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Abstract: The unique spatial–spectral integration characteristics of hyperspectral imagery (HSI) make
it widely applicable in many fields. The spatial–spectral feature fusion-based HSI classification has
always been a research hotspot. Typically, classification methods based on spatial–spectral features
will select larger neighborhood windows to extract more spatial features for classification. However,
this approach can also lead to the problem of non-independent training and testing sets to a certain
extent. This paper proposes a spatial shuffle strategy that selects a smaller neighborhood window
and randomly shuffles the pixels within the window. This strategy simulates the potential patterns of
the pixel distribution in the real world as much as possible. Then, the samples of a three-dimensional
HSI cube is transformed into two-dimensional images. Training with a simple CNN model that
is not optimized for architecture can still achieve very high classification accuracy, indicating that
the proposed method of this paper has considerable performance-improvement potential. The
experimental results also indicate that the smaller neighborhood windows can achieve the same, or
even better, classification performance compared to larger neighborhood windows.
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1. Introduction

The emergence and rapid development of hyperspectral remote sensing technology
enables one to analyze and understand geological formations and has also prompted
the development of aerospace detection technology. Hyperspectral imagery (HSI) has
important applications in disaster assessment [1], biochemistry detection [2], vegetation
analysis [3], environmental monitoring [4], atmospheric characterization [5], and geological
mapping [6], as well as many military applications [7,8].

HSI classification generally refers to the pixel-level classification of HSI data, in which
the spectral information of each pixel is an important basis. The data processing of HSI
data can be simply divided into two steps: spectral feature extraction and spatial feature
extraction. The spectral feature extraction of images has been widely applied and expanded
in many fields from the beginning, and as an important research component, the spatial
information features have also gradually received more attention and emphasis.

The structure-filtering-based HSI classification method is one of the earliest and most
extensively studied methods [9], which directly acquires the spatial features of the image
through spatial structure filtering. Considering the high-dimensional characteristics of
HSI, the sparse representation model has also been introduced [10]. However, the sparse
representation model has a high requirement for the completeness of the dictionary and is
therefore not suitable for small-sample scenarios. A segmentation-based HSI classification
method has been proposed to combine spatial and spectral information through segmen-
tation [11], and probability-based methods are also employed to obtain the best category
for a specific pixel using statistical methods [12]. In addition to using a single classifier
to implement HSI classification, the use of classifier ensembles (multiple classifiers) can
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improve classification accuracy [13]. Random forest (RF) is one of the most famous mod-
els among ensemble methods and has been widely used in HSI data because it does not
assume any potential probability distribution of the input data [14]. The rotation forest
is proposed based on the concept of RF and achieves better classification results than the
original random forest [15].

The prosperous development of the deep-learning (DL) field has attracted worldwide
attention in recent years, and DL algorithms have been applied by scholars to super-
vised HSI classification. In terms of extracting spectral features, one-dimensional con-
volutional neural networks (1D CNNs) were first used for the classification of HSI [16].
Two-dimensional CNNs (2D CNNs) [17] and three-dimensional CNNs (3D CNNs) [18],
which integrate spatial and spectral features, have also filled the gap of using the spatial–
spectral fusion to complete HSI classification. In addition to CNNs, recurrent neural
networks (RNNs) [19], graph convolutional networks (GCNs) [20], autoencoders (AEs) [21],
generative adversarial networks (GANs) [22], and capsule networks (CapsNet) [23], have
been used for feature extraction and classification, providing new approaches to solve the
problem of HSI classification. The cascaded RNN model models spectral sequences by
considering the relationships between adjacent bands, achieving high classification accu-
racy [24]. Building upon a comparison between CNN and GCN for hyperspectral image
classification, a method called mini-batch GCN (miniGCNs) has achieved state-of-the-art
classification performance [25]. From a sequence perspective, a new backbone network
called SpectralFormer is proposed based on transformer architecture, significantly improv-
ing the ability to represent spectral sequence information, particularly in capturing subtle
spectral differences along the spectral direction [26]. In contrast to supervised learning,
semi-supervised learning and unsupervised learning do not solely rely on label information
to achieve feature learning. They use information from a large amount of unlabeled data to
guide model construction [27–30].

