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Abstract: The field of remote sensing information processing places significant research emphasis on
object detection (OD) in high-spatial-resolution remote sensing images (HSRIs). The OD task in HSRIs
poses additional challenges compared to conventional natural images. These challenges include
variations in object scales, complex backgrounds, dense arrangement, and uncertain orientations.
These factors contribute to the increased difficulty of OD in HSRIs as compared to conventional
images. To tackle the aforementioned challenges, this paper introduces an innovative OD algorithm
that builds upon enhancements made to the YOLOv5 framework. The incorporation of RepConv,
Transformer Encoder, and BiFPN modules into the original YOLOv5 network leads to improved
detection accuracy, particularly for objects of varying scales. The C3GAM module is designed by
introducing the GAM attention mechanism to address the interference caused by complex back-
ground regions. To achieve precise localization of densely arranged objects, the SIoU loss function is
integrated into YOLOv5. The circular smooth label method is used to detect objects with uncertain
directions. The effectiveness of the suggested algorithm is confirmed through its application to
two commonly utilized datasets, specifically HRSC2016 and UCAS-AOD. The average detection
accuracies achieved on these datasets are 90.29% and 90.06% respectively, surpassing the performance
of other compared OD algorithms for HSRIs.

Keywords: high-spatial-resolution remote sensing images; object detection; deep learning; feature
fusion; attention mechanism

1. Introduction

Technological advancements in the field of remote sensing have led to a substantial
growth in the volume of high-spatial-resolution remote sensing images (HSRIs). These
images encompass a vast amount of valuable information for the purpose of earth observa-
tion. As a result, effectively acquiring and utilizing this information has become a crucial
area of research in remote sensing information processing. The process of object detection
(OD) for HSRIs entails extracting features from such images to identify ground targets’
categories and obtain their rectangular bounding box coordinates. In the field of remote
sensing information processing, this subject has gained substantial popularity and garnered
considerable attention from researchers. The research results of OD in HSRIs have found
extensive utilization in diverse domains, encompassing urban planning, disaster prediction,
natural disaster response, disaster assessment, and military decision-making [1].

The intricate characteristics of the earth’s surface make OD in HSRIs a formidable
challenge. Several factors impede the process, including variations in target scales, complex
backgrounds, dense arrangements, and uncertain orientations [2]. The unique character-
istics of HSRIs pose challenges in attaining high precision for OD [3]. Currently, in the
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field of OD in HSRIs, there are two primary categories of algorithms. The first category
comprises traditional algorithms, including sliding window and template matching. The
second category consists of deep learning (DL)-based algorithms. Presently, DL-based
algorithms have gained significant popularity due to their superior performance in terms of
both accuracy and speed, surpassing traditional algorithms. However, most OD algorithms
based on DL cannot recognize the orientation of objects, making them no longer suitable for
more challenging HSRIs. Consequently, algorithms that detect arbitrary-oriented bounding
boxes have become the prevailing standard for OD in HSRIs. Two distinct categories can be
used to classify these algorithms: two-stage [4–6] algorithms and one-stage [7,8] algorithms.

In two-stage algorithms, the detection process consists of two stages: the first stage
involves generating candidate regions, while the second stage focuses on extracting features
from these regions to aid in object recognition. To represent arbitrary-oriented bounding
boxes, these detection algorithms commonly utilize the five-parameter representation (x, y,
w, h, θ). In this representation, (x, y) indicates the center position of the bounding box, (w,
h) indicates the width and height of the bounding box, and θ represents the angle of the
bounding box. In the algorithms, the angle of the bounding box can be learned in either
the first or second stage of the algorithm. The angle of the bounding box can be acquired
during either the initial or subsequent stage. As an illustration, algorithms like R2CNN [9]
and ROI Transformer [10] generate candidate regions in a horizontal orientation during the
first stage. Subsequently, in the second stage, these algorithms perform angle regression to
determine the bounding box orientation. In contrast, R2PN [11], R-DFPN [12], and ICN [13]
directly generate oriented candidate regions in the first stage.

