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Abstract: Monitoring mine activities can help management track the status of mineral resource
exploration and mine rehabilitation. It is crucial to the sustainable development of the mining industry
and the protection of the geological environment in mining areas. To monitor the mining activities of
shallow surface outcrops in the arid and semi-arid regions of northwest China, this paper proposes
a remote sensing monitoring approach of mining activities based on deep learning and integrated
interferometric synthetic aperture radar technique. This approach uses the DeepLabV3-ResNet model
to identify and extract the spatial location of the mine patches and then uses object-oriented analysis
and spatial analysis methods to optimize the mine patch boundaries. SBAS-InSAR technique is used
to obtain the time-series deformation information of the mine patches and is combined with the
multi-temporal optical imagery to analyze the mining activities in the study area. The proposed
approach has a recognition accuracy of 95.80% for the identification and extraction of mine patches,
with an F1-score of 0.727 at the pixel level, and the average area similarity for all patches is 0.78 at the
object-oriented level. The proposed approach possesses the capability to analyze mining activities,
indicating promising prospects for engineering applications. It provides a reference for monitoring
mining activities using multisource satellite remote sensing.

Keywords: mining activities monitoring; multisource remote sensing; InSAR; shallow surface
outcrop; DeepLabV3-ResNet; object-oriented analysis

1. Introduction

Northwest China is abundant in mineral resources, providing a large amount of raw
materials for the manufacturing and energy industries. The mining industry has become
the backbone of the local economy [1]. However, the geological environment of the region
is relatively fragile due to the strong effects of both the endogenic force (e.g., volcanism and
crustal movement) and the exogenic force (e.g., weathering, denudation, transportation,
and accumulation). Mining activities, especially open-pit mining, further exacerbate the
disturbance of the geological environment, destroying surface soils and natural vegetation
and disrupting ecosystem service flows [2–4]. Monitoring mining activities and the progress
of mine rehabilitation is essential to promote sustainability in China’s manufacturing
industry’s upstream supply chain and preserve the mining area’s geological environment.

The conventional approach to monitoring the geo-environment of mining involves
field investigations, local inspections, and public supervision. However, limited by the
topographic conditions of mines and the level of cooperation of the mining companies, these
approaches suffer from low efficiency and are problematic in maintaining credibility and
impartiality. The obtained mining activities information is often delayed and is susceptible
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to being omitted. It is not easy to monitor the geological environment of mines promptly
and precisely. Remote sensing technology captures large-scale ground surface information
and provides long-term dynamic observation, making it an indispensable data source for
monitoring the geological environment of mines in recent years.

Optical remote sensing is a well-established technique for monitoring mining areas.
Multi-temporal imageries can be utilized to extract mining-related patches, such as open
pits, ore heaps, waste rock dumps, and tailings reservoirs, and allow for tracking ongoing
mining activities, monitoring mining geo-environment problems, assessing environmental
concerns, and evaluating the progress of mine rehabilitation efforts [5–9]. Optical remote
sensing monitoring methods can be categorized into two main approaches: knowledge-
based and data-driven.

The knowledge-based approach relies on a priori knowledge of the mine patch fea-
tures. Spectral data of different mine features (e.g., coal, gangue, tailings, etc.) are first
collected using the spectrometer. The spectral curves are then analyzed to develop inver-
sion models identifying specific mine patches, such as coal heaps, gangue dumps, and
tailing reservoirs [10–15]. However, spectral curve collection, analysis, and inversion model
construction are time-consuming and labor-intensive when dealing with large spatial ex-
tents. Additionally, high-resolution satellite images often have limited spectral bands;
for instance, the commonly used SPOT, GeoFen, and ZiYuan series [16,17] offer three or
four bands that include only visible and near-infrared wavelengths. The sparse spectral
information restricts the implementation of some inversion models.

The data-driven approach does not require prior knowledge but extracts the required
information directly from the data. Researchers have already utilized SVM, RF, CNN, FCN,
U-Net, etc. [17–23] to extract open pits tailings reservoirs and classify land use and land
cover in mining areas. Over the past few years, deep learning techniques have become
increasingly popular in mine environmental monitoring [24–26]. Unlike traditional machine
learning algorithms that need to construct and select relevant features, deep learning
methods can autonomously learn the most representative and separable features without
manual feature construction or rules design [27]. The hierarchical end-to-end learning
model of deep learning substantially enhances the level of automation and intelligence in
remote sensing monitoring of mine environments.