In addition to conventional semi-supervised learning, scholars have proposed the
concept of few-shot learning and applied it to the field of high-spectral image classification.
Zhang et al. first proposed the global prototype network to achieve few-shot learning
in high-spectral imaging [31], while Gao et al. proposed a deep relational network for
few-shot learning in high-spectral imaging [32]. Li et al. focused on the transfer of inter-
domain information and proposed a deep cross-domain few-shot learning method [33].
These few-shot learning methods mainly study the cross-domain transfer of information,
attempting to learn knowledge from a small amount of source domain samples that can
be transferred to the target domain using known category information to help identify
unseen categories or classes with extremely limited sample sizes. This research direction
has profound practical significance, but it is still in its infancy and further exploration is
needed.

Among many algorithms in few-shot learning, spectral–spatial fusion is a commonly
used technique. For a pixel sample, pixels within an N × N neighborhood around the pixel
are selected as a sample, the spatial and spectral features of the sample are extracted and
fused, and then input into a pre-designed classification algorithm. Therefore, choosing a
suitable neighborhood range, N, has a significant impact on the final classification accuracy.
Paoletti et al. [34] used a 19 × 19 patch input for 2D CNN and 3D CNN, Ghamisi et al. [35]
used a 27 × 27 patch for HSI classification, and the transfer learning model by Yosinski et al.
employed a 32 × 32 patch [36], all of which achieved high classification performance.
Moreover, larger patch sizes perform significantly better than smaller ones. Although
larger patch sizes can provide more spatial features, neighborhood pixel features besides
the center pixel in the patch are also trained in advance during the training process of
the patch, which may result in the testing samples being trained in advance, causing the
testing set and training set to be non-independent. Although smaller patch sizes may also
have this pre-training issue, the degree is much smaller, making it more difficult to achieve
higher classification accuracy. Therefore, developing methods for small patch sizes is more
theoretically rigorous.
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Due to the small sample size, there is a risk of overfitting when employing few-shot
learning methods that use DL models. Therefore, effectively augmenting samples is an
important issue. A deep CNN-based pixel-pair feature model (PPF) is proposed using pixel
pairs composed of central pixels and neighboring pixels to build a CNN model [37] and
achieves high-spectral image-classification accuracy using a majority vote strategy. The
method achieved good results on small 5 × 5 patches. Inspired by this approach, a spatial
shuffle scheme is proposed for small patches based on the spatial structure of neighboring
pixels. Using the basic CNN architecture with this foundation can achieve a relatively high
classification accuracy.

The remainder of this paper is structured as follows. The spatial shuffle scheme
is described in Section 2, while the basic CNN architecture is introduced in Section 3.
Comparative experiments are presented in Section 4. We provide further conclusions,
including a brief summary of our work, in the last section, i.e., Section 5.

2. Proposed Method
2.1. Spatial Shuffle

Due to the sensitivity of sensor photodetectors, HSI often exhibits phenomena of the
“same object different spectrum” and “different objects same spectrum”, whereby each pixel
may contain multiple land cover types, resulting in a scarcity of pure pixels. According to
the first law of geography, the closer the distance between objects in space is, the greater
their similarity is. Therefore, in a neighborhood, the distribution of surrounding pixels
can be used to infer the attributes of the central pixel. For example, when all surrounding
pixels belong to a certain land cover category, the probability that the central pixel also
belongs to that category is higher. Based on this principle, this paper proposes the spatial
shuffle strategy, which performs a random shuffle operation on the other neighboring
pixels, except for the central pixel. Each operation forms a new spatial distribution, which
may represent a potential land cover distribution pattern in the real world. By simulating
as many potential distribution patterns as possible, the spatial combination rules between
the central and neighboring pixels can be learned, thereby improving the deep model’s
ability to describe and recognize spatial relationships in the neighborhood.

Specifically, for a neighborhood size of N × N, there are N × N − 1 pixels, excluding
the central pixel. While keeping the position of the central pixel unchanged, a random
shuffle is performed on the other N × N − 1 pixels, resulting in a new sequence as shown
in Figure 1 below.
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According to the rules of permutation and combination, it can be determined that
when N = 3, there are a total of 8! = 40,320 potential patterns; meanwhile, when N = 5,
there are a total of 24! = 6.2 × 1023 potential patterns. Given M samples, theoretically,
M × (N × N − 1)! samples can be generated, greatly expanding the number of samples.
Although there is still a significant similarity between the samples, as a potential distri-
bution pattern describing the real world, it can provide DL models with more learning
capabilities.

