 15.6 18.77 25.07

(16.94) (16.24) (13.2) (13.09) (16.45) (19.21)

6
38.28 37.83 28.82 31.62 42.01 56.66

(34.63) (33.28) (25.49) (26.39) (35.66) (42.06)

7
82.14 84.7 67.75 65.68 85.77 89.75

(79.06) (80.39) (65.38) (61.47) (81.55) (85.31)

As river orders increased, the percentage of segments that were mapped also increased.
This was because as the stream order became higher, the width of the river also increased,
making it easier for satellites to detect water. Normally, 80% of the areas of order 7 rivers
were mapped by most indices via both platforms. MNDWI1 was the higher performing
index for Landsat-8, detecteding over 85% of order 7 river segments, while AWEInsh
performed best with Sentinel-2, with 88.87% of the order 7 area mapped. One surprising
result was that MNDWI1 and Landsat-8 outperformed AWEInsh and Sentinel-2 for stream
orders 3 or lower for Scenario 1, and the reverse was true for Scenario 2.

3.4. Lake Segments

There are 810 lakes identified under Cycle 3 WFD in the Republic of Ireland, with
the majority of these being smaller than 1 km2 in area (see Figures 9 and 10). To account
for this uneven distribution in lake areas and to make visualization easier, each lake was
ranked based on its surface area, with 1 denoting the smallest and 810 denoting the largest
lake. From Figures 9 and 10, there was a logarithmic trend for most indices and platforms,
with larger lakes being more likely to be mapped than the smaller ones; over 70% of lakes
greater than 1 km2 were mapped, irrespective of platform or indices used. Similar to the
analysis for the river network, MNDWI1 and AWEInsh were the best preforming indices
for Landsat-8 and Sentinel-2, respectively, and again, MNDWI and Sentinel-2 produced the
worst performing combination.
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Figure 11 shows that MNDWI1 and AWEInsh were the best performing indices for 
Landsat-8 and Sentinel-2, respectively. No matter which indices were used, on average, 
over 70% of lake areas were mapped via Landsat-8 under Scenario 1, and this percentage 
dropped to 40% when potential land contamination was considered (Scenario 2). How-
ever, all indices produced similar results. For Sentinel-2, there was more variation across 
indices, with the MNDWI index only capturing less than 25% on average, while AWEInsh 
captured over 80% of the lake areas for Scenario 1. For Scenario 2, the variation was larger, 
with MNDWI1 and MNDWI2 capturing, on average, less than 12% of lake areas. This 
contrasts with the other indices, which mapped over 55% for lake areas. 

Figure 9. The percentage of mapped areas for each lake segment with respect to their area for
Landsat-8 for Scenario 1. Three different ranges of lake area are highlighted: 1© Lake area < 0.1 km2;
2© 0.1 km2 < Lake area < 1 km2; and 3© Lake area > 1 km2.
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Figure 11 shows that MNDWI1 and AWEInsh were the best performing indices for
Landsat-8 and Sentinel-2, respectively. No matter which indices were used, on average,
over 70% of lake areas were mapped via Landsat-8 under Scenario 1, and this percentage
dropped to 40% when potential land contamination was considered (Scenario 2). However,
all indices produced similar results. For Sentinel-2, there was more variation across indices,
with the MNDWI index only capturing less than 25% on average, while AWEInsh captured
over 80% of the lake areas for Scenario 1. For Scenario 2, the variation was larger, with
MNDWI1 and MNDWI2 capturing, on average, less than 12% of lake areas. This contrasts
with the other indices, which mapped over 55% for lake areas.
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3.5. Coastal and Transitional Water
3.5.1. Coastal Water

Figure 11 depicts the percentage of coastal areas mapped with the different platforms
and indices. Coastal areas had a higher percentage area mapped than the other water types.
For all scenarios, on average, over 80% of all coastal water bodies were mapped for both
Landsat and Sentinel. MNDWI2 with Landsat-8 was the best performing combination of
all platforms and indices, with the smallest variations in area mapped and the highest
percentage mapped. One surprising result was the performance of the MNDWI index
combined with Sentinel-2: for all other water bodies, it was among the poorest performers;
but for Coastal bodies, it was among the best performers.

3.5.2. Transitional Water

There are 194 transitional waters monitored under the third WFD cycle. Figure 11
shows that Sentinel-2 outperformed Landsat-8, with the exception for MNDWI2 and
Landsat-8, which outperformed all other combinations. On average, over 90% of transi-
tional waters were mapped to MNDWI2 and Landsat-8 for Scenario 1, and this dropped to
over 70% for the Scenario 2. Similar to previous water bodies, AWEInsh was the best index
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for Sentinel-2 images, with just below 80% of the transitional water body areas mapped in
Scenario 1 and just over 65% for Scenario 2.

