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Abstract: Sparse-representation-based synthetic aperture radar (SAR) imaging technology has shown
superior potential in the reconstruction of nonsparse scenes. However, many existing compressed
sensing (CS) methods with sparse representation cannot obtain an optimal sparse basis and only
apply to the sensing matrix obtained by exact observation, resulting in a low image quality occupying
more storage space. To reduce the computational cost and improve the imaging performance of
nonsparse scenes, we formulate a deep learning SAR imaging method based on sparse representation
and approximated observation deduced from the chirp-scaling algorithm (CSA). First, we incorporate
the CSA-derived approximated observation model and a nonlinear transform function within a sparse
reconstruction framework. Second, an iterative shrinkage threshold algorithm is adopted to solve this
framework, and the solving process is unfolded as a deep SAR imaging network. Third, a dual-path
convolutional neural network (CNN) block is designed in the network to achieve the nonlinear
transform, dramatically improving the sparse representation capability over conventional transform-
domain-based CS methods. Last, we improve the CNN block to develop an enhanced version of the
deep SAR imaging network, in which all the parameters are layer-varied and trained by supervised
learning. The experiments demonstrate that our proposed two imaging networks outperform
conventional CS-driven and deep-learning-based methods in terms of computing efficiency and
reconstruction performance of nonsparse scenes.

Keywords: synthetic aperture radar (SAR) imaging; compressive sensing (CS); deep learning (DL);
approximated observation; sparse representation

1. Introduction

Synthetic aperture radar (SAR) can achieve high-resolution images by wideband
signal pulse compression and virtual aperture synthesis, which is not affected by time and
weather [1]. As an active microwave imaging system, SAR transmits a series of pulses and
receives echoes, which are generally processed by matched filter (MF)-based SAR imaging
methods, such as the range-Doppler algorithm (RDA) [2], chirp-scaling algorithm (CSA) [3],
and back-projection algorithm (BPA) [4]. With the development of these traditional MF-
based focusing algorithms, more measurements of the echo data are required to satisfy
the demand for increased resolution, which makes the storage and processing of SAR
data difficult for the system hardware. Over the past decade, as compressed sensing (CS)
and related deep learning (DL) methods have emerged, SAR imaging technology has
progressed to high-dimensional data and plays an increasingly significant role in military
and civilian fields [5].
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1.1. Previous Work

Different from the Nyquist sampling theorem, CS provides the possibility of accurately
reconstructing sparse signals using a small quantity of observation data [6,7]. CS-driven
SAR imaging, also known as sparse SAR imaging, has recently become a controversial issue
and has received extensive attention [8]. These studies primarily focus on the potential
application of SAR imaging technology innovated by CS theory. They have indicated that
if the SAR imaging result is a sparse signal in the spatial domain or transform domain,
it can be reconstructed with high precision from an incomplete SAR echo by construct-
ing an optimization problem [9,10]. Sparse SAR imaging can be considered an inverse
optimization problem, which can be directly solved using iterative algorithms when the
true scattered field is sparse in the spatial domain, e.g., the iterative shrinkage threshold
algorithm (ISTA) [11], approximate message passing (AMP) algorithm [12], and alternating
direction method of multipliers (ADMM) [13]. However, the scattered field of the SAR
scene is always nonsparse or weakly sparse, and thus, it needs to be sparsely represented.
This limitation restricts the application of sparse SAR imaging.

To solve the above-mentioned limitation, reconstruction methods that combine itera-
tive algorithms with sparse representation, which formulate the reconstruction framework
with sparsity constraints, have been developed. Rilling et al. [14] investigated a transform-
domain-based reconstruction technique in which only a specific transform basis, i.e., a
wavelet basis, was employed to transform the nonsparse areas. In practice, the features of
SAR images are complicated, so it is difficult to obtain a common transform basis or sparse
representation. As a result, joint sparse transform-based approaches, including combined
dictionaries, structured sparse representation, and mixed sparse representation [15–18],
have been successively proposed to enhance the sparsity exploration ability of the SAR re-
construction framework. In [15], an image formation technique with sparse representation,
which relied on combined dictionaries to obtain multiple feature-enhanced reconstructed
images, was developed. By incorporating an adaptive sparse representation space into the
SAR reconstruction framework, Shen et al. [16] proposed a structural-sparse-representation-
assisted SAR imaging algorithm in which SAR image reconstruction and adaptive sparse
space updating were constructed as a joint optimization problem. However, the above
studies adopted the exact observation model to build an optimization problem for recon-
structing nonsparse SAR images. Because of the vectorization of 2D scattering coefficient
matrices, such exact observation models require much more computational resources, thus
rendering them inefficient for large-scale matrices. Fortunately, a sparse reconstruction
framework based on approximated observations was proposed in [19] to solve this problem.
On this basis, Li et al. [18] proposed the mixed sparse representation for approximated ob-
servation SAR imaging, dramatically improving the computational efficiency of large-scale
matrices while guaranteeing the sparsity of related signals. Although this kind of imaging
algorithm can eliminate the difficulties in storing and processing data, it remains limited
by two general shortcomings of CS-driven SAR imaging: the difficulty of determining the
optimal parameter values and the complexity of the reconstruction mechanism.

The recent development of DL technology has triggered extensive research on SAR
image restoration, providing new research methods to overcome the shortcomings of
conventional CS-driven SAR imaging. Convolutional neural networks (CNNs), as powerful
networks in DL technology, have been employed in the field of SAR imaging to advance
state-of-the-art technology for image reconstruction and target focusing. A representative
study on embedding CNN into reconstruction was published in [20], in which a complex-
valued CNN structure was introduced to enhance the imaging functionality of the inverse
SAR (ISAR) signal processing framework. In [21], Mu et al. proposed a deep CNN imaging
method named DeepImaging to refocus SAR moving targets and eliminate residual clutter.
Similarly, U-Net, a CNN-based network, was improved in [22] to achieve a high-resolution
focused image by addressing the defocused data generated by the RDA. In [23], a deep
convolutional encoder, also based on a CNN, was combined with a residual network to
approximate the SAR imaging process of the traditional RDA. In this case, the encoder
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mapped the echo data to the SAR image, and the residual network subsequently enhanced
the image resolution. For all the above methods, the CNN is utilized as a “black box”
to learn the mapping from sampled data or defocused images to high-quality images.
Consequently, these works lack interpretable characteristics since they do not explicitly
investigate imaging models or explore image sparsity.