However, it is impossible to generate M × (N × N − 1)! new samples in the actual
application process, which will result in significant memory and graphics memory con-
sumption. Therefore, this paper adopts a compromise-based solution, setting the total
sample number for each category as K, assuming the category has M samples. K/M spatial
shuffle operations are performed for each sample to ensure that the total number of samples
for all categories is the same. This paper sets K = 100,000, and different K values can be
chosen according to the actual situation.

2.2. Basic CNN

To test the effect of a spatial shuffle on classification performance, this paper outlines
a basic CNN architecture of a convolution + BN + ReLU + Maxpooling design, without
any structural optimization. The datasets used are Indian Pines (IP), Salinas Valley (SV),
and University of Pavia (UP), which are widely used and publicly available, with 200,
204, and 103 effective bands, respectively. A sample with an N × N neighborhood and B
bands is flattened into an image with B width and N × N after each spatial shuffle, thus
transforming the three-dimensional cube of N × N × B into a two-dimensional image.
For example, for the Indian Pines dataset, if N = 5, each sample is transformed into a
25 × 200 image for subsequent CNN network training.

As the band number in the three datasets is inconsistent, to maintain the original data
dimensions, we designed the following three deep CNN networks in Table 1 for use with
5 × 5 patches:

Table 1. The basic CNN networks used for 5 × 5 patches.

IP SV UP

Seq_1 Conv-BN-ReLU, (1 × 3), 32 Conv-BN-ReLU, (1 × 3), 32 Conv-BN-ReLU, (1 × 3), 32
Conv-BN-ReLU, (1 × 3), 32 Conv-BN-ReLU, (1 × 3), 32 Conv-BN-ReLU, (1 × 3), 32
Conv-BN-ReLU, (1 × 3), 32 Conv-BN-ReLU, (1 × 3), 32 Conv-BN-ReLU, (1 × 3), 32
Conv-BN-ReLU, (1 × 3), 32 Conv-BN-ReLU, (1 × 3), 32 Conv-BN-ReLU, (1 × 3), 32
Conv-BN-ReLU, (1 × 3), 32 Conv-BN-ReLU, (1 × 3), 32 Conv-BN-ReLU, (1 × 3), 32
Conv-BN-ReLU, (1 × 3), 32 Conv-BN-ReLU, (1 × 3), 32 Conv-BN-ReLU, (1 × 3), 32

Maxpool_2 × 1 Maxpool_2 × 1 Maxpool_2 × 1
Conv-BN-ReLU, (3 × 1), 32 Conv-BN-ReLU, (3 × 1), 32 Conv-BN-ReLU, (3 × 1), 32
Conv-BN-ReLU, (3 × 1), 32 Conv-BN-ReLU, (3 × 1), 32 Conv-BN-ReLU, (3 × 1), 32

Maxpool_2 × 1 Maxpool_2 × 1 Maxpool_2 × 1
Conv-BN-ReLU, (3 × 1), 32 Conv-BN-ReLU, (3 × 1), 32 Conv-BN-ReLU, (3 × 1), 32

Maxpool_1 × 2 Maxpool_1 × 2 Maxpool_1 × 2
Seq_2 Conv-BN-ReLU, (1 × 3), 32 Conv-BN-ReLU, (1 × 3), 32 Conv-BN-ReLU, (1 × 3), 32

Conv-BN-ReLU, (1 × 3), 32 Conv-BN-ReLU, (1 × 3), 32 Conv-BN-ReLU, (1 × 3), 32
Conv-BN-ReLU, (1 × 3), 32 Conv-BN-ReLU, (1 × 3), 32 Conv-BN-ReLU, (1 × 3), 32

Maxpool_1 × 2 Maxpool_1 × 2 Maxpool_1 × 2
Seq_3 Conv-BN-ReLU, (1 × 3), 64 Conv-BN-ReLU, (1 × 3), 64 Conv-BN-ReLU, (1 × 3), 64

Conv-BN-ReLU, (1 × 3), 64 Conv-BN-ReLU, (1 × 3), 64 Conv-BN-ReLU, (1 × 3), 64
Conv-BN-ReLU, (1 × 3), 64 Conv-BN-ReLU, (1 × 3), 64 Maxpool_1 × 2

Maxpool_1 × 2 Maxpool_1 × 2
Seq_4 Conv-BN-ReLU, (1 × 3), 64 Conv-BN-ReLU, (1 × 3), 64 Conv-BN-ReLU, (1 × 3), 64

Conv-BN-ReLU, (1 × 3), 64 Conv-BN-ReLU, (1 × 3), 64 Conv-BN-ReLU, (1 × 3), 64
Conv-BN-ReLU, (1 × 3), 64 Conv-BN-ReLU, (1 × 3), 64 Conv-BN-ReLU, (1 × 3), 64

Maxpool_1 × 2 Maxpool_1 × 2
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Table 1. Cont.