Unlike two-stage detection algorithms, one-stage algorithms are specifically designed
as end-to-end detection algorithms. They bypass the need for a separate candidate region
generation stage and can directly classify and estimate the position of objects with any
orientation in the image. They also have fewer parameters and are easier to converge. Com-
mon one-stage OD algorithms include RetinaNet-O [14], DAL [15], RSDet [16], R3Det [17],
and S2A-Net [18]. RetinaNet-O is an improved algorithm based on RetinaNet. It achieves
arbitrary-oriented OD through five-parameter regression. DAL algorithm adopts a dy-
namic anchor learning strategy, which assigns labels more efficiently by evaluating the
localization potential of anchors. In order to tackle the problem of loss discontinuity result-
ing from the periodic nature of angles in five-parameter regression and the inconsistency
of regression parameters, the RSDet algorithm directly regresses the four points of rotated
boxes using an eight-parameter representation. The R3Det algorithm combines horizontal
anchor boxes and rotated anchor boxes. During the initial detection stage, the algorithm
utilizes horizontal anchor boxes to accelerate the process and generate a larger quantity of
candidate boxes. In the refinement stage, it uses rotated anchor boxes to adapt to dense
target scenarios. Consisting of two distinct modules, namely the feature alignment module
and the detection module, the S2A-Net algorithm leverages an anchor refinement network
within the feature alignment module to produce anchors of exceptional quality. Conversely,
the detection module incorporates active rotation filters to encode orientation information,
resulting in the generation of orientation-sensitive and orientation-invariant features. By
employing this approach, the inconsistency between classification scores and localization
accuracy is effectively resolved. When confronted with orientation uncertainty, the majority
of the OD algorithms mentioned above employ angle regression to forecast the orientation
of detection boxes. However, this approach ignores the issue of boundary discontinuity. If
the predicted result falls outside the predefined range, it leads to a substantial loss value,
resulting in unstable training outcomes and impacting the model’s detection performance.

As one of the representatives of one-stage OD algorithms, the YOLO series has gar-
nered widespread attention and has been updated at an increasingly rapid pace. Since the
introduction of YOLOv1 [19], the YOLO series of algorithms have undergone rapid updates
and have reached the latest version, YOLOv8, with continuously improving accuracy and
speed. Researchers have also made further advancements based on the YOLO framework
in their respective fields of study. For example, Choi et al. [20]. proposed Gaussian YOLOv3,
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building upon YOLOv3 [21], to effectively apply the improved algorithm to the field of
autonomous driving. Similarly, Wang et al. [22] made advancements in YOLOv3 to address
the challenges in pavement surface pothole measurement. Wu et al. [23] combined local
fully convolutional neural networks with YOLOv5, achieving progress in small object
detection in HSRIs. Zhang et al. [24]. improved upon YOLOv5, effectively reducing the
false detection rate of occluded vehicle targets. Zhao et al. [25] combined YOLOv5 with
Transformers to effectively address the challenge of OD in images captured by drones.

The progression from YOLOv1 to YOLOv8 can be categorized into two stages: the first
stage encompasses YOLOv1 to YOLOv5, while the second stage encompasses YOLOv6 [26]
to YOLOv8. In the first stage, YOLOv5 emerges as the algorithm of utmost innovation
and representation, successfully attaining a commendable equilibrium between accuracy
and speed. The improvements in YOLOv6, YOLOv7 [27], and YOLOv8 are all based on
YOLOv5. Therefore, by harnessing the robust OD capabilities of YOLOv5 and taking into
account the distinctive traits of OD in HSRIs, this paper presents a refined algorithm based
on YOLOv5 for detecting objects in HSRIs.

The primary contributions can be summarized as follows:

1. Our proposal designs a RepConv module that enhances the detection accuracy of
small-scale objects without introducing additional inference time. Additionally, we
incorporate a Transformer Encoder structure to capture global contextual informa-
tion, thereby improving the detection accuracy of large-scale objects. In order to
achieve a balance in feature information across various scales and enhance the detec-
tion accuracy of multi-scale objects, we substitute the PANet structure in YOLOv5
with BiFPN.

2. To address the interference caused by complex background regions in HSRIs, we
design a C3GAM module by introducing the GAM attention mechanism, which aids
the model in effectively localizing regions that contain the target.

3. To enhance the localization accuracy of anchor boxes and improve the precision of
boundary recognition in HSRIs with dense object arrangements, we incorporate the
SIoU loss function.

4. To tackle the issue of uncertain target direction and mitigate the problem of disjointed
boundaries caused by angle regression, we suggest the adoption of the circular smooth
label method as an effective solution.

2. Network Structure of YOLOv5

YOLOv5 is one of the most representative algorithms in YOLO target detection, includ-
ing five network structures: YOLOv5n, YOLOv5s, YOLOv5m, YOLOv5l, and YOLOv5x.
Among them, YOLOv5n stands out with its comparatively lower depth and feature map
width. The remaining four networks progressively increase both depth and feature map
width in comparison to YOLOv5n. For the purpose of enhancement, this paper selects
YOLOv5s as the foundational model. The network structure of YOLOv5s can be categorized
into three components: Backbone, Neck, and Head, as depicted in Figure 1.