However, the models often cannot produce satisfactory results directly in practical
production. Creating a deep learning model for monitoring mining areas requires large
and representative training samples. The mining area occupies only a small fraction of
the overall surface, and the morphology of mine patches can vary greatly due to factors
such as deposit structure, the spatial distribution of underground veins, geographic and
geomorphic conditions, mineral type, mining processes, and the duration of mining. In
such conditions, collecting sufficient samples and training a robust deep-learning model
is difficult. The model will inevitably produce inaccurate mine patch boundaries. The
object-based image analysis (OBIA) method can compensate for this shortcoming [28,29].
The OBIA divides the image scene into sub-regions based on the objects’ spectral, geometric,
and textural homogeneity or heterogeneity characteristics [30]. The divided boundaries
can help to optimize the results generated by the deep learning model.

In this paper, an approach that combines deep learning and OBIA is presented to
extract mine patches. Additionally, adverse weather conditions can disrupt the acquisition
of optical remote sensing images, making it difficult to obtain uninterrupted data over
consecutive months. This paper employs time-series synthetic aperture radar (SAR) images
to generate continuous surface deformation. The surface dynamics information combined
with optical imagery is used to monitor the activities of mine patches.
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2. Method
2.1. Materials
2.1.1. Study Area

The study area is located at the border between Ningxia Hui Autonomous Region and
Inner Mongolia Autonomous Region in northwest China, as illustrated in Figure 1. The
geographic coordinates of the area span from 105.39◦E to 105.64◦E in longitude and from
37.59◦N to 37.70◦N in latitude. The study area covers an area of 272.57 km2 and has an
elevation ranging from 1253 to 1638 m.
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Figure 1. The location of the study area.

The area belongs to the Weiningbeishan region, situated in the transitional zone
between the Tengger Desert and the Ningxia Plain. The topography of this region primarily
comprises medium-low mountains and hills. It experiences a temperate continental arid
climate with an average annual precipitation of less than 180 mm. The dominant vegetation
type is the steppe desert. The outcropping strata in this region are primarily the Devonian
and Carboniferous systems. The stratigraphy of this region represents a suite of clastic-
carbonatite construction gypsum-bearing, indicative of a marine-continental interactional
sedimentary environment. Magmatic activity in the region is relatively limited, with rare
occurrences of magmatic rocks exposed. The quartz diorite porphyrite veins intruded
into Upper Devonian and Lower Carboniferous strata during the Indosinian-Yanshanian
Orogeny exhibit significant mineralization potential. The Upper Devonian Laojunshan
Formation and the Lower Carboniferous Qianheishan Formation are the main ore-bearing
strata in this region. The east–west trending faults formed during the Indosinian Orogeny
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and the secondary faults generated by subsequent tectonic movements are the main ore-
controlling structures.

The extended period of uninterrupted mining has led to the emergence of numerous
small-scale and dispersed mine patches within the study area. Illicit mining activities
also exist in remote mountainous regions and shallow outcrop sites. These activities have
resulted in the devastation of land resources, the degradation of delicate natural ecosystems,
and the creation of concealed hazards to mine safety.

The mineral species are mainly iron, clay, sandstone, and coal. Except for coal, mined
underground, all other minerals are mined in open-pit mining. The main focus of min-
ing activity monitoring in this paper is on open pits and gangue dumps. The detailed
description of the interpretation signs in true color remote sensing imagery is as follows
(Figure 2):
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Figure 2. The remote sensing interpretation signs of mine patches in true color. (a) Coal gangue
dumps; (b) Iron ore open pits; (c) Clay open pits; (d) Sandstone open pits.

(a) Coal gangue dumps: Coal gangue dumps are often distributed in the coal mine
area. The color is gray to gray-black. The patches often have an irregular polygon
shape with clear demarcation from the surrounding land. The artificial extraction and
accumulation traces are obvious in the patches.

(b) Iron ore open pits: The color is grayish yellow, light red, reddish brown to brown. The
texture of the patches is characterized by clumps or strips. The mining and excavation
traces left by mechanical mining equipment are obvious.

(c) Clay open pits: The color is whitish gray to grayish yellow. The texture of the patches
is blurred and shows a more homogeneous pattern. There are obvious artificial
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excavation and extraction traces in the spot, which is different from the surrounding
natural mountains.