IP SV UP

Seq_5 Conv-BN-ReLU, (1 × 3), 64 Conv-BN-ReLU, (1 × 3), 64
Conv-BN-ReLU, (1 × 3), 64 Conv-BN-ReLU, (1 × 3), 64

Conv-BN-ReLU, (1 × 3), 64
Seq_6 FC-64 FC-64 FC-64

FC-classnum FC-classnum FC-classnum

The term Conv-BN-ReLU refers to each convolution layer that was followed by a batch
normalization (BN) layer and rectified linear unit (ReLU) layer. Furthermore, (1 × 3) refers
to the use of a convolution kernel size of 1 × 3, while 32 and 64 indicate the use of 32 and
64 convolution kernels, respectively. Similar to the VGG network, the network designed in
this paper used a large number of small convolution kernels of 1 × 3 or 3 × 1 to achieve
an equivalent field of view to that of a larger convolution kernel, while also reducing the
number of parameters.

Taking the network for IP dataset as an example, with an input size of 25 × 200, we
can see from the network structure that in Seq_1, four 1 × 3 convolution kernels were first
used to extract features within the width dimension, reducing the dimensions to 25 × 192.
Then, two 3 × 1 convolution kernels were used to convolve within the height dimension,
reducing the dimensions to 21 × 192. After passing through the first 2 × 1 Maxpooling, the
dimensions became 10 × 192. After two 3 × 1 convolution layers and 2 × 1 Maxpooling, the
dimensions became 3 × 192. Finally, after passing through a 3 × 1 convolution layer and a
1 × 2 Maxpooling, the dimensions became 1 × 96. After Seq_2 to Seq_5, the dimensions
became 1 × 45, 1 × 19, 1 × 6, and 1 × 1, respectively. After passing through the two fully
connected layers in Seq_6 and Softmax, we received classnum classification results. The
network structures of the other two datasets were essentially the same as that of Indian
Pines, with some layers having different kernel numbers and convolutional layers due to
differences in the number of bands.

From the above structure, we can see that the role of Seq_1 is to extract features from
the height dimension, which can be understood as extracting spatial features of HSI in the
neighborhood. The subsequent layers extracted spectral features of the sample. By the
combination of spatial and spectral features, the category classification for each sample was
formed.

3. Experiments and Results
3.1. Dataset

We used three publicly available HSI datasets, i.e., IP, SV, and UP, to demonstrate the
effectiveness and generalization of the proposed method and compared its performance
with commonly used methods. For each dataset, the values were first normalized to the
range of 0–1. Then, for each class, 200 pixels and their surrounding 5 × 5 neighborhoods
were randomly selected as the training samples, and the remaining pixels were used as the
testing samples. These settings are the same as those in [37].

The IP dataset was obtained in northwestern Indiana, using the airborne visible
infrared imaging spectrometer (AVIRIS) sensor. The original dataset had 224 bands, and
after removing bands 104–108, 150–163, and 220 that contained voids or water vapor
absorption, 220 bands were left. The spectral range was 0.4 to 2.5 µm. The spatial resolution
was 20 m, and the image size was 145 × 145. The annotated ground truth contained 16 land
cover categories, such as crops, forests, etc., with a total of 10,249 pixels, accounting for
about half of the total pixels. However, the pixel number in seven categories was too
small [38]; thus, this paper selected nine other categories for experimentation. The selected
classes and their sample sizes are shown in Table 2 below.
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Table 2. The samples chosen from IP dataset.

No. Class Name Training Num Testing Num All Num

0 Background - - 10,776
1 Alfalfa - - 46
2 Corn-notill 200 1228 1428
3 Corn-min 200 630 830
4 Corn - - 237
5 Grass/Pasture 200 283 483
6 Grass/Trees 200 530 730
7 Grass/pasture-mowed - - 28
8 Hay-windrowed 200 278 478
9 Oats - - 20

10 Soybeans-notill 200 772 972
11 Soybeans-min 200 2255 2455
12 Soybean-clean 200 393 593
13 Wheat - - 205
14 Woods 200 1065 1265
15 Bldg-Grass-Tree-Drives - - 386
16 Stone-steel towers - - 93

Total 1800 7434 21,025

The SV dataset was also collected using the AVIRIS sensor and located in the Salinas
Valley, California. After removing 20 bands containing water vapor and noise, 204 bands
were left with a data size of 512 × 217. The spatial resolution was 3.7 m. There were 16 land
cover categories in the ground truth map, and specific land cover types and pixel numbers
were in Table 3 as follows:

Table 3. The samples chosen from SV dataset.