In contrast to traditional neural networks, deep unfolding methods combine model-
driven iterative algorithms and data-driven deep networks. This approach solves the
inverse imaging problem by converting the traditional CS-driven SAR reconstruction
algorithm to a deep network, which improves imaging performance and interpretability.
Thus, deep unfolding is more appropriate for SAR image formation than CNN. Inspired
by this concept, several deep unfolding imaging methods based on iterative algorithms
have emerged in the field of SAR imaging, but they remain in the preliminary stage. In [24],
Yonel et al. unfolded the ISTA on a recurrent neural network architecture to establish
an inverse problem solver for passive SAR reconstruction. Then, the solver was further
transformed into an autoencoder (named ISTA-Net) by adding a forward model as the
decoder so that it could be trained by unsupervised learning. However, due to its vectorized
SAR imaging model, ISTA-Net wastes storage space, which limits the scope of imaging
spaces. An extension network named range-migration kernel-based ISTA-Net (RMIST-
Net), which was presented in [25], was designed to directly process 2D complex-valued
echo data instead of vectorization. Similarly, a target-oriented SAR imaging network,
obtained by unfolding an MF-based ADMM iterative solution, was proposed in [26] to
enhance the signal-to-clutter ratio of the desired target. For SAR imaging of moving targets,
deep-unfolding-based focusing methods have been proposed to reconstruct sparse ship
targets [27,28]. In addition, deep unfolding technology can also be applied to the sparse
imaging of ISAR, such as ADMM-Net [29] and AF-AMPNet [30]. Sufficient experiments
verified that deep-unfolding-based imaging methods outperformed conventional CS-driven
reconstruction algorithms. Note that the above microwave imaging networks for stationary
and moving targets can only be applied to sparse scenes. To overcome this limitation,
an RDA-based deep unfolding imaging network named RDA-Net is proposed in [31].
Although RDA-Net can reconstruct nonsparse SAR scenes by learning the corresponding
compensation matrices of RDA, setting these matrices as learnable parameters still requires
a substantial amount of storage space. Furthermore, due to the lack of sparse representation
modules, the robustness and accuracy of RDA-Net with unsupervised learning are low
in nonsparse scenes. In our previous work [5], we proposed a 1D SAR imaging network
with sparse representation capability, but it required a much higher computational cost
due to the exact observation model. As a result, it is difficult for current deep unfolding
technology to effectively solve the SAR image reconstruction problem for complex scenes
while saving storage space.

1.2. Motivation

After analyzing the previous works on SAR imaging methods, we came to the follow-
ing conclusions. (1) Traditional CS methods require the integration of multiple algorithms
to solve the nonsparse SAR scene imaging problem. The lack of optimal sparse basis results
in unsatisfactory imaging efficiency. (2) The current DL-based methods cannot achieve
satisfactory reconstruction results for complex and large-scale scenes.

In this paper, we investigate a deep SAR learning imaging method, which was moti-
vated by the desire to enhance the working efficiency and image quality of nonsparse SAR
scene imaging. Therefore, we propose a novel deep unfolding strategy for SAR imaging of
complex scenes to reduce the computational burden and improve the reconstruction per-
formance.

1.3. Main Work and Contributions

The proposed strategy utilizes the significant representation performance of a CNN to
accurately reconstruct nonsparse scenes, rather than learning the large-scale MF compen-



Remote Sens. 2023, 15, 4126 4 of 28

sation matrices in SAR imaging networks such as RDA-Net. First, we establish a sparse
reconstruction framework for complex scenes by integrating a CSA-derived approximated
observation model and a nonlinear transform function. Second, the overall architecture
of an end-to-end deep SAR imaging network is determined by unfolding the iterative
process of solving this framework with the ISTA. To improve the imaging accuracy of
nonsparse SAR scenes, we design a learnable dual-path CNN block that outperforms
conventional nonlinear transform functions in terms of sparse transform. In addition, we
develop an enhanced version of the deep SAR imaging network by strengthening the sparse
representation capability of the CNN block. Experimental results demonstrate that our
proposed imaging networks (abbreviated as nets) achieve impressive reconstruction results
of nonsparse SAR scenes while reducing the computational cost. The main contributions of
this article are summarized as follows:

(1) Compared to the 1D exact observation model, the advantages and feasibility of the
2D approximated observation model are analyzed. Then, by decoupling the CSA
operation process, we develop a specific 2D SAR sparse reconstruction framework
and introduce its imaging mechanism with the ISTA as a solution example.

(2) Combining the advantages of deep unfolding and a CNN, a deep SAR imaging
net and its improved versions (SR-CSA-Net and SR-CSA-Net-plus, respectively) are
developed for nonsparse SAR reconstruction, with internal modules designed as
dual-path structures to address complex-valued SAR echoes as input to imaging nets.

(3) A CNN-based nonlinearity module is designed in SR-CSA-Net to automatically learn
the optimal sparse transform. Furthermore, we redesign the nonlinearity module with
skip connections in SR-CSA-Net-plus to fully exploit the high-frequency component
of the scattering coefficient and improve the reconstruction performance.

(4) The proposed imaging nets are trained end-to-end via supervised learning, and the
parameters are learned using cleverly designed loss functions. Specifically, these well-
designed loss functions simultaneously take into account both structure symmetry
constraints and reconstruction discrepancies.

(5) Extensive experiments verify that our two proposed imaging nets outperform conven-
tional CS-driven sparse reconstruction algorithms and several existing deep unfolding
imaging methods by large margins.

This paper is organized as follows: Section 2 discusses the CSA-derived SAR approxi-
mated observation imaging model. Section 3 illustrates the details of sparse-representation-
based deep SAR imaging nets. In Section 4, experimental results and performance analyses
are presented. Section 5 concludes this paper.

Notations: A vector is denoted by the bold lowercase letter x, a matrix is denoted
by the bold capital letter X, and a variable or scalar is denoted by the lowercase letter x.
The real field domain and complex field domain are denoted by R and C, respectively. In
addition, (·)T, (·)∗, and (·)H denote the transpose, conjugate, and Hermitian transpose,
respectively, of matrices or operators.

2. SAR Imaging Model Based on Approximated Observation

In Section 2.1, the elementary theory of sparse SAR imaging based on the exact
observation model is summarized. To reduce the computational cost, we investigate the
general formalization of the 2D approximated observation model and verify its feasibility in
Section 2.2. In Section 2.3, we propose a concrete example derived from the CSA procedure
to explicitly construct the 2D approximated observation model. The CSA-derived model is
generalized to a sparse-representation-based SAR imaging model in Section 2.4.

2.1. One-Dimensional Exact Observation Model for SAR Imaging

Vertical side-looking, strip-mode SAR was adopted for sparse imaging in this paper,
and the geometric structure of the imaging system is shown in Figure 1. The observation
area could be regarded as a series of scattering centers located on the P×Q grids, in which
the grid coordinates along the range direction (x-axis) and azimuth (y-axis) direction are
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p = 1, 2, ..., P and q = 1, 2, ..., Q, respectively. Therefore, the scattering coefficient of the
imaging scene is expressed as the following scattering coefficient matrix:

Figure 1. Geometric structure of the SAR imaging system: (a) 3D model; (b) 2D model.

Ξ =

 σ(x1, y1) · · · σ(x1, yQ)
... σ(xp, yq)

...
σ(xP, y1) · · · σ(xP, yQ)


P×Q

(1)

where σ(xp, yq) denotes the scattering coefficient at coordinate (xp, yq). As shown in
Figure 1b, it is assumed that the range and azimuth sampling points on each grid are
m = 1, 2, ..., M and n = 1, 2, ..., N, respectively.

The 1D exact observation model of sparse SAR imaging represents the relationship
between SAR echo signals and the scattering distribution of imaging scenes. The down-
sampling observation model of the echo signal is expressed as

sd = Ψ · s + n0 = ΨΦσ + n0 (2)

where s ∈ CMN×1 is the vectorized original echo signal; sd ∈ CM′N′×1 is the complex-
valued echo vector after downsampling; n0 is the additional white Gaussian noise (AWGN);
Ψ ∈ RM′N′×MN is the downsampling matrix, which generally adopts a partial iden-
tity matrix; Φ ∈ CMN×PQ is the measurement matrix composed of phase terms; and
σ = vec(Ξ) ∈ CPQ×1 is the scattering coefficient vector, where vec(·) is the vector operator.
If the imaging scene is sparse enough and the measurement matrix Φ meets the conditions
of the restricted isometry property (RIP) [32], the unknown SAR image σ can be recon-
structed from the known echo vector s by solving the following optimization problem
based on `1 decoupling [24]

σ̂ = arg min
σ

{
‖sd −ΨΦσ‖2

2 + λ‖σ‖1
}

(3)

where σ̂ approximates the true scattered field σ, λ‖·‖1 denotes the `1 norm-based regular-
ization constraint term, and λ is the predefined regularization parameter.