2.1. Backbone

The Backbone consists of three modules: Conv, C3, and SPPF. The Conv module
further encapsulates three functional modules: the convolutional layer (Conv2d), normal-
ization layer (BatchNorm2d), and activation function (SiLU). By applying convolution,
normalization, and activation to the input features, the module produces output features.
The C3 module comprises multiple Bottleneck modules and three standard convolutional
layers. The number of Bottlenecks varies depending on the network depth. The C3 module,
which consists of two branches, plays a crucial role in learning residual features. One branch
contains multiple stacked Bottlenecks and three standard convolutional layers, while the
other branch contains a basic convolutional block. The results from the two branches are
merged by concatenating them. The SPPF module sequentially applies multiple small-size
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pooling kernels to fuse feature maps with varying receptive fields. This enhances feature
map representation and further improves computational speed.
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2.2. Neck

The Neck component comprises two elements: the Feature Pyramid Network (FPN)
and Path Aggregation Network (PAN). FPN represents a top-down feature pyramid net-
work, whereas PAN stands as a path aggregation network. FPN integrates features at
different levels in a hierarchical manner, progressing from top to bottom. By capitaliz-
ing on the high resolution of low-level features and the abundant semantic information
from high-level features, it independently predicts multi-scale features. PAN, as an en-
hancement of FPN, introduces a bottom-up feature pyramid structure to augment its
capabilities. It preserves more shallow positional features, further enhancing the overall
feature extraction capability.

2.3. Head

The Head section serves as the output layer of the algorithm and consists primarily
of three Detect detectors. It performs OD by using grid-based anchors on feature maps at
different scales. Each Detect module receives features from the Neck layer at three different
scales. It uses convolutional operations to adjust the channel dimension of the output layer
and then refines the position of the anchors based on the predicted results. Ultimately,
the predicted results undergo mapping back to the original image after traversing a post-
processing module. The ultimate detection results are obtained by applying non-maximum
suppression, which helps eliminate a significant number of overlapping candidate boxes.

3. Our Work

An efficient OD algorithm for HSRIs is introduced, utilizing the YOLOv5s framework.
The proposed algorithm’s network architecture, depicted in Figure 2, closely resembles that
of YOLOv5s, consisting of three main components. The subsequent sections will provide a
detailed description of the key modules in this algorithm.
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3.1. RepConv Module

By incorporating the RepConv module into YOLOv5, the feature representation ca-
pability for small objects is enhanced due to the multi-branch structure of RepConv. This
leads to improved accuracy in recognizing small objects. Moreover, during inference, the
parallel branches of RepConv are transformed into a single branch using reparameteriza-
tion techniques [28], maintaining the same structure as YOLOv5 without increasing the
inference time.

This module incorporates a parallel 1 × 1 Conv layer within the 3 × 3 Conv layer
of the Backbone, effectively widening the convolutional module. During the inference
phase, the outputs of the parallel branch are consolidated into the 3 × 3 Conv layer. With
the inclusion of this modification, the detection accuracy of small objects in HSRIs is
enhanced, without introducing any extra inference time in the algorithm. Throughout
the training process, the RepConv module utilizes a multi-branch structure. Figure 3a
illustrates the module’s structure when there exists a discrepancy in the number of input
feature channels and output feature channels. In contrast, Figure 3b depicts the module’s
structure when the number of input feature channels matches the number of output feature
channels. In the inference phase, the outputs of the parallel branches are combined within
the 3 × 3 Conv layer, resulting in the transformation of the multi-branch structure into a
single-path structure, as illustrated in Figure 3c.

3.2. Transformer Encoder Module

The convolutional modules used in YOLOv5 primarily focus on local features, result-
ing in subpar detection performance for large-scale objects. The core of the Transformer
Encoder module lies in its multi-head self-attention mechanism, which enables capturing
global features and exhibits strong capabilities in detecting large-scale objects.

The CNN operator encounters the issue of limited local receptive fields when extract-
ing features for OD. To capture global information, multiple layers need to be stacked.
Nevertheless, with an increase in the number of layers, there exists the possibility of infor-
mation degradation, resulting in a concentration of feature attention in specific regions. On
the other hand, Transformers possess a self-attention mechanism that effectively captures
global information. Additionally, the use of multiple heads enables mapping to various
spatial positions, thereby enhancing the model’s expressive capacity.
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To bolster the global feature extraction capabilities of YOLOv5s, this paper introduces
a Transformer Encoder module into the Backbone component, as depicted in Figure 4.
The figure clearly demonstrates that each Transformer Encoder is composed of two sub-
layers. The initial sub-layer includes LayerNorm, Multi-Head Attention, and Dropout.
The input to this layer is data with dimensions (n, b, c); in this context, n represents the
result of multiplying the width and height of the feature map, b signifies the count of input
images within the network, and c denotes the number of feature channels. The input data
undergo normalization through the LayerNorm layer, followed by Multi-Head Attention
to compute similarities between targets. Lastly, the data flow through the Dropout layer
to alleviate overfitting. The second sub-layer consists of LayerNorm and Multi-Layer
Perceptron (MLP). LayerNorm serves a similar purpose as in the first sub-layer, while the
MLP employs fully connected layers for linear transformations. Residual connections are
established between each sub-layer. With the inclusion of the Transformer Encoder module,
the improved algorithm acquires enhanced capabilities to capture global information and
contextual details.
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3.3. C3GAM Module

HSRIs often contain a large amount of complex background, which introduces signif-
icant interference to the objects and leads to a decrease in detection accuracy. Therefore,
to mitigate the interference caused by the background, this paper adopts GAM attention,
which reduces the weights and weakens the features of the background through a weighted
approach. This effectively eliminates the interference from the background.