(d) Sandstone open pits: The color is gray to light gray, with high brightness. The texture
of the patches is obvious and messy. The hillside pit exhibits positive topography. The
depressed pit exhibits negative topography with near-circular or stratified terraces.

2.1.2. Data Sources

The datasets used in this study include high-resolution optical satellite imagery, time-
series SAR data, and Land Use/Land Cover data products.

The Gaofen-2 (GF-2) satellite was the primary high-resolution optical satellite imagery
source. It possesses a spatial resolution of 1 m for visible light bands. In this paper, digital
orthophoto maps (DOMs) of the study area were generated for two distinct periods: 2019
and 2021.

The time-series Sentinel-1A Single Look Complex (SLC) SAR data were utilized for
detecting mining activities. These data can be downloaded from the ASF Search Vertex
platform at https://search.asf.alaska.edu/ (accessed on 17 December 2022). A total of
90 acquisitions in ascending track from 1 January 2019 to 30 December 2021 were collected,
and detailed data information is presented in Table 1. Additionally, the POD Precise Orbit
Ephemerides (AUX_POEORB) and the 30 m Shuttle Radar Topography Mission (SRTM)
digital elevation model (DEM) were utilized to improve the orbit parameters and remove
topographic phases. The GACOS (Generic Atmospheric Correction Online Service for
InSAR) atmospheric data is also introduced on the same day as the SAR data to assist in
atmospheric correction [31–33].

Table 1. Detailed information on Sentinel-1A SLC SAR data.

Beam Mode Radar
Wavelength

Spatial
Resolution

Polarization
Mode

Path/Frame
Number

Incidence
Angle

Interferometric Wide Swath mode (IW) 5.6 cm 5 m × 20 m VV 157/117 37.28◦

Land cover categories were obtained from ESA WorldCover Maps (https://viewer.esa-
worldcover.org/worldcover/ (accessed on 7 August 2022)), which contain categories such
as shrubland, built-up areas, cropland, bare/sparse vegetation, and a few water bodies in
this study area. Those land cover categories were used to assist in identifying the categories
of mine patches.

2.2. Methodology

The processing procedure of the mining activities monitoring approach proposed
in this paper is summarized in Figure 3. Four key steps are included: (1) interpreting
mine patches and sampling the training and testing samples; (2) identifying mine patches
using DeepLabV3-ResNet and obtaining the initial spatial information of mine patches
from high-resolution images taken in 2019; (3) extracting mine patch boundaries using
multiresolution segmentation and spatial analysis; (4) monitoring mining activities from
2019 to 2021 using SBAS-InSAR.

https://search.asf.alaska.edu/
https://viewer.esa-worldcover.org/worldcover/
https://viewer.esa-worldcover.org/worldcover/


Remote Sens. 2023, 15, 4062 6 of 18

1 
 

 
Figure 3. The proposed mining activities monitoring approach.

2.2.1. Interpreting and Sampling

A total of 238 mine patches were interpreted manually based on the established signs
in Section 2.1, including 114 coal gangue dumps, 80 iron ore open pits, 30 clay ore open
pits, and 14 sandstone open pits.

A total of 50% of the mine patches, evenly distributed throughout the study area, are
randomly selected to generate training samples. The original image with interpreted mine
boundaries is further split into small image patches of 256 × 256 pixels with a 128-pixel
step for model training. Additionally, the angular rotation method is employed by rotating
the split image patches by 90◦, 180◦, and 270◦ to supply more training samples. In addition,
these mine patches are used as a reference for multiresolution segmentation and spatial
analysis in extracting mine patch boundaries.

The remaining mine patches are used for accuracy assessment. The composition of
mining and non-mining areas in this study area is imbalanced, with the ratio of mining
to non-mining areas being approximately 0.015. In order to obtain realistic accuracy
assessment results, the testing samples used for pixel-based accuracy assessment also adopt
a corresponding imbalanced distribution.

2.2.2. Preliminary Extraction of Mine Patches

The deep learning semantic segmentation model is first used to extract the spatial
information of mine patches. It can make pixel-wise predictions for a given image without
requiring manual feature engineering and provide the spatial location of the mine patches
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while extracting the spatial extent. In this paper, we adopt Deeplabv3-ResNet [34], a robust
and versatile semantic segmentation model that can be easily implemented and fine-tuned
for various applications.