2.2. Two-Dimensional Approximated Observation Model for SAR Imaging

The 1D exact observation model vectorizes the 2D echo signal and scattering coef-
ficient matrix. In this case, the size of the measurement matrix Φ will rapidly increase
with the expansion of the echo signal and imaging scene scale. The model introduces a
substantial computational and storage burden to the sparse imaging processing of the
1D exact observation model and simultaneously limits its application in sparse imaging.
Therefore, a 2D approximated observation model is designed in this subsection to replace
the conventional 1D exact observation model, reducing computational and storage costs by
a large margin.
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It is known that the MF algorithm focuses the echo signal s in the 2D frequency
domain. It is assumed that M represents the MF operation procedure, with which the
scattering coefficient vector σ is approximately reconstructed by σ̂ = Ms, where M satisfies
MΦ ≈ I. It is difficult to establish a 2D approximated observation model by accurately
decoupling the measurement matrix Φ [31]. Conversely, the MF operation procedure M
can be decoupled into a series of operators processed in the range or azimuth dimension,
and the inverse operation of M denoted as M−1 is also able-decoupled. Hence, the inverse
operation M−1, as an acceptable alternative to Φ, is integrated with the CS method to design
the 2D approximated observation model. We further establish a general conclusion as

G = M−1 ≈ Φ (4)

where M represents any high-resolution MF algorithm, such as RDA or CSA, and G is
the generalized inverse operation of M, which is referred to as the approximated obser-
vation matrix and can be used to implicitly approximate Φ. By substituting G for Φ, the
observation model in Equation (2) is rewritten as an approximated observation model

sd = ΨΦσ + n0 = ΨGσ̂ + n0. (5)

To further establish the 2D approximated observation model, the Kronecker product
decomposition, a typical method to reduce the size of the matrix, is introduced in this
paper. Assuming that the approximated observation matrix G ∈ CMN×PQ is expressed as
G = GT

a ⊗Gr via the Kronecker product decomposition, where ⊗ represents the Kronecker
product, and Gr ∈ CM×P and Ga ∈ CQ×N denote the observation matrices of the range
dimension and azimuth dimension, respectively. Note that the coupling characteristic of
measurement matrix Φ makes its range measurement matrix Φr and azimuth measurement
matrix Φa unable to be wholly separated. Thus, we utilize G to approximate the observation
matrix Φ. On this basis, the 2D approximated observation model is derived as follows:

sd = ΨGσ̂ + n0

= Ψ(GT
a ⊗Gr)σ̂ + n0

= Ψ(GT
a ⊗Gr) vec(Ξ̂) + vec(N0)

= vec(ΨrGrΞ̂GaΨa + N0)

= vec(ΨrSΨa + N0)

= vec(Sd)

(6)

where S ∈ CM×N is the original 2D echo matrix; Sd ∈ CM′×N′ denotes the 2D echo matrix
after downsampling; Ψr ∈ RM′×M formed by M′ rows of an M-by-M identity matrix and
Ψa ∈ RN×N′ formed by N′ columns of an N-by-N identity matrix are the downsampling
matrices in the range dimension and azimuth dimension, respectively; and Ξ̂ ∈ CP×Q is the
reconstructed 2D scattering coefficient matrix. The 2D approximated observation model
and its downsampling form with AWGN then become{

S = GrΞ̂Ga
Sd = ΨrSΨa + N0

. (7)

In summary, due to the challenge of decomposing Φ with the Kronecker product
decomposition rule, we adopt the approximated observation matrix G derived from the
MF algorithm to construct the 2D approximated observation model rather than searching
for a direct application to the observation matrix Φ.

2.3. CSA-Derived Approximated Observation Model

Since the MF algorithm is a linear process including a phase multiplication and
fast Fourier transform (FFT) in the range and azimuth dimensions, the approximated
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observation matrices Gr and Ga are implicitly represented by a series of suboperations
obtained from the inversion of the classical MF focusing methods (e.g., RDA, CSA, and
BPA). In this subsection, an admissible 2D approximated observation model derived from
CSA is examined to show how to achieve the analytic representation of Equation (7).

CSA is a dual-domain hybrid processing imaging algorithm that includes three steps
of phase multiplication: (1) differential range cell migration correction (RCMC) (range-
Doppler domain), (2) range compression and bulk RCMC (2D frequency domain), and
(3) azimuth compression (range-Doppler domain). Then, the imaging operator denoted as
M(·) and the approximated observation operator denoted as G(·) are described as

Ξ̂ = M(S)

=
{

FH
r 〈Fr[(SFa) ◦H1] ◦H2〉 ◦H3

}
FH

a
(8)

S = G(Ξ̂)

= {FH
r 〈Fr[(Ξ̂Fa) ◦H∗3 ] ◦H∗2〉 ◦H∗1}FH

a
(9)

where ◦ denotes the Hadamard product; Fr and Fa are the FFT matrices along the range
direction and azimuth direction, respectively; FH represents the inverse FFT (IFFT) matrix;
and H1, H2, and H3 are the quadratic phase function for chirp scaling operation, the phase
function for range compression and bulk RCMC, and the phase function for azimuth
compression and residual phase compensation, respectively. Since the phase multiplication
operation is a unitary transformation, G(·) is obtained by deriving the inverse operation of
M(·). Furthermore, G(·) is also referred to as the CSA operator, which can be regarded as an
implicit operation procedure of decomposing G with the Kronecker product decomposition
rule, avoiding the vectorization of echoes and scattering coefficients.

The above operators have a prominent property that both M(·) and G(·) are linear
processes whose relationship, similar to Equation (4), is described as G(·) = M(·)−1 = M(·)H.
This conclusion can be further generalized to G = MH.

Theorem 1. The imaging operator M(·) and approximated observation operator G(·) are linear
operators, and the relationship satisfies G(·) = M(·)H and G = MH.

Proof. Based on Equations (8) and (9) above, the vector form of Ξ̂ and S is expressed as
vec(Ξ̂) = vec(M(S)) and vec(S) = vec(G(Ξ̂)). According to the definition of the CSA,
the operators M(·) and G(·) are rewritten as the multiplication of a series of suboperation
matrices. Then, we deduce

σ̂ = vec(M(S)) = Ms = F̂H
a Ĥ3F̂H

r Ĥ2F̂rĤ1F̂as (10)

s = vec(G(Ξ̂)) = Gσ̂ = F̂H
a Ĥ∗1 F̂H

r Ĥ∗2 F̂rĤ∗3 F̂aσ̂ (11)

Ĥx = diag(vec(Hx)) ∈ CMN×MN , x = 1, 2, 3 (12)

{
F̂r = Ia ⊗ Fr ∈ CMN×MN

F̂a = FT
a ⊗ Ir ∈ CMN×MN (13)

where F̂H
r = Ia ⊗ FH

r , F̂H
a = (FH

a )
T ⊗ Ir, Ir ∈ RM×M, and Ia ∈ RN×N are the identity

matrices, and Ĥx is the diagonal matrix that satisfies Ĥ∗x = ĤH
x . Consequently, it can be

concluded from Equations (10)–(13) that G = MH and G(·) = M(·)H.