No. Class Name Training Num Testing Num All Num

0 Background - - 56,975
1 Brocoli-gree-weeds-1 200 1809 2009
2 Brocoli-gree-weeds-2 200 3526 3726
3 Fallow 200 1776 1976
4 Fallow-rough-plow 200 1194 1394
5 Fallow-smooth 200 2478 2678
6 Stubble 200 3759 3959
7 Celery 200 3379 3579
8 Grapes-untrained 200 11,071 11,271
9 Soil-vinyard-develop 200 6003 6203
10 Corn-senesced-green-weeds 200 3078 3278
11 Lettuce-romaine-4wk 200 868 1068
12 Lettuce-romaine-5wk 200 1727 1927
13 Lettuce-romaine-6wk 200 716 916
14 Lettuce-romaine-7wk 200 870 1070
15 Vinyard-untrained 200 7068 7268
16 Vinyard-vertical-trellis 200 1607 1807

Total 3200 50,929 111,104

The UP dataset was obtained using the reflective optics system imaging spectrometer
(ROSIS) sensor, covering part of the University of Pavia campus in the north of Italy. The
noise and other unwanted bands were removed, and only 103 bands remained. The image
size was 610 × 340 and the spatial resolution was 1.3 m. The spectral range was between
0.43 and 0.86 µm. About 20% of the pixels were labeled with ground truth, including
various urban structures, soils, natural targets, and shadows. The specific number of pixels
was in Table 4 as follows:
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Table 4. The samples chosen from UP dataset.

No. Class Name Training Num Testing Num All Num

0 Background - - 164,624
1 Asphalt 200 6431 6631
2 Meadows 200 18,449 18,649
3 Gravel 200 1899 2099
4 Trees 200 2864 3064
5 Painted metal sheets 200 1145 1345
6 Bare Soil 200 4829 5029
7 Bitumen 200 1130 1330
8 Self-Blocking Bricks 200 3482 3682
9 Shadows 200 747 947

Total 1800 40,976 207,400

3.2. Parameter Settings

The software environment used for the experiments in this paper was Pytorch 1.0 and
Python 3.6. The GPU hardware was NVIDIA TITAN XP, with a single card having 12 GB of
memory. As the focus of this paper was not to design an exceptionally superior DL model,
the model parameters were set based on experience using the Adam optimizer, and the
learning rate was 0.0001. The batch size for the UP dataset was set to 1024, while for the SV
and IP datasets, it was set to 512. The cross-entropy loss was used as the loss function.

For evaluating the effectiveness and accuracy of the proposed approach, various
methods were used, including multinomial logistic regression (MLR) [39], support vector
machines (SVM) [38], extreme learning machines (ELM) [40], random forests (RF) [41],
CNN2D [34], and PPF [37]. The experiments were based on the same training and testing
sets. MLR, SVM, and RF were implemented using the scikit-learn machine-learning library,
while ELM was implemented using the scikit-elm library. Both CNN2D and PPF used a
5 × 5 neighborhood. For CNN2D, two 3 × 3 convolutional layers + BN layer + ReLU layer
were used, followed by a fully connected layer for pixel classification, identical to [34]. The
classification accuracy of various methods was evaluated using the overall accuracy (OA),
average accuracy (AA), and Kappa coefficient. The OA was obtained by calculating the
number of correctly classified pixels divided by the total number of pixels to be classified,
while AA was the arithmetic mean of classification accuracies for each class. The Kappa
coefficient reflects the consistency between the classified image and the ground truth image,
with a range of −1 to 1, typically greater than 0.

3.3. Results on the IP Dataset

Figure 2 below shows the classification performance of various methods on the IP
dataset, from which we can see that all methods perform well within Hay-windrowed
and Grass/Trees classes. With the exception of MLR, other methods also had good results
within the Woods class. However, traditional machine-learning methods (MLR, SVM, RF,
ELM) performed poorly for other classes, with a lot of misclassifications. CNN2D, PPF,
and the proposed method based on DL performed well for all classes, with the proposed
method showing fewer misclassifications, indicating good classification ability.