The architecture of the DeepLabV3-ResNet model in this paper is shown in Figure 3.
ResNet50 is designed as the backbone of DeepLabV3 due to its powerful performance
with reasonable computational power and processing time demands. The feature map
obtained from block 4 is input into a modified version of the Atrous Spatial Pyramid Pooling
(ASPP) module, which comprises five sub-modules. The outputs from each sub-module
are concatenated and passed through a 1 × 1 convolutional block. The final prediction
is generated by passing the resulting feature map through a 1 × 1 convolutional block
and then upsampling it bilinearly. The advantage of this model is the use of the Atrous
Convolution module. It can increase the receptive field of the model without reducing the
spatial resolution of feature maps and obtain a larger range of contextual information.

2.2.3. Fine-Grained Extraction of Mine Patch Boundaries

1. Multiresolution segmentation

The multiresolution segmentation algorithm consecutively merges pixels with their
neighbors based on relative homogeneity criteria, a combination of the color and shape
properties [35]. Two parameters, i.e., the shape and the compactness, need to be determined
to customize the criterion. The shape determines to what degree shape influences the
segmentation compared to color. The compactness gives it a relative weighting against
the smoothness of the segmentation. The strategy for optimization of multiresolution
segmentation parameters in this paper is as follows:

(1) The scale parameter is pre-set as 50 [20]. The values of the shape and compactness
parameters are optimized using a grid search method. Let shape = {0.1, 0.2, . . ., 0.9},
compactness = {0.1, 0.2, . . ., 0.9}. Each combination of shape and compactness parameters
generates a segmentation result. The manually interpreted mine patches used for model
training are employed as reference data to select the optimal parameters. The similarity
between these reference patches and the segmentation results is used for determining
the optimal parameters; a smaller area difference indicates better segmentation results.
Multiple segmentation objects are merged when they correspond to the same reference
mine patch. The optimal parameters for segmentation are determined by the average area
difference between the reference mine patches and the merged objects. Specifically, the
shape and compactness parameters corresponding to the smallest average area difference
are considered the best.

(2) After determining the shape and compactness parameters, the optimal value of
the scale parameter is estimated using the Estimation of Scale Parameters 2 tool [36,37].
This tool is based on the local variance of object heterogeneity within a scene. It generates
the segmentation results corresponding to multiple scale parameters from the bottom
up and calculates the local variance at each scale. When the local variance reaches an
inflection point and turns to a decreasing trend, the corresponding scale parameter produces
results with the maximum heterogeneity between objects. The optimal scale parameter is
determined by the number of segmented objects covered within the reference mine patches.
The aim is complete segments; thus, it is preferable to have fewer segmented objects. Based
on the above strategy, the scale, shape, and compactness parameters determined in this
paper are 79, 0.2, and 0.5, respectively.

2. Spatial Analysis

The preliminary extraction of mine patches is prone to spatial discontinuities, such as
the generation of holes, fractional patches, etc. This paper adopts the segmented objects
generated by the multiresolution segmentation algorithm to obtain fine-grained mine patch
boundaries through spatial analysis. First, the preliminary extraction and segmentation
results are superimposed to retain the intersecting objects. Then, a total area control strategy
is employed to filter out unimportant objects, and the process is as follows:
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(1) Calculate the area of each intersection region between the preliminary extraction
and the segmentation, denoted as Aintsct, and the area proportion pintsct;

(2) Calculate the total area of the reference mine patches, denoted as ∑ Are f ;
(3) Select the segmented objects intersected with the reference mine patches, arranging

them in descending order of pintsct, and calculating the corresponding cumulative area
∑ Aintsct;

(4) Record the pintsct, when the difference between ∑ Aintsct and ∑ Are f is the smallest;
(5) Remove the object with an area proportion less than pintsct;
(6) Retain the remaining objects and merge the neighboring objects;
(7) Remove segmented objects that intersect with the known buildings, cultivated

land, and water bodies using auxiliary data, and remove the objects with an area of less
than 50 m2.