Theorem 1 proves that the inverse operation of M, as an approximated observation,
can be applied to design the 2D approximated observation model by replacing the measure-
ment matrix Φ. Restricted by the form of operator G(·), the downsampling observation
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model Sd in Equation (7) is rewritten as Sd = ΨrG(Ξ̂)Ψa + N0. Similar to the 1D exact
observation model, the scattering coefficient matrix Ξ is reconstructed by transforming the
downsampling observation model into an optimization problem, which is expressed as

Ξ̂ = arg min
Ξ

{
‖Sd −ΨrŜΨa‖2

F + λ‖Ξ‖1

}
= arg min

Ξ

{
‖Sd −ΨrG(Ξ)Ψa‖2

F + λ‖Ξ‖1

} (14)

where ‖·‖F denotes the Frobenius norm, and Ŝ = G(Ξ) is the approximate echo data
calculated by introducing the true scattered field Ξ into the CSA operator G(·).

The above derivation method can be extended to yield more approximate observation-
based CS algorithms from the inverse operation of other MF methods, such as the RDA
and BPA. Note that the decoupled nature of MF methods enables their inverse operation by
definition. This paper does not present other possible extensions due to space restrictions.

2.4. Sparse Representation of the SAR Imaging Model

The matrix Ξ is considered sparse if the dominant parts of the scattering coeffi-
cients are either zeros or very close to zeros. The scattered field of complex SAR scenes
is generally nonsparse, making it challenging to obtain high-quality SAR images by
directly adopting the optimization model in Equation (14). Assuming that the SAR
scene is sparse after adopting traditional transform domain methods (such as the dis-
crete wavelet transform (DWT) [33] or discrete cosine transform (DCT) [34]), the opti-
mization model is rewritten as a sparse-representation-based reconstruction model Ξ̂ =
arg minΞ

{
‖Sd − ΨrŜΨa‖2

F + λ‖ΞSR‖1
}

, where ΞSR = ΥΞ denotes the sparse representa-
tion of Ξ with respect to the transform matrix Υ, and the constraint term λ‖·‖1 enforces
the sparsity of matrix ΞSR. Then, we further generalize the `1 norm-based regularizer
‖·‖1 to a more general regularization function ρ(·), which represents the piecewise linear
function (PLF) [35] or the constraint function based on the `q norm, where q ∈ [0, 1]. The `q
norm-based regularizers with q = 0 and q = 1 correspond to the hard threshold functions
and soft threshold functions, respectively.

Assuming that the transform matrix Υ is an orthonormal sparse basis matrix, the
scattering coefficient matrix is defined as Ξ = Υ+ΞSR, where ΥΥ+ = I and I is the identity
operator. In this case, the optimization problem of nonsparse scene reconstruction has
been efficiently addressed due to the orthogonality of Υ. However, it remains nontrivial
and laborious to obtain a high-quality SAR reconstructed image if the sparse basis is
nonorthogonal or even nonlinear in a more complex imaging scene. Then, the sparse
transform matrix is further generalized to a general nonlinear transform function F(·) to
relax its reversibility and orthogonality requirements. We substitute ρ[F(Ξ)] for ‖ΥΞ‖1 to
develop a generalized reconstruction model based on sparse representation.

Ξ̂ = arg min
Ξ

{
‖Sd −ΨrŜΨa‖2

F + λρ[F(Ξ)]
}

. (15)

Many iterative optimization algorithms have been developed to solve this optimization
problem, including the iterative threshold algorithm (ITA), ADMM, AMP, etc. Nevertheless,
these algorithms universally demand many iterations and extensive calculations to achieve
satisfactory reconstruction results. In this paper, the nonlinear transform function and other
iterative parameters are set as undetermined variables in network learning to improve the
imaging speed and reconstruction performance.

3. SAR Imaging Nets Based on Sparse Representation and Approximated Observation

In Section 3.1, first, we elaborate on the design of the CSA- and ISTA-based deep SAR
imaging net architecture. Second, Sections 3.2 and 3.3 present SR-CSA-Net and its enhanced
version, which apply to SAR imaging of complex scenes. Last, the network structure and
training strategy analysis are demonstrated in Section 3.4.
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3.1. CSA-Derived 2D SAR Imaging Net Architecture

As one of the ITAs, the ISTA with the `1 norm-based regularizer is well known for
solving the regularization optimization problem and is widely utilized in sparse SAR
imaging. In this subsection, the detailed construction process from the ISTA to the deep-
unfolding-based SAR imaging net architecture is introduced step by step. Specifically, the
ISTA solving the optimization problem in Equation (3) is divided into two stages—operator
update and nonlinear transformation—which are expressed as

rl = σ̂l−1 + µ · (ΨΦ)H(sd −ΨΦσ̂l−1) (16)

σ̂l = soft(rl ; T) = sign(rl)max[(|rl | − T); 0] (17)

where l denotes the iteration index, µ represents the step size, which affects the convergence
of the ISTA, rl is the operator that processes the residuals, soft(·; ·) denotes the nonlinear
reconstruction function corresponding to the `1 norm-based regularizer (q = 1), λ and µ are
merged into a threshold parameter T = λµ, and sign(·) denotes the sign function. Similarly,
the ISTA can also effectively solve the 2D optimization problem in Equation (14) due to
the linear characteristic of the CSA operator G(·). The 2D scattering coefficient matrix Ξ̂ is
reconstructed by iterating between the operator update and the nonlinear transformation,
which can be rewritten as

Rl = Ξ̂l−1 + µl ·M
{

ΨT
r
[
Sd −ΨrG(Ξ̂l−1)Ψa

]
ΨT

a

}
(18)

Ξ̂l = soft(Rl ; T) = sign(Rl)max[(|Rl | − T); 0]. (19)

In CS-driven SAR imaging methods, the ISTA is frequently required to undertake
numerous iterations to acquire acceptable reconstruction results, accompanied by the
challenge of selecting the most appropriate hand-crafted parameters. To overcome the
disadvantages of 1D exact observation models and online sparse imaging techniques, we
developed a CSA-derived deep SAR imaging net by unfolding the above-mentioned 2D
iterative algorithm. This net architecture for 2D SAR imaging consists of a fixed number
of L layers, each corresponding to one ISTA iteration. The two stages represented by
Equations (18) and (19) are mapped to the monolayer topology, which comprises two
update modules: the linearity module R and the nonlinearity module N. Figure 2 depicts
the topology architecture of the deep-unfolding-based 2D SAR imaging net.

Figure 2. Topology architecture of 2D SAR imaging net.

Then, we describe the internal structure of network modules. In terms of Equation (18),
the linearity module R is expressed as

R : R(l) = Ξ̂(l−1) + µ(l) ·M
{

ΨT
r
[
Sd −ΨrG(Ξ̂(l−1))Ψa

]
ΨT

a

}
. (20)
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where R(l) denotes the 2D linear reconstruction result, and µ(l) and T(l) represent the
learnable parameters in the lth layer, while they are manually tuned in the ISTA. Parameter
learnability is conducive to resolving the challenge of adjusting a priori. Since the radar
signal is complex-valued data, we address the matrices in Equation (20) by separating
them into real and imaginary parts, i.e., R(l) = Re(R(l)) + jIm(R(l)), where Re(·) denotes
the real part of the matrix, Im(·) denotes the imaginary part of the matrix, and j denotes
the imaginary unit. Hence, the operators G(·) and M(·) in module R are designed as
a dual-path structure, with which the real and imaginary parts of the radar signal are
separately processed.