The Table 5 below shows the classification accuracy of each method on each class,
as well as the OA, AA, and Kappa. From the table, it can be seen that the accuracy of all
methods is close to 100% for the Grass/Trees and Hay-windrowed classes. MLR performed
poorly for other classes, resulting in the lowest overall accuracy and Kappa coefficient.
The performances of SVM and RF were similar, while ELM and CNN2D performed better.
The proposed method performed well for all classes, with the overall accuracy being 3.5%
higher than the second-ranked PPF and about 35% higher than the worst MLR. All these
results show that the proposed method demonstrated higher classification performance.
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Table 5. The classification performance on the IP dataset.

MLR SVM RF ELM CNN2D PPF Proposed

Corn-notill 42.59 63.84 61.97 78.34 88.03 97.31 98.53
Corn-min 37.44 66.20 68.63 81.98 96.19 95.49 99.65

Grass/Pasture 70.52 95.52 92.16 95.15 98.13 99.25 99.25
Grass/Trees 95.28 100.00 98.11 100.00 100.00 99.81 100.00

Hay-windrowed 100.00 100.00 99.64 100.00 100.00 100.00 100.00
Soybeans-notill 62.58 72.10 84.22 85.01 95.31 95.70 97.52
Soybeans-min 62.00 63.76 64.35 61.68 76.23 86.94 96.25
Soybean-clean 36.64 84.48 79.39 93.64 99.75 100.00 100.00

Woods 87.79 98.12 96.62 98.40 100.00 99.81 99.72
OA 63.42 76.12 76.68 81.04 89.93 94.73 98.26
AA 66.09 82.67 82.79 88.24 94.85 97.15 98.99

Kappa 0.5647 0.7184 0.7259 0.7776 0.8810 0.9371 0.9792

3.4. Results on the SV Dataset

Figure 3 below shows the classification thematic maps of each method on the SV
dataset. It is obvious that the performance of each method is relatively poor on the Grapes-
untrained and Vinyard vertical trellis classes, with the visual performance of the MLR
method being the worst. However, the proposed method can provide a relatively clean
thematic map. The CNN2D method had a larger misclassification rate on the Brocoli-gree-
weeds-1 class, while other methods performed better for this class.

The Table 6 below shows the quantitative objective evaluation metrics of various
methods for all classes. It is clear that the proposed method performed the best within
almost all classes, with the overall accuracy (OA) being about 4% higher than the PPF
method and approximately 12% higher than the worst-performing MLR method. The
CNN2D method performed the worst on the Brocoli-gree-weeds-1 class, consistent with
the visual judgment. The MLR method had the lowest accuracy for the Vinyard-untrained
and Grapes-untrained classes, which directly lowered the overall accuracy. The proposed
method had the highest OA, AA, and Kappa values, indicating that it had the highest
classification ability and performance.

Table 6. The classification performance on the SV dataset.

MLR SVM RF ELM CNN2D PPF Proposed

Brocoli-gree-weeds-1 97.82 98.85 99.43 99.83 62.41 100 100
Brocoli-gree-weeds-2 97.82 99.89 99.74 99.83 100 100 100

Fallow 92.06 99.38 99.04 97.75 99.94 99.77 99.94
Fallow-rough-plow 99.08 99.5 99.41 99.16 100 99.66 99.92

Fallow-smooth 97.7 98.14 97.54 98.71 97.58 98.35 99.56
Stubble 99.46 99.92 99.81 99.87 100 100 99.97
Celery 99.4 99.91 99.29 99.76 99.76 99.97 99.97

Grapes-untrained 70.44 85.03 61.66 83.83 89.59 83.92 95.71
Soil-vinyard-develop 96.21 99.48 98.83 99.92 99.92 99.9 99.98

Corn-senesced-green-weeds 85.44 94.37 88.28 94.37 94.64 98.51 98.84
Lettuce-romaine-4wk 92.44 97.52 93.15 94.92 99.41 100 99.65
Lettuce-romaine-5wk 99.64 99.82 97.63 99.23 99.94 100 100
Lettuce-romaine-6wk 98.86 99.71 98.15 99 100 99.57 100
Lettuce-romaine-7wk 91.19 98.24 94.83 94.36 99.65 99.29 99.18