Figure 4 demonstrates an example of filtering out unimportant objects. There are six
segmented objects that intersect with the preliminarily extracted patches. The areas of
each intersecting region and their proportions within their respective objects—R1 through
R6—are initially calculated. Based on these proportions, the objects R1–R6 are subsequently
ranked in descending order. For instance, the order established is as follows: R1 (99%),
R3 (15%), R6 (12%), R4 (7%), R5 (5%), and R2 (2%). Next, we calculate the cumulative
areas of intersecting regions, starting with R1 alone, then adding areas from R1 to R3,
and so on, until the full area from R1 to R2 is accounted for. These cumulative areas are
then compared with the interpreted area. We record the area ratio when the difference
between the cumulative and interpreted areas is smallest. Finally, the area ratios of all
intersecting regions within their corresponding segmented objects are calculated, and only
the segmented objects with an area ratio greater than the optimal ratio are retained.
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Based on the above strategy, the value of Pintsct is 21.5% in this paper.
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2.2.4. InSAR-Based Surface Deformation Extraction

The SBAS-InSAR technique divides the SAR dataset into several subsets based on the
thresholds of temporal and spatial baselines. The individual SAR datasets constructed have
smaller temporal and spatial baselines. The interferometric decorrelation problem caused
by long time and spatial baselines is effectively suppressed. Differential interference is
processed for each constructed interferometric image pair to obtain the unwrapped phase.
To increase the data time sampling of the surface deformation variables and to avoid the
possible rank loss problem of solving the set of equations during the least squares solution,
the singular value decomposition (SVD) method is used to combine different small baseline
sets to obtain the results of the surface time-series deformation for the whole period [38,39].

Let there be N + 1 scene of SAR images covering the study area. Generate a com-
bination of interferometric image pairs according to the spatial and temporal baseline
thresholds. The interferometric phase of any pixel in the interferogram obtained by differ-
ential interference of the master image and the slave images can be expressed as follows:

∂ϕj = ϕTa − ϕTb ≈
4π

λ

[
dTb − dTa

]
+ ∆ϕ

′
j

The dTa (dTb ) indicate cumulative deformation in the line-of-sight direction between
Tb(Ta) and T0; ∆ϕ

′
j indicates the sum of the atmospheric delay phase, the residual terrain

phase, and other factors.
It is assumed that the surface deformation follows a segmentally linear pattern over

time. Then, the phase of the jth differential interferogram can be expressed as follows:

∂ϕj =

Tb,j

∑
K=Ta,j+1

(TK − TK−1)VK

∂ϕ =

X11 . . . X1n
...

. . .
...

Xm1 · · · Xmn

V

The variable VK represents the deformation rate at time K. The unwrapped phase can
be combined into an M×N matrix through the time integral of the master and slave images.
The final temporal deformation rate is calculated by the Moore–Penrose pseudoinverse of
this matrix.

3. Result
3.1. Accuracy Assessment for Mine Patches Extraction Results

The extracted mine patches are shown in Figure 5. The proposed approach has
identified 228 out of 238 manually interpreted patches with an identification accuracy of
95.80%. These patches comprise 112 coal gangue dumps, 74 iron ore open pits, 28 clay ore
open pits, and 14 sandstone open pits. Ten small patches, averaging 4136 square meters
each, have been omitted.
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To further assess accuracy, 340,868 random samples have been extracted, including
5000 mining samples and 334,912 non-mining samples (the sampling method can be found
in Section 3.1). However, using only overall accuracy (OA) to evaluate the samples is
biased and misleading. It is because the non-mining samples make up a significantly larger
portion, approximately 98.25%, of the total area compared to the mining samples. It is
essential to contemplate alternative metrics to guarantee a just and precise assessment. A
confusion matrix has been established, and the producer’s accuracy, user’s accuracy, kappa
coefficient, and F1-score have been employed (as shown in Table 2).

Table 2. Error matrices and accuracy assessment for mining area and non-mining area.

Extracted Data
Reference Data

User’s Acc.
Mining Non-Mining Total

Mining 3985 1971 5956 0.669
Non-mining 1015 332,941 333,964 0.997 0.727 (F1-score)

Total 5000 334,912 340,868 0.723 (Kappa)
Producer’s Acc. 0.797 0.994 99.12% (OA)

The F1-score for mine patches extraction is 0.727, and the kappa coefficient is 0.723.
The producer’s accuracy for mine patches (0.797) is higher than the user’s (0.669), indicating
that the proposed approach effectively extracts mine patches from the study area. However,
there are some instances of misclassification, such as mountain shadows, wind turbines,
and their surroundings being misidentified as mine patches.