We use G(·) as an example to introduce the dual-path structure in detail. The calcula-
tion process of G(·) is divided into three steps to simplify the calculation expression, and
the real and imaginary parts of each step are derived according to the complex-valued
operation rules. The first step Fr[(Ξ̂(l−1)Fa) ◦ H∗3 ] with respect to Ξ̂(l−1), denoted as a

suboperator Fr[·], is given in Equation (21), where Con(A, B) =
[
AT BT]T represents the

consolidation operator, with which the matrices A and B are consolidated to form an array[
AT BT]T, and dConU

([
AT BT]T) = A and dConL

([
AT BT]T) = B represent the inverse

operation of Con(·, ·), with which the upper part and lower part, respectively, of the array
are extracted.

The second step FH
r 〈·〉 = FH

r 〈Fr[·] ◦H∗2〉 based on suboperator Fr[·] is expressed as
Equation (22), and the third step {·}FH

a = {FH
r 〈·〉 ◦ H∗1}FH

a , namely, G(·), is given in
Equation (23). Since M(·) is the inverse operation of G(·), M(·) has the same structure as
G(·) and contains different phase functions. The structure of M(·) can be developed by
swapping the input and output of G(·), and the topology architecture of module R in the
lth layer is illustrated in Figure 3 based on the above analysis. Note that all the matrix
operations related to the FFT and downsampling in Figure 3 are left multiplications.[

Re(Fr [·])
Im(Fr [·])

]
=

[
Re(Fr) −Im(Fr)
Im(Fr) Re(Fr)

]
· Con

(
Re(Ξ̂(l−1)Fa) ◦Re(H∗3)− Im(Ξ̂(l−1)Fa) ◦ Im(H∗3),
Im(Ξ̂(l−1)Fa) ◦Re(H∗3) + Re(Ξ̂(l−1)Fa) ◦ Im(H∗3)

)

=

[
Re(Fr) −Im(Fr)
Im(Fr) Re(Fr)

]
· Con



dConU

([
Re(Fa) Im(Fa)
−Im(Fa) Re(Fa)

]T[ Re(Ξ̂(l−1))T

Im(Ξ̂(l−1))T

])T

◦Re(H∗3)

−dConL

([
Re(Fa) Im(Fa)
−Im(Fa) Re(Fa)

]T[ Re(Ξ̂(l−1))T

Im(Ξ̂(l−1))T

])T

◦ Im(H∗3),

dConL

([
Re(Fa) Im(Fa)
−Im(Fa) Re(Fa)

]T[ Re(Ξ̂(l−1))T

Im(Ξ̂(l−1))T

])T

◦Re(H∗3)

+dConU

([
Re(Fa) Im(Fa)
−Im(Fa) Re(Fa)

]T[ Re(Ξ̂(l−1))T

Im(Ξ̂(l−1))T

])T

◦ Im(H∗3)



(21)

[
Re
(
FH

r 〈·〉
)

Im
(
FH

r 〈·〉
) ] = [ Re(FH

r ) −Im(FH
r )

Im(FH
r ) Re(FH

r )

]
· Con

(
Re(Fr [·]) ◦Re(H∗2)− Im(Fr [·]) ◦ Im(H∗2),
Im(Fr [·]) ◦Re(H∗2) + Re(Fr [·]) ◦ Im(H∗2)

)

=

[
Re(FH

r ) −Im(FH
r )

Im(FH
r ) Re(FH

r )

]
· Con

 dConU

([
Re(Fr [·])
Im(Fr [·])

])
◦Re(H∗2)− dConL

([
Re(Fr [·])
Im(Fr [·])

])
◦ Im(H∗2),

dConL

([
Re(Fr [·])
Im(Fr [·])

])
◦Re(H∗2) + dConU

([
Re(Fr [·])
Im(Fr [·])

])
◦ Im(H∗2)


(22)

[
Re(G(·))T

Im(G(·))T

]
=

[
Re
(
{·}FH

a
)T

Im
(
{·}FH

a
)T

]

=

[
Re(FH

a ) Im(FH
a )

−Im(FH
a ) Re(FH

a )

]T

· Con

( {
Re
(
FH

r 〈·〉
)
◦Re(H∗1)− Im

(
FH

r 〈·〉
)
◦ Im(H∗1)

}T,{
Im
(
FH

r 〈·〉
)
◦Re(H∗1) + Re

(
FH

r 〈·〉
)
◦ Im(H∗1)

}T

)

=

[
Re(FH

a ) Im(FH
a )

−Im(FH
a ) Re(FH

a )

]T

· Con


{

dConU

([
Re
(
FH

r 〈·〉
)

Im
(
FH

r 〈·〉
) ]) ◦Re(H∗1)− dConL

([
Re
(
FH

r 〈·〉
)

Im
(
FH

r 〈·〉
) ]) ◦ Im(H∗1)

}T

,{
dConL

([
Re
(
FH

r 〈·〉
)

Im
(
FH

r 〈·〉
) ]) ◦Re(H∗1) + dConU

([
Re
(
FH

r 〈·〉
)

Im
(
FH

r 〈·〉
) ]) ◦ Im(H∗1)

}T


(23)
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Figure 3. Topology architecture of module R.

Furthermore, if the imaging scene is sparse in the spatial domain, module N in
Equation (19) can be combined with module R to establish a CSA-based 2D SAR imaging
net (CSA-Net) applied to solve Equation (14). Conversely, if the imaging scene is nonsparse
or weakly sparse, module N should be redesigned to sparsely represent the corresponding
scene. Aimed at the difficulty of SAR imaging in complex scenes, a novel 2D SAR imaging
strategy that can introduce sparse representation and transform sparsity into the network
architecture is introduced in Section 3.3.

3.2. Deep SAR Imaging Net Based on Sparse Representation: SR-CSA-Net

In this subsection, a CNN-based module N with sparse representation is designed for
solving the complex-scene, SAR imaging problem in Equation (15); then, it is incorporated
with the CSA-based module R to construct a dual-path deep SAR imaging net that is
referred to as SR-CSA-Net.

If we use traditional transform-domain methods to achieve sparse representation,
the output of layer l can be calculated by the nonlinear function soft(·; ·) with the input
of the linear reconstruction result R(l) and threshold parameter T(l), which are expressed
as follows: Ξ̂(l)

SR = soft(ΥR(l); T(l))

Ξ̂(l) = Υ+Ξ̂(l)
SR

(24)

where the transform matrix Υ and its inverse form Υ+ are substitutable and nonoptimal.
To sparsify the scattering coefficient matrix Ξ̂ and optimize the reconstruction performance,
we develop a CNN-based nonlinear transform function F(·) that can be utilized to learn an
optimal sparse basis. Then, this well-designed transform function is embodied as a CNN
block and adopted in SR-CSA-Net instead of using the handcrafted transform matrix Υ.