Vinyard-untrained 62.78 69.36 69.64 69.41 73.93 85.82 94.33
Vinyard-vertical-trellis 91.08 98.76 98.27 98.69 99.72 99.45 99.93

OA 85.84 91.84 86 91.47 92.36 94.31 98.16
AA 91.96 96.12 93.42 95.54 94.78 97.76 99.19

Kappa 0.8417 0.9086 0.8441 0.9044 0.9142 0.9364 0.9794
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3.5. Results on the UP Dataset

The thematic map of the UP dataset is shown in Figure 4 below. The classification
ability of various methods can be clearly seen from the misclassification of the three
categories with the most pixels: Asphalt, Bare Soil, and Meadows. MLR had the most
misclassifications, while the proposed method had the lowest level of misclassification,
followed by PPF and CNN2D. The performance of the other machine-learning methods
did not differ significantly.

The objective evaluation criteria in the Table 7 below show that the OA value of the
MLR method was the lowest, and SVM performed the best among the four traditional
machine-learning algorithms but was slightly inferior to the three DL-based methods. The
proposed method can provide the highest classification accuracy for all categories, resulting
in an overall accuracy of 99.3%, indicating that the proposed method showed the best
classification ability for this dataset.
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Table 7. The classification performance on the UP dataset.

MLR SVM RF ELM CNN2D PPF Proposed

Asphalt 73.55 88.94 81.32 62.08 96.01 98.2 99.64
Meadows 75.77 93.72 78.4 91.2 90.46 97.78 99.53

Gravel 76.95 85.23 76.89 81.66 95.73 91.67 97.78
Trees 93.06 96.02 94.96 95.14 97.57 96.55 97.75

Painted metal sheets 99.21 99.65 99.56 99.48 100 99.91 100
Bare Soil 73.49 90.43 82.61 83.35 98.92 97.54 99.88
Bitumen 89.12 91.59 90.35 91.95 98.76 94.42 98.32

Self-Blocking Bricks 74.73 83.46 78.89 68.12 90.09 92.19 98.71
Shadows 99.87 100 100 99.87 100 99.87 100

OA 77.83 91.68 81.86 83.91 93.76 96.97 99.3
AA 83.97 92.12 87 85.87 96.39 96.46 99.07

Kappa 0.7152 0.8898 0.7662 0.7888 0.9181 0.9595 0.9906
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4. Discussion
4.1. Classification Ability with Less Samples

To compare the accuracy performance of various methods with fewer training samples,
according to [34,37], this paper set the number of each type of training sample to 50, 100, 150,
and 200, respectively, and used the same method to calculate the classification performance
of various methods. The results are listed in Figure 5 below. Overall, with the increase in
training samples, the classification performance of various methods on various datasets
showed an upward trend, which is consistent with the general perception. SVM performed
with a relative stability for several datasets and had a relatively excellent performance
within traditional machine-learning algorithms. Due to the random generation of the
weight matrix and the hidden layer threshold from input neurons to hidden neurons, ELM
can cause the output matrix to be ill-conditioned when there are individual samples with
large deviations among the training samples. The resulting network structure is unstable
and has poor robustness, which reduces the classification performance of the network;
hence, its performance was not very stable on these three datasets. The DL-based methods
performed significantly better than traditional machine-learning-based methods for various
training sample sizes across all three datasets. Moreover, the proposed method consistently
showed the best classification ability.
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4.2. Effects of Neighborhood Sizes

The role of the neighboring pixels is to provide spatial feature description ability for
the center pixel. The larger the neighborhood is, the more spatial features can be extracted.
Therefore, existing HSI classification methods based on spatial–spectral fusion mostly used
larger neighborhoods. The earlier experiments in this paper used a neighborhood size
of 5 × 5. To evaluate the impact of neighborhood size on classification accuracy, similar
to [37], we compared three neighborhood sizes: 3 × 3, 5 × 5, and 7 × 7. As can be seen
from Figure 6 below, with the neighborhood size increased, the classification performance
improved significantly. However, the improvement intensity of 7 × 7 compared with 5 × 5
was not as large as that of 5 × 5 compared with 3 × 3, indicating that the improvement
resulting from increasing the neighborhood size is limited. It should be pointed out that
the CNN structure designed for the three datasets needed to be modified for the different
neighborhood size. The larger the neighborhood is, the more layers the modified network
will have, and the computation will be greater. Therefore, after balancing multiple factors,
we chose a neighborhood size of 5 × 5 for the experiments and discussion.
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4.3. Effects of Spatial Shuffle