The extraction of feature information for OD in HSRIs is significantly hindered by the
presence of complex background information. To amplify the feature information within
the target regions and mitigate the interference arising from the background, this paper
introduces a new attention mechanism called the Global Attention Mechanism (GAM)
embedded within the C3 module, resulting in the construction of the C3GAM module. The
GAM [29] attention mechanism amplifies global interdependent features while reducing
information diffusion. Figure 5 illustrates the network structure of GAM. The input feature
is denoted as F1 ∈ RC×H×W, the intermediate state is denoted as F2, and the output result is
denoted as F3. The GAM module can be defined as follows:

F2 = Mc(F1)⊗ F1 (1)

F3 = Ms(F2)⊗ F2 (2)

where Mc and Ms represent the channel attention module and spatial attention module,
respectively, and ⊗ denotes the element-wise multiplication operation.
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The comparison between the improved C3GAM module and the C3 module in the
YOLOv5s network architecture is depicted in Figure 6. It reveals that the C3 module
is composed of numerous stacked Bottleneck modules, as can be observed. This paper
introduces the GAM attention into the Bottleneck module, effectively suppressing the
interference caused by the background.
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3.4. SIoU Loss Function Module

CIoU [30] and DIoU [31] are two commonly used regression loss functions in YOLO.
CIoU builds upon DIoU by adding constraints on aspect ratios, resulting in faster conver-
gence compared to DIoU. SIoU [32], on the other hand, further improves upon CIoU by
redefining the penalty term and introducing angle loss. It achieves a faster training speed
and higher inference accuracy compared to CIoU.

YOLOv5s adopts CIoU as the regression loss function for bounding boxes. CIoU
improves upon DIoU by incorporating scale loss and aspect ratio loss for the bounding
boxes, making the predicted boxes more aligned with the ground truth boxes. However,
CIoU neglects the orientation matching between the ground truth and predicted boxes,
focusing solely on the aggregation of bounding box regression metrics. As a result, its
training speed and prediction accuracy are lower compared to SIoU. Hence, SioU is opted
as the regression loss function for the predicted boxes, encompassing four components:
angle cost, distance cost, shape cost, and IoU cost.

(1) Angle cost

The schematic diagram in Figure 7 illustrates the angle cost, where B represents the
predicted box with center coordinates

(
bcx , bcy

)
, and BGT represents the ground truth box

with center coordinates
(

bgt
cx , bgt

cy

)
. σ represents the distance between the center coordinates

of B and BGT, as denoted by Equation (3). Ch represents the height between the center
coordinates of B and BGT, as expressed by Equation (4). Ch

σ is essentially equal to sin(α),
as indicated by Equation (5). In the end, the formula for angle cost can be obtained, as
depicted in Equation (6). When α equals π

2 or 0, it can be observed that the angle cost is 0.
During the training process, if α < π

4 , α is minimized, otherwise, β is minimized.

σ =

√(
bgt

cx − bcx

)2
+
(

bgt
cy − bcy

)2
(3)

Ch = max
(

bgt
cy , bcy

)
−min

(
bgt

cy , bcy

)
(4)

Ch
σ

= sin(α) (5)
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Λ = 1− 2× sin2
(

arcsin(
Ch
σ
)− π

4

)
(6)
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(2) Distance cost

The distance cost is shown in Figure 8, where B represents the predicted box with
center coordinates

(
bcx , bcy

)
, BGT represents the ground truth box with center coordinates(

bgt
cx , bgt

cy

)
; Cw and Ch denote the width and height of the minimum bounding rectangle

of B and BGT, respectively. The term ρx represents the squared ratio of the difference in
x-axis coordinates between the B and BGT to Cw, while ρy represents the squared ratio of
the difference in y-axis coordinates between B and BGT to Ch, as described by Equation (7).
The final expression of the distance cost is shown in Equation (8).

ρx =

(
bgt

cx − bcx

Cw

)2

, ρy =

(
bgt

cy − bcy

Ch

)2

, γ = 2−Λ (7)

∆ = ∑ t=x,y
(
1− e−γρt

)
(8)
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(3) Shape cost

According to Figure 7, w and h represent the width and height of B, while wgt and hgt

represent the width and height of BGT, respectively. ωw represents the absolute difference
between w and wgt divided by the maximum value between w and wgt, and ωh represents
the absolute difference between h and hgt divided by the maximum value between h and
hgt, as shown in Equation (9). The term θ represents the importance of the shape cost. The
final expression of the shape cost can be obtained as shown in Equation (10).

ωw =

∣∣w− wgt
∣∣

max(w, wgt)
, ωh =

∣∣h− hgt
∣∣

max(h, hgt)
(9)
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Ω = ∑
t=w,h

(
1− e−wt

)θ (10)

(4) IoU cost

According to Figure 9, B ∩ BGT and B ∪ BGT represent the intersection and union of B
and BGT , respectively. The IoU expression is shown in Equation (11). Ultimately, the total
loss value can be obtained as shown in Equation (12).