Considering the powerful fitting ability of a CNN, the convolution operators Ci(·),
activation function ReLU(·), and batch normalization (BN) operator B(·) are combined to
design the nonlinear transform function F(·), in which the two convolution operators C1(·)
and C2(·) are successively separated by B(·) and ReLU(·). The BN operator preceding the
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activation function effectively prevents problems such as vanishing gradient, overfitting,
and slow convergence [36], which are expressed as

B(X) =
X− E[X]√
Var[X] + ε

· γ + β (25)

where E[·] denotes the mean function, Var[·] represents the variance function, ε is a very
small number that prevents the instability of numerical calculation, and γ and β are
learnable affine parameters. On this basis, the linear reconstruction result R(l) in the lth
layer can be sparsely represented by using the well-designed transform function F(·),
which is formulated as

F(R(l)) = C2

〈
ReLU

{
B
[
C1(R(l))

]}〉
(26)

where the first convolution operator C1(·) corresponds to a set of N f filters with a size of
ω f × ω f × 1, whose purpose is to perform a channelwise conversion from one channel
input to N f channel output, the second convolution operator corresponds to another set
of N f filters with a size of ω f × ω f × N f , and the rectified linear unit (ReLU) function is
denoted as ReLU(X) = max(X; 0). In summary, the CNN block F(·) is important in module
N and has rich sparse representation capability due to its nonlinearity and learnability.

It has been indicated in [37] that ‖F(Ξ̂(l))− F(R(l))‖2
F and ‖Ξ̂(l) − R(l)‖2

F satisfy the

linear relationship under a reasonable assumption. Thus, Ξ̂(l)
SR, the sparse representation

of Ξ̂(l), is derived by Ξ̂(l)
SR = F(Ξ̂(l)) = soft[F(R(l)); T(l)]. Furthermore, motivated by the

structure symmetric constraint, a mirror-symmetrical structure with different weights,
denoted by F̃(·) such that F̃(·)× F(·) = I, is designed to extract the unknown scattering
coefficient matrix from the obtained result of sparse representation. Therefore, the following
closed-form expression efficiently computes the unknown scattering coefficient matrix Ξ̂(l)

in layer l:
Ξ̂(l) = F̃(Ξ̂(l)

SR)

= F̃
{

soft
[
F(R(l)); T(l)]} (27)

where the symmetric CNN block F̃(Ξ̂(l)
SR) is modeled as F̃(Ξ̂(l)

SR) = C̃2
〈

ReLU{B̃
[
C̃1(Ξ̂

(l)
SR)
]
}
〉
.

The nonlinearity module N is also divided into two paths to connect the real and imaginary
parts output by the linearity module R. Moreover, due to the learnability of F̃(·) and F(·),
each layer of SR-CSA-Net has its own CNN block, and thus, module N in the lth layer is
redesigned as

N :

 Re(Ξ̂(l)) = F̃(l)
{

soft
[
F(l)(Re(R(l))); T(l)]}

Im(Ξ̂(l)) = F̃(l)
{

soft
[
F(l)(Im(R(l))); T(l)]} . (28)

The nonlinear reconstruction function soft(·; ·) is determined by Equation (19). For
the nonzero elements of complex x, the sign function is calculated by sign(x) = x./|x|.
Therefore, when processing complex-valued signals, the function soft(·; ·) in module N is
redefined as a nonlinear function including the complex normalization operation. Selecting
the real and imaginary parts of R(l) as examples, the function soft(·; ·) is expressed as

soft[Re(R(l)); T(l)] = sign(Re(R(l)))max[(|R(l)| − T(l)); 0]

= (Re(R(l))./|R(l)|)max[(|R(l)| − T(l)); 0]
(29)

soft[Im(R(l)); T(l)] = sign(Im(R(l)))max[(|R(l)| − T(l)); 0]

= (Im(R(l))./|R(l)|)max[(|R(l)| − T(l)); 0]
(30)

where Re(R(l))./|R(l)| and Im(R(l))./|R(l)| represent the normalization operations of the
real part and imaginary part, respectively, and |R(l)| = abs(Re(R(l)), Im(R(l))) is the
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elementwise absolute operation. Figure 4a illustrates the dual-path topology architecture
of module N in the lth layer, and the monolayer topology of the proposed SR-CSA-Net is
composed of modules R and N.

Figure 4. Topology architecture of the nonlinearity module. (a) Module N; (b) module Nplus.

3.3. Enhanced Version: SR-CSA-Net-Plus

To accelerate the convergence speed and expect further performance improvement
from the sparse reconstruction, we designed an enhanced network named SR-CSA-Net-
plus by improving module N from SR-CSA-Net. Suppose that Ξ̂(l) = R(l) + W(l) + N0

(l),
where W(l) denotes the high-frequency component missing in the linear reconstruction
result R(l), which can be recovered by a linear operator Π(·) from the closed-form solution
in Equation (28), i.e., W(l) = Π(Ξ̂(l)) = Π

〈
F̃(l){soft[F(l)(R(l)); T(l)]}

〉
.

Specifically, the linear operator Π(·) consists of two convolution operators, represented
by Π(·) = G(·)× D(·), where D(·) corresponds to a set of N f filters with a size of ω f ×
ω f × 1, and G(·) corresponds to one filter with a size of ω f × ω f × N f . In this case, we
redefine the size of convolution operators in both CNN blocks to address the dimensionality
mismatch, and both Ci(·) and C̃i(·) are defined as one set of N f filters with a size of
ω f ×ω f ×N f . On this basis, we introduce skip connections to develop an improved module
N, named module Nplus, which is given by Equation (31), and its topology architecture is
illustrated in Figure 4b.

The nonlinear reconstruction result of SR-CSA-Net-plus is updated by module Nplus.
Similar to module N in Equation (28), Π(·), F(·), and F̃(·) are also learnable in module
Nplus, and they are not constrained to be the same on each layer, namely, they are layer-
varied.

Nplus :



Re(Ξ̂(l)) = Re(R(l)) + Π(l)
〈

F̃(l)
{

so f t
[

F(l)
(

Re(R(l))
)

; T(l)
]}〉

= Re(R(l)) + G(l)
〈

F̃(l)
{

so f t
[

F(l)
(

D(l)(Re(R(l))
))

; T(l)
]}〉

Im(Ξ̂(l)) = Im(R(l)) + Π(l)
〈

F̃(l)
{

so f t
[

F(l)
(

Im(R(l))
)

; T(l)
]}〉

= Im(R(l)) + G(l)
〈

F̃(l)
{

so f t
[

F(l)
(

D(l)(Im(R(l))
))

; T(l)
]}〉 (31)
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Note that in SR-CSA-Net-plus, F(·)×D(·) and G(·)× F̃(·) are adopted to replace F(·)
and F̃(·), respectively, in SR-CSA-Net, which is conducive to further exploring the sparsity
of SAR images. The monolayer topology of the proposed SR-CSA-Net-plus comprises
modules R and Nplus.

3.4. Network Analysis

Structural analysis: SR-CSA-Net and SR-CSA-Net-plus mainly consist of a linearity
module R and a nonlinearity module N or Nplus. The nonlinearity module of each layer
is composed of convolution operators, BN operators, and nonlinear activation functions.
Therefore, the framework of our proposed imaging nets is a mixture of linear reconstruction,
convolution, batch normalization, and nonlinear activation. Compared with conventional
CNN-based or deep-unfolding-based methods, our proposed imaging nets are impressive
in network structure and operation mechanism. These two nets embed the approximated
observation model into a linear reconstruction architecture and convert the sparse transform
function into a CNN block. Moreover, the distinct superiority of SR-CSA-Net-plus lies in
its more prominent sparse representation capability and the addition of skip connections.
The skip connection structure facilitates network convergence and has been widely applied
to ResNet [38] and DenseNet [39].