To assess the accuracy of the extracted open-pit mine boundaries, this study measured
the area similarity between accurately identified patches and manually interpreted bound-
aries. The area similarity coefficient is utilized. This coefficient measures the similarity
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between manually interpreted patches and the accurately extracted patches by calculating
their area ratio. A ratio closer to 1 indicates a significantly higher degree of similarity.

Figure 6 shows the statistical plot of the similarity results. Over half of the patches
(59.22%) have an area similarity greater than 0.80, while the average area similarity for all
patches is 0.78. The similarity of different types of patches varies slightly. The extracted
patches of coal gangue dumps and iron ore open pits are more similar to the manually
interpreted boundaries, respectively, with a similarity of 0.81 and 0.80, respectively; the
area similarity of clay ore open pits and sandstone open pits is closed at 0.78 and 0.76,
respectively.
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3.2. Surface Deformation Information Extraction Results

This research utilized SBAS-InSAR to analyze the ground deformation between June
2019 and December 2021. Figure 7 shows the baseline distribution of Sentinel-1A acqui-
sitions. The super master image was 2020/07/04, with a maximum absolute baseline of
111.46 m, a minimum absolute baseline of 1.97 m, and an average absolute baseline of
48.30 m. The maximum temporal baseline was 60 days, the minimum was 12 days, and
the average was 35.96 days. SBAS-InSAR processing was performed on 334 interferometry
pairs with an average connection per image of 7.51.

Remote Sens. 2023, 15, x FOR PEER REVIEW 11 of 18 
 

 

area similarity of clay ore open pits and sandstone open pits is closed at 0.78 and 0.76, 
respectively. 

 
Figure 6. The statistical plot of area similarity for coal gangue dumps (CGD), iron ore open pits 
(IOP), clay ore open pits (COP), sandstone open pits (SOP). 

3.2. Surface Deformation Information Extraction Results 
This research utilized SBAS-InSAR to analyze the ground deformation between June 

2019 and December 2021. Figure 7 shows the baseline distribution of Sentinel-1A acquisi-
tions. The super master image was 20,200,704, with a maximum absolute baseline of 111.46 
m, a minimum absolute baseline of 1.97 m, and an average absolute baseline of 48.30 m. The 
maximum temporal baseline was 60 days, the minimum was 12 days, and the average was 
35.96 days. SBAS-InSAR processing was performed on 334 interferometry pairs with an av-
erage connection per image of 7.51. 

 
Figure 7. Baseline distribution of Sentinel-1A acquisitions. Yellow dot: Super-Master acquisition; 
Green dot: valid acquisitions; Red dot: discarded acquisitions; Numbers: order of acquisitions. 

The vertical ground deformation of the study area is shown in Figure 8, with a spatial 
resolution of 15 m. The deformation rate in the study area ranges from −18.04 mm/year to 
14.89 mm/year. Due to the absence of a historical monitoring record or concurrent precise 
leveling measurements, the surface deformation obtained from InSAR is only used to qual-
itatively analyze pixel deformation trends. Therefore, InSAR deformation measurements 

Figure 7. Baseline distribution of Sentinel-1A acquisitions. Yellow dot: Super-Master acquisition;
Green dot: valid acquisitions; Red dot: discarded acquisitions; Numbers: order of acquisitions.



Remote Sens. 2023, 15, 4062 12 of 18

The vertical ground deformation of the study area is shown in Figure 8, with a spatial
resolution of 15 m. The deformation rate in the study area ranges from −18.04 mm/year
to 14.89 mm/year. Due to the absence of a historical monitoring record or concurrent
precise leveling measurements, the surface deformation obtained from InSAR is only
used to qualitatively analyze pixel deformation trends. Therefore, InSAR deformation
measurements are mainly utilized for qualitative analysis of mine activities in combination
with multi-temporal optical images.
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4. Discussion
4.1. Result Analysis for Mine Patches Extraction
4.1.1. The Advantages of the Proposed Approach

To further understand the performance of the proposed approach, we compared the
results of DeepLabV3 with those in this paper. As shown in Figure 9, the proposed approach
has better performance in handling holes (Figure 9a) and fragmented patches (Figure 9b)
and can eliminate some small and isolated errors (Figure 9c).