IoU =
B ∩ BGT

B ∪ BGT (11)

LSIoU = 1− IoU +
∆ + Ω

2
(12)
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3.5. BiFPN Module

The FPN [33] has been extensively used for multi-scale feature fusion since its intro-
duction, leading to the development of various cross-scale feature fusion networks such as
PANet [34] and NAS-FPN [35]. These networks typically treat inputs from different scales
equally. BiFPN [36] enhances FPN by incorporating learnable weights that help determine
the significance of various input features, thus achieving a better balance of information
across different scales. Hence, this paper utilizes BiFPN to substitute the feature fusion
approach in the Neck section. Figure 10 provides an illustration of the structure of the
BiFPN model, where P1, P2, and P3 represent features of different scales generated by the
Backbone part. BiFPN_Add2 and BiFPN_Add3 are feature fusion modules that combine
features from the current layer and the preceding layer, employing weighted aggregation
for fusion.

Remote Sens. 2023, 15, x FOR PEER REVIEW 11 of 21 
 

 

 
Figure 9. Illustration of Intersection and Union. 

3.5. BiFPN Module 
The FPN [33] has been extensively used for multi-scale feature fusion since its intro-

duction, leading to the development of various cross-scale feature fusion networks such 
as PANet [34] and NAS-FPN [35]. These networks typically treat inputs from different 
scales equally. BiFPN [36] enhances FPN by incorporating learnable weights that help de-
termine the significance of various input features, thus achieving a better balance of infor-
mation across different scales. Hence, this paper utilizes BiFPN to substitute the feature 
fusion approach in the Neck section. Figure 10 provides an illustration of the structure of 
the BiFPN model, where P1, P2, and P3 represent features of different scales generated by 
the Backbone part. BiFPN_Add2 and BiFPN_Add3 are feature fusion modules that com-
bine features from the current layer and the preceding layer, employing weighted aggre-
gation for fusion. 

 
Figure 10. Architecture of the BiFPN module. 

3.6. CSL (Circular Smooth Label) Module 
YOLOv5s is a conventional object detector that primarily focuses on horizontal box 

detection and lacks the ability to handle uncertain object orientations in HSRIs. To over-
come this limitation, this paper suggests integrating the CSL module into YOLOv5s, al-
lowing for the prediction of target orientations. CSL transforms the defined range of an-
gles into categories and achieves more robust angle prediction through classification. 
Please refer to Figure 11 for visualization. In the figure, the lines of different colors repre-
sent different window functions, where the yellow line represents the pulse function, the 
green line represents the rectangular function, the blue line represents the triangular func-
tion, and the red line represents the Gaussian function. 

Figure 10. Architecture of the BiFPN module.

3.6. CSL (Circular Smooth Label) Module

YOLOv5s is a conventional object detector that primarily focuses on horizontal box
detection and lacks the ability to handle uncertain object orientations in HSRIs. To overcome
this limitation, this paper suggests integrating the CSL module into YOLOv5s, allowing
for the prediction of target orientations. CSL transforms the defined range of angles into
categories and achieves more robust angle prediction through classification. Please refer
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to Figure 11 for visualization. In the figure, the lines of different colors represent different
window functions, where the yellow line represents the pulse function, the green line
represents the rectangular function, the blue line represents the triangular function, and
the red line represents the Gaussian function.
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CSL consists of cyclic circular label encoding, where the assigned label values are
smooth and have a certain variance. The expression for CSL is as follows:

CSL(x) =
{

g(x),
0,

θ − r < x < θ + r
otherwise

}
(13)

The function g(x) symbolizes a window function, with the radius θ of the window
function correlating to the angle of the current bounding box. A desirable window func-
tion exhibits the following characteristics: periodicity, symmetry, maximum value, and
monotonicity. Commonly used window functions include the pulse function, rectangular
function, triangular function, and Gaussian function. From Figure 11, it can be seen that
the label values are continuous at the boundaries and are not affected by the periodicity of
CSL, thus avoiding accuracy errors.

3.7. IDetect Module

Human analysis of the same object can be conducted from multiple perspectives.
However, when training convolutional neural networks, typically only one perspective is
provided, making it difficult for the obtained features to be applicable to other tasks. The
primary factor contributing to this problem is that the model solely focuses on extracting
neural features while neglecting the acquisition and utilization of implicit knowledge,
which holds significant value in analyzing diverse tasks.