Learnable parameters: In our proposed imaging nets, the parameters of different
layers are set to be nonshared. Γnet is the parameter set of SR-CSA-Net, which has three
types of parameters: the step size µ(l), the soft threshold T(l), and the CNN blocks F(l)

and F̃(l). Hence, Γnet is expressed as Γnet = {µ(l), T(l), F(l), F̃(l)}L
l=1, where L is the total

number of network layers, and F(l) and F̃(l) include parameters γ, β, N f , and ω f . Similar to
SR-CSA-Net, each layer of SR-CSA-Net-plus also has its trainable network parameters, and
its parameter set is denoted by Γ+

net = {µ(l), T(l), D(l), G(l), F(l), F̃(l)}L
l=1. In this paper, we

adopt supervised training to learn all parameters and use the minibatch gradient descent
(MBGD) algorithm [36] in combination with the backpropagation algorithm [40] to update
the gradient.

Complexity analysis: All of the above parameters in Γnet and Γ+
net are real-valued.

The dimensionality of µ(l) and T(l) is 1, and the dimensionality of D(l), G(l), F(l), and
F̃(l) is calculated by N f and ω f . For SR-CSA-Net, the number of network parameters
in F(l) and F̃(l) is the same and equal to 1× ω f × ω f × N f + N f × (2 + ω f × ω f )× N f .
Then, the total number of network parameters in SR-CSA-Net is denoted as OΓnet =
L× {2 + 2× [N f ×ω f

2 + N f
2 × (2 + ω f

2)]}. Similarly, for SR-CSA-Net-plus, the numbers
of parameters in D(l), G(l), F(l), and F̃(l) are N f × ω f × ω f × 1, 1× ω f × ω f × N f , N f ×
(2 + ω f × ω f + ω f × ω f ) × N f , and N f × (2 + ω f × ω f + ω f × ω f ) × N f , respectively.
Therefore, the total number of network parameters in SR-CSA-Net-plus is OΓ+

net
= L× {2 +

2× [N f ×ω f
2 + N f

2 × (2 + 2×ω f
2)]}.

For recent and state-of-the-art SAR imaging nets, namely, ISTA-Net [24], RMIST-
Net [25], TISTA [41], C-TISTA [42], LAMP [43], AF-AMPnet [30], and RDA-Net [31], the
number of parameters for each of these imaging nets is L(PQ2 + MN × PQ + 1), 2L,
L + 2, 4L, L(MN × PQ + 2), 2L + 2, and L(2MN + M2 + N2 + 2), respectively. Since the
values of N f and ω f are generally much smaller than those of MN and PQ, the number
of parameters in our proposed two imaging nets is acceptable and moderate. According
to the above-mentioned analysis, SR-CSA-Net and SR-CSA-Net-plus achieve a tradeoff
between reconstruction quality and computational complexity compared with the existing
SAR imaging nets.

Loss function: The training procedure of the proposed imaging nets can be viewed
as updating the learnable parameter set Γnet or Γ+

net by minimizing the loss function.
Instead of using a general loss function such as the averaged normalized mean square
error (NMSE) [44], we adopt a cleverly designed loss function in this paper, in which
both the reconstruction error and symmetry constraint of CNN blocks are considered.
More specifically, the structure symmetry constraint F̃(·)× F(·) = I is satisfied in the
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well-designed loss function while reducing the discrepancy between the label and the final
reconstruction result obtained in layer L.

The total loss functions for SR-CSA-Net and SR-CSA-Net-plus are denoted as Ltotal
and L+total, respectively, which are defined as follows:

Ltotal(Γnet) = α1L1 + α2L2 (32a)

L+total(Γ
+
net) = α1L1 + α3L3 (32b)

L1 =
1
2J

J

∑
j=1

∥∥Ξ̂(L)
j −Dj

∥∥2
F (32c)

L2 =
1
2J

J

∑
j=1

L

∑
l=1

∥∥∥F̃(l)
[

F(l)(Re(Rj
(l))
)]
−Re(Rj

(l))
∥∥∥2

F

+
1
2J

J

∑
j=1

L

∑
l=1

∥∥∥F̃(l)
[

F(l)(Im(Rj
(l))
)]
− Im(Rj

(l))
∥∥∥2

F
(32d)

L3 =
1
2J

J

∑
j=1

L

∑
l=1

∥∥∥F̃(l)
{

F(l)
[

D(l)(Re(Rj
(l))
)]}
− D(l)(Re(Rj

(l))
)∥∥∥2

F

+
1
2J

J

∑
j=1

L

∑
l=1

∥∥∥F̃(l)
{

F(l)
[

D(l)(Im(Rj
(l)))

]}
− D(l)(Im(Rj

(l))
)∥∥∥2

F
(32e)

where L1 is the average Euclidean distance loss function, L2 and L3 are the symmetry
constrained loss functions, J is the total number of training samples, Ξ̂(L)

j represents the
network output corresponding to the jth training sample, and Dj indicates the label corre-
sponding to the jth training sample. In addition, α1, α2, and α3 are adjustable parameters by
which the compromise between L1 and L2 or between L1 and L3 can be controlled. In this
paper, they were set to 1, 0.1, and 0.1, respectively.

4. Experimental Results and Analyses

In this section, the superiority of the proposed SR-CSA-Net and SR-CSA-Net-plus is
demonstrated by simulated data and measured data from the RADARSAT-1 satellite. Table
1 lists the main parameters of the simulation and RADARSAT-1. These system parameters
determine the phase functions Hx and FFT/IFFT matrices Fx.

Table 1. Main parameters of the simulation and RADARSAT-1 satellite.

Parameters Simulation RADARSAT-1

Range FM rate 62.50 MHz/µs 0.72 MHz/µs
Azimuth FM rate 66.67 Hz/s 1733 Hz/s
Center frequency 10 GHz 5.3 GHz

Pulse duration 1.2 µs 41.74 µs
Pulse repetition frequency 100 Hz 1257 Hz

Effective radar velocity 100 m/s 7062 m/s

In the simulated experiments, we adopted the nonsparse images in [37] as labels Dj|Jj=1

with a size of 256 × 256. A sufficient number of simulated echoes Sj|Jj=1 was generated
using labels with known geometry, 8000 of which were employed for training and 1000 were
utilized for testing. With this strategy, the training set contained 8000 pairs of {Dj, Sj}J=8000

j=1
with 20 dB AWGN added to each Sj. Some nonsparse labels in the training set are shown
in Figure 5. In the measured experiments, a portion of the original RADARSAT-1 data
containing nonsparse scenes was applied to further investigate the proposed imaging
strategy. The training set was formulated by utilizing 1000 slices of the original echo data,
where the size of each slice was 512× 512, and a 20 dB AWGN was added. In particular, we
adopted the traditional CSA to generate the labels of measured data, in which the sidelobe
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was further suppressed by feature enhancement. The following three cases were taken into
account to assess the effectiveness of our proposed imaging nets.

(1) Case I: Simulated experiments of nonsparse scenes.
(2) Case II: Simulated experiments of real scenes.
(3) Case III: Measured experiments.

The fixed mutual parameters were set as follows: the convolution size was N f = 32,
the filter size was ω f×ω f = 3× 3, the learning rate was 1 × 10−4 , the default number of
layers was L = 9, and the default number of epochs was 101. All our experiments were
implemented in the PyTorch framework with the Adam optimizer and accelerated by an
NVIDIA Tesla V100 GPU.

(a) (b)

Figure 5. (a) Partial nonsparse labels in the training set; (b) one example of nonsparse labels.