4. Discussion

The results showed how well the different indices and satellite platforms map the
existing in situ monitoring stations for WFD water quality monitoring and the shapefiles
of the four main water body types (river, lakes, transitional and coastal) assessed in this
study. The results showed that Sentinel-2 outperforms Landsat-8 in mapping water bodies.
Comparing just the water masks (Figures 6 and 7), the benefit of the higher resolution of
Sentinel-2, with its 10 m pixel size compared with Landsat-8’s 30 m resolution, is shown.
In these two figures, overall, Sentinel-2 can map more details than Landsat-8. This is
also supported by the other results, and the benefit of using the highest spatial resolution
possible are shown in Table 2. This table shows the percentage of in situ water quality
monitoring stations that can be mapped by the different platforms, and the benefit of using
Sentinel-2 are shown. While there is very little difference between the best indices for
Landsat-8 and Sentinel-2 for Coastal water bodies, Sentinel-2 outperforms Landsat-8 for
transition and lake water bodies and especially for river. For river water bodies alone,
Sentinel-2 mapped nearly 4% more of the river monitoring stations, or a ~155% increase
over Landsat-8. This increase for river monitoring stations can be explained by the higher
resolution of Sentinel-2; it is able to map more river bodies, especially the smaller rivers, as
shown in Table 3.

The choice of indices used had a major impact on the results. Six different indices
were investigated in this study: NDVI, NDVI, two forms of MNDWI and AWEI. Our
results showed that Sentinel-2 and AWEInsh was the best combination across all measures
explored in this study, and MNDWI was the best index for Landsat-8. This result supports
the findings of Liu et al. [46] and Du et al. [47], but conflicts with the findings of Acharya,
Subedi and Lee [43], who found that NDVI and NDWI outperformed MNDWI and AWEI.
However, Acharya, Subedi and Lee [43] only looked at Landsat-8, while we investigated
both Landsat-8 and Sentinel-2. Our results do show the both versions of MNDWI per-
formed significantly worse for Sentinel-2 compared to Landsat-8. For all water bodies, the
combination of MNDWI and Sentinel-2 was outperformed by all other combinations of
index and platform. MNDWI was designed for use with Landsat [75]; however, so was
AWEI, and that was shown to the best index to use with Sentinel-2.

Two different scenarios were also tested to explore the potential impact of a conser-
vative approach for dealing with the potential of land contamination. The first scenario
(Scenario 1) classified a pixel as water if, after applying the Bottom Valley threshold ap-
proach, it was deemed water, while the second scenario (Scenario 2) required that a pixel
was classified as water and for the surrounding nine pixels to also be classified as water.
The results showed that there is a measurable difference in performance between the two
scenarios, for Landsat-8 there was, on average across all indices, a 6.4% drop in the number
of in situ monitoring stations mapped, while there was only a 4% drop for Sentinel-2. This
again highlights the benefit of using the highest possible spatial resolution.

5. Conclusions

The overall objective of this study was to assess the value of remote sensing optical
imagery for water quality monitoring across a range of water body types in the Republic of
Ireland. To assess the value, it was first necessary to know how well the various satellite
platforms map water bodies and monitoring points across the Republic of Ireland. To
quantify this, this study aimed to address the following objectives:

1. What percentages of water bodies are mapped from the different remote sensing
platforms? What is the difference between using Landsat-8 or Sentinel-2?

2. Which is the best water index for detecting water pixels across Ireland? Does this vary
by water body type?
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3. How well does remote sensing map the existing in situ monitoring points? This is
critical for the calibration of water quality estimates from remote sensing.

Water masks were created using six different indices for both Sentinel-2 and Landsat-8
and for two different scenarios. The water masks were then compared with the existing
monitoring station for water quality and shapefiles describing the river network, lakes and
transitional and coastal water bodies.

The results showed that optical remote sensing has potential for water quality moni-
toring across a range of water body types in the Republic of Ireland. As expected, rivers
were the most difficult for both Sentinel-2 and Landsat-8 to map, followed by transitional
water bodies, and then lakes with coastal water bodies.

The results also showed that Sentinel-2 was better able to map the different water
bodies than Landsat-8, except for coastal water bodies. This is mainly due to the higher
spatial resolution of Sentinel-2 compared with Landsat-8. Comparing the different water
masks to in situ monitoring stations, Sentinel-2 was able to map ~25% of all stations
compared with ~21% for Landsat-8. These percentages were heavily impacted by the
large number of river monitoring stations that neither Sentinel-2 nor Landsat-8 could map,
with Sentinel-2 mapping ~6.2% compared with ~2.4% for Landsat-8. This highlights the
importance of spatial resolution in monitoring water bodies in Ireland, and that Sentinel-2
with its 10 m resolution, outperformed Landsat-8 and its 30 m-resolution imagery.

The choice of indices in identifying water and land pixel was also a critical aspect to
consider. We investigated six commonly used indices. Our results showed that the best
performing index for Landsat-8 was MNDWI2—excluding for rivers where, MNDWI1
produced slightly better results. For Sentinel-2, AWEInsh was the best index across all
water bodies.

Overall, Sentinel-2 and AWEInsh were the best-performing combination across all
water bodies and, on average, were able to map ~80% of the total area of transitional
water bodies; >95% of coastal waters; and >85% of total lake areas. All combinations of
platform and index found it difficult to see Irish rivers due to their small size, but AWEInsh
and Sentinel-2 were able to map more than 25% of rivers with a stream order of 5, which
increased to >56% for stream orders equal to 6 and ~90% for larger stream orders. This
study showed that optical remote sensing has potential in water quality monitoring in the
Republic of Ireland, especially for larger rivers, lakes and transitional and coastal water
bodies, which are easier to map.
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