In the context of neural networks, the shallow features observed by the network,
which correspond to explicit knowledge, are commonly referred to as explicit knowledge.
The deep features, which are unobservable and unrelated to observations, are defined
as implicit knowledge. As a result, the IDetect module is developed in this paper to
blend implicit knowledge and explicit knowledge within the Head section, leading to
a notable enhancement in the algorithm’s overall performance. As shown in Figure 12,
the structure of the IDetect module is divided into two branches: training and inference.
During training, the input data are first fused through the ImplicitA module (initialized
as a learnable variable with a value of 0) using addition. It then passes through the Conv
module to adjust the output channels. Finally, it undergoes multiplication fusion through
the ImplicitM module (initialized as a learnable variable with a value of 1) to obtain the
output result. During inference, only one layer of the Conv module is applied to adjust the
output channels.
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4. Experiments

The experimental setup utilized CUDA 10.0 as the computing platform, Ubuntu 18.04
as the operating system, Intel i7-7700K as the processor, NVIDIA GTX 3090 with 24 GB of
VRAM as the graphics card, and PyTorch 1.10.0 as the DL framework. The performance of
the algorithm is assessed using two datasets specific to detect objects in HSRIs: HRSC2016
and UCAS-AOD.

4.1. Dataset

HRSC2016, which was introduced by Northwestern Polytechnical University in 2016,
is acknowledged as one of the most challenging datasets for detecting ships in remote
sensing. The dataset comprises 1061 HSRIs obtained from Google Earth, accompanied by
2976 instances annotated with rotated bounding boxes to facilitate the detection of targets.
The dataset encompasses images with diverse resolutions, ranging from 2 m to 0.4 m. The
images encompass a range of sizes, spanning from 300 × 300 to 1500 × 900, with a majority
of them exceeding dimensions of 1000× 600. For the experimental setup, single-class object
recognition is conducted using three different sets of images. The training set comprises
436 images, with a total of 1207 samples. The validation set comprises 181 images, with a
total of 541 samples. Lastly, the test set comprises 444 images, with a total of 1228 samples.
Figure 13 displays a subset of the HRSC2016 dataset, highlighting the significant scale
variations and complex background challenges present in remote sensing images.
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UCAS-AOD is a dataset specifically designed for aircraft and car detection, con-
sisting of 1000 images containing 7482 instances of aircraft and 510 images containing
7114 instances of cars. The dataset is split into training, validation, and test sets in a ratio
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of 5:2:3. The training set consists of 755 images, the validation set contains 302 images,
and the test set comprises 453 images. All images have dimensions close to 1280 × 659.
Figure 14 displays a subset of the UCAS-AOD dataset, primarily highlighting the dense
arrangement of objects and the issue of orientation uncertainty in HSRIs.
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4.2. Experimental Parameter Settings

The Adam optimizer is employed in the experiments, using a momentum coefficient
of 0.937 and a learning rate of 0.001. The IoU thresholds are set to 0.10, 0.20, 0.25, and 0.30,
while the confidence thresholds for detecting targets are set to 0.10, 0.20, 0.30, and 0.40.
The model’s loss values reached a stable state after 350 iterations on the two experimental
datasets, as illustrated in Figure 15. Hence, the number of iterations is set to 400.

Remote Sens. 2023, 15, x FOR PEER REVIEW 14 of 21 
 

 

instances of cars. The dataset is split into training, validation, and test sets in a ratio of 
5:2:3. The training set consists of 755 images, the validation set contains 302 images, and 
the test set comprises 453 images. All images have dimensions close to 1280 × 659. Figure 
14 displays a subset of the UCAS-AOD dataset, primarily highlighting the dense arrange-
ment of objects and the issue of orientation uncertainty in HSRIs. 

 
Figure 14. Sample images from the UCAS-AOD dataset. 

4.2. Experimental Parameter Settings 
The Adam optimizer is employed in the experiments, using a momentum coefficient 

of 0.937 and a learning rate of 0.001. The IoU thresholds are set to 0.10, 0.20, 0.25, and 0.30, 
while the confidence thresholds for detecting targets are set to 0.10, 0.20, 0.30, and 0.40. 
The model’s loss values reached a stable state after 350 iterations on the two experimental 
datasets, as illustrated in Figure 15. Hence, the number of iterations is set to 400. 

 
Figure 15. Loss function curves for the HRSC2016 and UCAS-AOD datasets. 

4.3. Experimental Evaluation Metrics 
The Intersect Over Union (IoU) threshold has a direct impact on the output prediction 

frame, with a higher threshold typically resulting in improved prediction accuracy. In this 
experiment, the mean Average Precision (mAP) metric is employed as the main evaluation 

Figure 15. Loss function curves for the HRSC2016 and UCAS-AOD datasets.

4.3. Experimental Evaluation Metrics

The Intersect Over Union (IoU) threshold has a direct impact on the output prediction
frame, with a higher threshold typically resulting in improved prediction accuracy. In this
experiment, the mean Average Precision (mAP) metric is employed as the main evaluation
indicator. mAP is calculated based on the precision–recall (P-R) curve in multi-class OD,
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measuring the accuracy and recall for each class individually. The precision (P), recall (R),
and mAP values are computed using Formulas (14)–(16).

P =
TP

TP + FP
(14)

R =
TP

TP + FN
(15)

mAP =
1
K∑K

K=1 AP(P, R, K) (16)

Among these, TP represents true positives, which signifies the count of correctly
detected positive samples. False positives, denoted as FP, represent the count of nega-
tive samples erroneously identified as positive detections. FN represents false negatives,
indicating the count of positive samples erroneously identified as negative detections.
K represents the count of target classes, whereas AP denotes the average precision.