After the operation of a spatial shuffle, a 5 × 5 neighborhood can produce up to 6.2 × 1023

potential patterns, but it is impossible to produce so many samples within its practical
application. Therefore, we randomly generated 100,000 samples for each class to increase
the sample size. Intuitively, the more samples there are, the better the description of the real
world is. However, this also increases the amount of computation. In order to evaluate the
impact of the sample size on classification accuracy, we set four sample size levels: 50,000,
100,000, 200,000, and 300,000. Meanwhile, we also compared the performance without
spatial shuffle, which means there were only 200 original training samples for each category.
Using the same network structure, the final classification performance was evaluated, and
the results are shown in Figure 7 below.

It can be seen that, without spatial shuffle, the classification performance on each
dataset was significantly lower compared to the case with spatial shuffle. In particular,
for the IP dataset, the classification accuracy was only around 0.65, while with spatial
shuffle using 50,000 samples per class, the accuracy could reach around 0.97. The other two
datasets also had an accuracy of around 0.9 without spatial shuffle, which was noticeably
lower than with spatial shuffle using 50,000 samples per class. Without spatial shuffle,
considering the experimental setup, there were only 200 samples per class for the IP
and UP datasets, resulting in a total of 9 × 200 = 1800 samples. For the SV dataset,
there was a total of 16 × 200 = 3200 samples. Training a CNN model on such small
datasets easily leads to overfitting, which is the main reason for the low classification
accuracy. However, by using spatial shuffle, the training samples can be expanded to
9 × 50,000 = 450,000 samples, or even more. This helps to mitigate the impact of overfitting
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and the significant improvement in classification accuracy further confirms this. With
the increase in sample size, the classification performance for all three datasets improved.
However, the degree of improvement generally tended to become saturated, not following
a linear trend with the increase in sample size. Therefore, from a multi-factor balance
perspective, our choice of 100,000 samples per class was reasonable. To further improve
classification accuracy, future study will focus on optimizing the network structure.
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5. Conclusions

Existing spatial–spectral fusion-based HSI classification methods mostly adopt larger
neighborhoods to extract more spatial features to assist in the fine classification of each
pixel. However, large neighborhoods may cause the problem of non-independence between
the training set and testing set to some extent. Therefore, minimizing the neighborhood
size may alleviate the above problem. This paper proposes a strategy called spatial shuffle,
which randomly shuffles the positions of the pixels in the small neighborhood to simulate
potential patterns that may exist in the real world. Through spatial shuffle, it is possible
to quickly generate more simulated samples given a certain initial sample set. Experi-
mental results have shown that this strategy effectively addresses the data requirement
and overfitting issues in deep learning, leading to improved classification accuracy. The
number of initial samples also has a decisive impact on the final classification accuracy.
Although spatial shuffle allows for the generation of almost infinite samples to mimic the
distribution patterns in the real world, the diversity of the initial samples may still be
limited, which can restrict the simulated distribution patterns. However, even with this
limitation, applying the spatial shuffle strategy and using the basic CNN model can achieve
a consistently higher classification accuracy than traditional machine-learning methods
and previously optimized CNN models. In addition, designing a deep-learning CNN
model is not the focus of this paper; a simple CNN architecture based on convolution,
batch normalization, and ReLU was constructed without any optimization measures, and
the spatial shuffle samples were used for training. The experimental results indicate that
the proposed method can effectively extract spatial and spectral features to improve the
HSI classification performance. Different neighborhood window sizes can extract varying
levels of spatial information, which also significantly affects the classification accuracy. By
designing different network structures, it is possible to adapt to different sizes of neigh-
borhood window sizes. Combined with the spatial shuffle strategy, it becomes possible to
achieve classification accuracy comparable to previous studies using larger neighborhood
window sizes even with smaller window sizes. This approach partially addresses the issue
of overlapping and dependent training and testing samples during the training process.
However, it should be noted that this paper only utilizes the basic, unoptimized CNN
model and achieves remarkably high classification accuracy. Therefore, it is foreseeable
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that further improvement in classification performance can be achieved by optimizing
the structure of the CNN model. Thus, future research will further explore the potential
advantages of a spatial shuffle and optimize the constructed basic CNN architecture to
further improve the accuracy of HSI classification.
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