The deep learning approach enables rapid identification and extraction of mine patches
with only some manual labeling work. However, the mining area covers only a small part
of the surface, but the scene is very complex. It is difficult to extract a complete patch
using deep learning methods alone. The object-oriented segmentation algorithm lever-
ages images’ homogeneity and heterogeneity to extract spatially continuous geographic
patches. Incorporating object-oriented image segmentation as a post-processing technique
addresses the issue of insufficient spatial continuity in deep learning extraction outcomes.
Furthermore, in practical applications, the utilization of historical mining patches can help
minimize the reliance on manual intervention. The proposed approach has good prospects
for engineering applications.
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4.1.2. The Omission and Commission Errors

The omission errors of patches are rare, and the omissions mainly occur with very
small patches that closely resemble the surrounding features. The commission errors of
mine patches are the main source of errors in results. In particular, the wind farm and the
mountain shadows are misidentified as mine patches.

The construction process of a wind farm involves mountain excavation, land leveling,
installation of wind turbines, and the construction of infrastructure such as roads. It exhibits
spectral, geometric, and textural features similar to those of an open-pit mining area. In
the preliminary extraction step based on the DeepLabV3-ResNet model, it was identified
incorrectly.

The commission errors of mountain shadows are mainly due to spectral similarity.
Due to the obstruction of solar radiation reflection pathways, mountain shadows have
low values in optical images. Similarly, coal or coal gangue also exhibit relatively small
numerical values due to the high absorption rate of visible light. In addition, the spatial
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location’s consistency is also a cause of errors. Mountain shadows are mainly distributed
in the folded areas in the northeastern study area, while the patches of the coal mining area
are distributed along the strike of the coal-bearing strata located in the same folded area.

4.1.3. Area Variance Analysis

The difference in patch area mainly stems from the mine patches with larger scales
and longer duration of mining. Large-scale open-pit mines contain multi-phase mining
surfaces. The early-stage mining exposes rocks to weathering, erosion, accumulation, and
wind–sand modification. The spectral and textural information of the mining patches has
changed, making them difficult to extract and reducing the size of the extracted patches.
Furthermore, several roads and mine patches are segmented into the same object during
the multiresolution segmentation step. The subsequent steps recognize them as a whole,
slightly increasing the size of the extracted mine patches.

4.2. Mining Activities Analysis Combined InSAR with Multi-Temporal Optical Remote Sensing

Monitoring open-pit mine activity solely with optical remote sensing imagery is chal-
lenging. The image quality can be affected by various factors, such as imaging conditions
and data processing methodologies. For instance, high-resolution optical remote sensing
satellites often incorporate the capability of lens tilt in their onboard cameras to reduce
revisit intervals. Different lens angles during image capture can lead to variations in the
shadows of objects in the imagery. In the absence of elevation change information, with the
use of multi-temporal optical imagery to carry out interpretation processing, the shadow
will affect the interpreter to determine the positive and negative terrain. In particular,
mining activities that do not significantly change the spatial extent of mining patches, and
small-scale illicit mining activities with shallow surface outcrop, are difficult to interpret di-
rectly from optical imagery. The time series of surface deformation measurements obtained
by InSAR can visually reflect the mining activities around the mine patches.

In this paper, a combination of SBAS-InSAR and multi-temporal high-resolution
optical imagery is employed to gather information on mining activities within the mine
patches. As open-pit mining leads to the expansion of mining surfaces, any ground surface
deformation occurring within a 0.5 km radius of the patches is attributed to the ongoing
mining activity at the respective patch. A pixel in the measured image is classified as having
no deformation if the annual deformation rate falls within the range of ±5 mm/year. A
positive deformation is assigned to an annual deformation rate exceeding 5 mm/year, while
a negative deformation is assigned to an annual deformation rate below −5 mm/year.

Statistically, among the mine scenes associated with the 228 extracted mine patches,
there are 22 which exhibited positive deformation, 38 showed negative deformation, 4
with interferometric decorrelation, and 164 with no significant change within the scenes.
Through a comparison of the 2019 and 2021 optical imagery, the 64 deformations anoma-
lies all reflect related mining activities, including continued mining, land leveling, and
construction of other infrastructure.