4.4. Analysis of Experimental Results
4.4.1. Analysis of the Experimental Results on HRSC2016

The precision comparison results of the proposed OD algorithm, when evaluated
against state-of-the-art one-stage and two-stage OD algorithms, are displayed in Table 1.
Figure 16 exhibits the chosen detection results achieved by the proposed OD algorithm.

Table 1. Accuracy comparison of different OD algorithms on the HRSC2016 dataset.

Algorithms Backbone Size Number of Anchors mAP (%)

Two-stage:
R2CNN [9] ResNet101 800 × 800 21 73.07

RC1 and RC2 [38] VGG16 - - 75.70
RRPN [39] ResNet101 800 × 800 54 79.08
R2PN [11] VGG16 - 24 79.60

RoITrans [10] ResNet101 512 × 800 5 86.20
Gliding Vertex [40] ResNet101 512 × 800 5 88.20

One-stage:
RRD [41] VGG16 384 × 384 13 84.30

R3Det [17] ResNet101 800 × 800 21 89.26
R-Retinanet [14] ResNet101 800 × 800 121 89.18

PIOU [42] DLA-34 512 × 512 - 89.20
R3Det-DCL [43] ResNet101 800 × 800 21 89.46
FPN-CSL [37] ResNet101 800 × 800 21 89.62

DAL [15] ResNet101 800 × 800 3 89.77
S2A-Net [18] ResNet101 1024 × 1024 1 90.17

BBAVectors [44] ResNet101 608 × 608 - 88.60
YOLOv6 [26] EfficientRep 1024 × 1024 - 85.42
YOLOv7 [27] ELAN-Net 1024 × 1024 3 86.11

YOLOv8 CSP-DarkNet 1024 × 1024 - 85.70
Ours YOLOv5s 1024 × 1024 3 90.29

Based on the data displayed in Table 1, the proposed algorithm outperforms all the
compared algorithms, achieving an mAP of 90.29%. Compared to the algorithms in Table 1,
our algorithm performs OD on large-scale images of 1024 × 1024, which is advantageous
for object recognition. By using a preset number of three Anchors, the algorithm effectively
reduces computational complexity and achieves higher detection accuracy at a lower cost.

Based on Table 1, the Gliding Vertex algorithm, a two-stage object detection algorithm,
achieves the highest detection accuracy of 88.20%, which is improved by 2.09% compared
to our algorithm, while the number of predefined prior boxes in our algorithm is also
fewer than in Gliding Vertex. Our algorithm outperforms the compared two-stage object
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detection algorithms in the table by a significant margin. When comparing with the one-
stage object detection algorithms in the table, we also achieve a 0.12% improvement in
accuracy compared to the highest-performing S2A-Net.
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Furthermore, we compared our algorithm with representative one-stage object de-
tection algorithms such as YOLOv6, YOLOv7, and YOLOv8. Our algorithm outperforms
YOLOv6, YOLOv7, and YOLOv8 by 4.87%, 4.18%, and 4.59% in terms of accuracy im-
provement, respectively, indicating that their direct application to HSRIs is not effective.
The YOLO series algorithms are primarily developed for conventional datasets, while
HSRIs present greater challenges due to large object aspect ratios, complex backgrounds,
and frequent object clustering. Therefore, conventional horizontal box object detection
algorithms like the YOLO series cannot achieve the desired results when they are applied
to HSRIs.

It is evident that the proposed algorithm demonstrates impressive detection perfor-
mance when dealing with objects that exhibit significant scale variations when the detection
results depicted in Figure 16 are examined. This observation highlights the effectiveness
of integrating the RepConv, Transformer Encoder, and BiFPN modules into the algorithm.
The algorithm also demonstrates efficient and accurate detection capabilities for objects
in complex backgrounds, highlighting the effectiveness of utilizing the GAM and SIoU
modules. In light of the aforementioned analysis, it can be inferred that our algorithm
exhibits strong performance in detecting objects across a wide range of scales or in complex
backgrounds. This provides validation for the effectiveness of the proposed approach.

4.4.2. Analysis of the Experimental Results on UCAS-AOD

Experiments were conducted to compare our algorithm with the latest OD algorithms.
The precision comparison results for each algorithm are displayed in Table 2. The partial
detection results of our algorithm on the UCAS-AOD dataset are depicted in Figure 17.
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Table 2. Comparison of accuracy of different OD algorithms on the UCAS-AOD dataset.

Algorithms Car (%) Airplane (%) mAP (%)

YOLOv3-O [21] 74.63 89.52 82.08
RetinaNet-O [14] 84.64 90.51 87.57

Faster R-CNN-O [6] 86.87 89.86 88.36
RoITrans [10] 87.99 89.90 88.95

DAL [15] 89.25 90.49 89.87
YOLOv6 [26] 88.96 90.46 89.71
YOLOv7 [27] 89.05 90.42 89.73

YOLOv8 89.28 90.45 89.87
Ours 89.60 90.53 90.06
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According to Table 2, the detection accuracy of our algorithm for Car and Airplane
reaches 89.60% and 90.53%, respectively, with an overall mAP of 90.06%, which is higher
than all the compared algorithms. The detection results depicted in Figure 17 demonstrate
the strong performance of our algorithm in detecting densely arranged objects, confirming
the effectiveness of the GAM and SIoU modules introduced in this paper. It also exhibits ef-
ficient and accurate detection capability for objects with uncertain orientations, confirming
the effectiveness of the circular smooth label approach for handling angle-related issues. Ac-
cording to the aforementioned analysis, it can be inferred that our algorithm exhibits strong
detection performance for densely arranged objects and objects with uncertain orientations.
This outcome serves as evidence for the effectiveness of the proposed approach.

Furthermore, we compared our algorithm with YOLOv6, YOLOv7, and YOLOv8
in terms of accuracy. YOLOv8 achieves the highest detection accuracy of 89.28% for the
“Car” category, while YOLOv6 achieves the highest detection accuracy of 90.46% for the
“Airplane” category. In comparison, our algorithm demonstrates accuracy improvements
of 0.32% and 0.07%, respectively, providing further evidence of the effectiveness of our
algorithm compared to YOLOv6, YOLOv7, and YOLOv8.
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4.5. Ablation Experiments

To evaluate the rationality and effectiveness of the recently incorporated functional
modules in our OD algorithm, we perform ablation experiments on the two experimental
datasets. Tables 3 and 4 display the experimental findings. On the HRSC2016 dataset, the
baseline model YOLOv5s achieved an mAP of 88.57%. As shown in Table 3, the introduction
of the SIoU, GAM, Transformer Encoder, BiFPN, RepConv, and IDetect modules resulted
in mAP improvements of 0.46%, 0.52%, 0.25%, 0.27%, 0.05%, and 0.17%, respectively. The
proposed algorithm achieved an mAP of 90.29%.

Table 3. The recognition accuracy changes with the increase in modules in the HRSC2016 dataset.

Different Variants

SIoU
√ √ √ √ √ √

GAM
√ √ √ √ √

Transformer Encoder
√ √ √ √

BiFPN
√ √ √

RepConv
√ √

IDetect
√

mAP(%) 89.03 89.55 89.80 90.07 90.12 90.29

Table 4. The recognition accuracy changes with the increase in modules in the UCAS-AOD dataset.

Different Variants

SIoU
√ √ √ √ √ √

GAM
√ √ √ √ √

Transformer Encoder
√ √ √ √

BiFPN
√ √ √

RepConv
√ √

IDetect
√

mAP(%) 87.32 87.93 88.60 89.44 89.91 90.06

The baseline model YOLOv5s achieved an mAP of 86.90% on the UCAS-AOD dataset.
Similarly, as shown in Table 4, the introduction of the SIoU, GAM, Transformer Encoder,
BiFPN, RepConv, and IDetect modules resulted in mAP improvements of 0.42%, 0.61%,
0.67%, 0.84%, 0.47%, and 0.15%, respectively. The proposed algorithm achieved an mAP of
90.06%. By analyzing both Tables 3 and 4, the positive impact of each newly introduced
functional module in our algorithm on improving the accuracy of object recognition in
HSRIs can be observed.

5. Conclusions and Future Works

OD in HSRIs encounters various challenges due to the intricate nature of the earth’s
surface and the specific shooting distances and angles involved. The neglect of specific
characteristics of HSRIs often leads to the failure of conventional OD algorithms to meet
application requirements. In response to this, the present paper introduces an enhanced OD
algorithm based on YOLOv5 specifically designed for HSRIs. By incorporating multiple
functional modules, this algorithm preserves the strong OD capability of the original
YOLOv5 while significantly improving the accuracy in detecting objects with diverse scales,
complex backgrounds, dense arrangements, and uncertain orientations within HSRIs. By
demonstrating a high detection accuracy on the two experimental HSRI datasets, the
proposed algorithm’s effectiveness is validated. Nonetheless, the algorithm continues to
experience instances of overlooking small objects and exhibits a comparatively lengthy
processing time.
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To tackle the problem of missed detections for certain small objects in this study, our
forthcoming efforts will concentrate on enhancing the precision of small object detection.
This will be accomplished by employing multi-scale detection, improving feature repre-
sentation, and implementing techniques such as data augmentation and sample balancing.
Meanwhile, it is crucial to invest efforts in the development of OD algorithms for HSRIs
that are both fast and accurate. Our plan entails exploring pruning and distillation tech-
niques to not only optimize model performance and achieve exceptional results but also to
minimize processing time. Conducting research on faster and more accurate OD algorithms
can effectively cater to the requirements of real-world applications that involve extensive
HSRI datasets.
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