The mine patches associated with positive deformation are all coal gangue dumps,
with no noticeable difference in optical imagery between 2019 and 2021, which shows
the surface accumulation process of coal gangue in underground coal mining areas. The
mine patches associated with negative deformation are open pits and coal gangue dumps.
Continuous mining in open-pit mines is the primary cause of negative deformation, which
has also been confirmed in optical imagery. These mining scenes consist of 14 iron ore
open pits, 7 clay open pits, and 5 sandstone open pits. In addition to the continuous
mining, negative deformations were found in five open-pit iron ore mines that have
been ecologically rehabilitated, including four sites of land leveling and one site where
a photovoltaic solar power station has been constructed. Negative deformation is also
observed at seven coal gangue dumps. Among these, one site undergoes land leveling,
while the remaining six sites are associated with the transportation of coal gangue. In
addition, the interferometric decorrelation caused by excessive deformation is an important
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characteristic of mine activities [40–45]. It is necessary to utilize optical imagery for the
identification of such patches. In this study area, there are four patches with interferometric
decorrelation, including one ongoing iron ore open pit, one ongoing sandstone open pit,
and two iron ore open pits where land leveling has been conducted.

The boundaries of mine patches and time-series surface deformation can help regu-
latory authorities identify illicit mining activities. By comparing the gathered data with
management records, such as mining rights and permits, such mining activities as mining
operations that continue beyond the permitted time frame, encroachments beyond the
approved spatial boundaries, and failures to fulfill the obligations for mine site reclamation
and restoration can be easily found. For example, the Central Government’s Fourth Ecolog-
ical Environmental Protection Inspection Group inspected the Ningxia Hui Autonomous
Region in December 2021 and found that illicit mining in the northern mountainous areas
of Zhongning County, Zhongwei City, was prominent, seriously damaging the ecological
environment. We use the proposed approach to retrospectively analyze the mining activ-
ities in the reported illicit mining cases from 2019 to 2021, as depicted in Figure 10 (the
time phase of the optical image is 2021, while the time phase of the mine patches is 2019).
Figure 10a represents Tongtiegou Ceramic Clay Mine, showcasing conspicuous mining
activities in its central-eastern and southern regions. The time-series deformation at the
ROI #1 point location exhibits an escalated mining intensity since August 2020. Figure 10b
represents Pingtanghugou Baitugangzi Sandstone quarry, where substantial mining opera-
tions are prevalent in the southwestern part of the mine scene. The time-series deformation
at the ROI #2 point location reveals a consistent pattern of illicit mining activities occurring
beyond the authorized mining boundaries throughout the monitoring period.
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5. Conclusions

In this paper, we propose a deep-learning-based approach for mine monitoring by
combining InSAR and multi-temporal high-resolution optical imagery, which is used to
monitor mining activities in the Weiningbeishan area of northwestern China. This approach
first uses the DeepLabV3-ResNet model to preliminary localize and identify the spatial
location of mine patches. On this basis, the multiresolution segmentation algorithm and
spatial analysis method are utilized for post-processing to obtain the boundaries of the
mine patches. Finally, the time-series deformation information acquired by SBAS-InSAR
of mine patches and the multi-temporal optical imagery are combined to analyze mine
activities. The proposed approach takes advantage of the fact that deep learning does
not require the construction of complex feature engineering and thus reduces the manual
involvement in the pre-survey of remote sensing of mines and utilizes the post-processing
method of object-oriented analysis to make up for the lack of geospatial continuity of the
extraction results of deep learning, and the use of time-series InSAR avoids the limitations
of multi-temporal optical remote sensing which is difficult to be observed continuously due
to the imaging conditions. The proposed approach provides a new way to comprehensively
utilize satellite remote sensing techniques to monitor mining activities in arid and semi-arid
areas. The proposed approach capitalizes on the inherent advantage of deep learning,
eliminating the need for intricate feature engineering and reducing the manual effort
involved in pre-surveying remote sensing of mines.

Additionally, it combines object-oriented analysis as a post-processing method to
compensate for the lack of spatial consistency in the extraction results obtained by deep
learning. Furthermore, the utilization of time-series InSAR overcomes the limitations of
optical remote sensing, which cannot observe continuously due to weather conditions. The
proposed approach presents a novel perspective on effectively leveraging satellite remote
sensing techniques for monitoring mining activities in arid and semi-arid regions. Future
work will explore two aspects. The first aspect involves optimizing the post-processing
process to obtain more accurate boundaries of mine patches. The second aspect focuses on
studying the surface processes from mining to abandonment to rehabilitation of open-pit
mines in arid and semi-arid vegetation-exposed areas and constructing sample libraries of
the different processes to improve the recognition accuracy of mine patches.
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