4.1. Simulated Experiments of Nonsparse Scenes

Here, we focused on a nonsparse imaging scene in which the discretized grids P×Q
were fixed to 256 × 256. In this section, five algorithms, including MF (CSA), traditional CS
without sparse representation, DCT-based CS (DCT-CS) [17], mixed sparse representation-
based CS (MSR-CS) [18], and CSA-Net, were adopted as comparative experiments. CSA-
Net is a simplified SR-CSA-Net without CNN blocks, which can be regarded as a 2D version
of ISTA-Net [24] improved by the CSA operator G(·). In addition, four evaluation indices,
including the NMSE, peak signal-to-noise ratio (PSNR) [45], structural similarity index for
measuring [45], and mean computing time, were applied to evaluate the reconstruction
performance of different algorithms. The NMSE is defined as

NMSE =

∥∥X̂− Xlabel
∥∥2

F∥∥Xlabel
∥∥2

F

(33)

where X̂ represents the reconstruction result and Xlabel denotes the label image. The
definition of PSNR is

PSNR = 10 · log10

(
K2

X̂
MSE

)

MSE =
1

PQ

P−1

∑
p=0

Q−1

∑
q=0

[X̂(p, q)− Xlabel (p, q)]2
(34)

where MSE is the mean square error between X̂ and Xlabel , and KX̂ denotes the pixel value
range of X̂. In addition, the SSIM is defined as

SSIM =

(
2E[X̂]E[Xlabel ] + α1

)(
2 Cov[X̂, Xlabel ] + α2

)(
E[X̂]2 + E[Xlabel ]

2 + α1
)(

Var[X̂] + Var[Xlabel ] + α2
) (35)

where Cov[·, ·] represents the cross-covariance function, and α1 and α2 were set to (0.01 ·
KX̂)

2 and (0.03 · KX̂)
2, respectively.
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According to the definitions in Equations (33)–(35), it can be concluded that the NMSE
describes the accuracy of the reconstruction results, the PSNR reflects the distortion of
images after reconstruction, and the SSIM indicates the similarity of the reconstruction
result and ground truth, where a larger SSIM value means better performance.

(1) Results with complete sampling: As illustrated in Figure 6, the reconstruction results
of the proposed SR-CSA-Net and SR-CSA-Net-plus were compared with those of the above
five algorithms with complete sampling. Figure 6 verifies that the reconstruction results
of SR-CSA-Net and SR-CSA-Net-plus have more details and sharper edges than other
methods, showing the superiority of the proposed imaging nets.

MF(CSA) MSR-CSDCT-CSCS

SR-CSA-Net LabelSR-CSA-Net-plusCSA-Net

Figure 6. Comparison of seven SAR imaging methods with complete sampling (including the
proposed SR-CSA-Net and SR-CSA-Net-plus), where more details of the imaging results are shown
below the corresponding image.

Table 2 lists the three evaluation indices of the imaging results in Figure 6, obtained
from the average of 100 Monte Carlo experiments. In addition, the optimal evaluation
values are in bold font. Although traditional MF, CS-driven, and CSA-Net without CNN
blocks obtain acceptable imaging results, the proposed SR-CSA-Net and SR-CSA-Net-plus
outperform all the above methods by a large margin. As expected, SR-CSA-Net-plus has
better performance and is superior to SR-CSA-Net based on the evaluation values.

(2) Results with different sampling rates: Then, we examined the influence of the sam-
pling rate denoted as η=M′N′/MN on the reconstruction performance. We adopted the
same training set to ensure a fair comparison, and different sampling rates, including
η = 81%, 64%, and 36%, were applied to the above seven SAR imaging methods to more
deeply investigate the superiority of our SR-CSA-Net and SR-CSA-Net-plus. The imaging
results by MF, CS-driven methods, and deep unfolding-based methods under the premise
of downsampling are shown in Figure 7 from left to right.



Remote Sens. 2023, 15, 4126 18 of 28

Table 2. Evaluation values with complete sampling.

Method NMSE PSNR (dB) SSIM

MF(CSA) 0.0113 24.72 0.7685
CS 0.0173 22.88 0.7587

DCT-CS [17] 0.0108 24.91 0.7713
MSR-CS [18] 0.0096 25.45 0.7858

CSA-Net 0.0092 25.62 0.8106
SR-CSA-Net 0.0024 31.74 0.9069

SR-CSA-Net-plus 0.0018 32.54 0.9496

SR-CSA-Net LabelMF(CSA) MSR-CSDCT-CS

81%

64%

SR-CSA-Net-plus

36%

CS CSA-Net

Figure 7. Comparison of seven SAR imaging methods with different sampling rates (including
η = 81%, 64%, and 36%).

In Figure 7, the ambiguity phenomenon appears in the reconstruction results of CSA
and CSA-Net because both the conventional MF and the deep unfolding method without
sparse representation cannot address the downsampled echo of the nonsparse scene. In
contrast, the ambiguity phenomenon is eliminated in the reconstruction results of CS-
driven methods and our proposed imaging nets because those methods are effective for
the downsampled echo of the nonsparse scene. While CS without sparse representation
may alleviate noise and sidelobe interference to some extent, its ambiguity phenomenon is
also severe and grows in severity as sampling rates decrease. The reconstruction results of
sparse-representation-based CS methods, including DCT-CS and MSR-CS, are acceptable
when η = 81% and η = 64% but seriously deteriorate when η = 36%. As a result, the
proposed SAR imaging nets achieve satisfactory reconstruction results with complete
sampling data to 36% downsampling data.

The PSNR, NMSE, and SSIM values of various η and the mean computing time of
various algorithms are listed in Table 3. It shows that the imaging quality declines for
all the methods with a decrease in sampling rate. The evaluation values of CSA, CS,
and CSA-Net significantly decrease under the premise of downsampling. For DCT-CS
and MSR-CS, the evaluation indices do not decline significantly when η ≥ 64%, but the
evaluation indices decline significantly when η = 36%. Although the evaluation indices of
our proposed imaging nets also decline with a reduction in the sampling rate, the proposed
SR-CSA-Net-plus obtains the best NMSE, PSNR, and SSIM values in each case, followed by
SR-CSA-Net.
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Table 3. Evaluation values with different sampling rates.

η = 81% η = 64% η = 36% Runtime (s)
Method

NMSE PSNR (dB) SSIM NMSE PSNR (dB) SSIM NMSE PSNR (dB) SSIM CPU/GPU

MF(CSA) 0.1930 12.40 0.2981 0.1991 11.89 0.2110 0.3450 9.88 0.1409 1.37/-
CS 0.0740 16.57 0.4603 0.1262 14.25 0.3043 0.2654 11.02 0.2062 7.86/-

DCT-CS [17] 0.0144 23.67 0.7331 0.0176 23.13 0.7113 0.0507 18.16 0.5726 60.94/-
MSR-CS [18] 0.0118 24.55 0.7499 0.0162 23.16 0.7421 0.0739 16.45 0.5526 123.15/-

CSA-Net 0.0556 17.81 0.6287 0.0693 16.85 0.3489 0.1219 14.40 0.2076 -/0.036
SR-CSA-Net 0.0074 26.55 0.8153 0.0092 25.16 0.7995 0.0479 19.16 0.6069 -/0.064

SR-CSA-Net-plus 0.0044 29.27 0.9014 0.0066 27.09 0.8566 0.0207 21.77 0.7054 -/0.068

The superior reconstruction performance of the proposed SR-CSA-Net and SR-CSA-
Net-plus are demonstrated by the PSNR and NMSE values. Furthermore, the SSIM values
and the mean computing time indicate that the proposed imaging nets have outstanding
target enhancement performance and reconstruction efficiency. For different sampling
rates, the echo matrix is filled to a fixed size, so there is almost no difference in imaging
time. The three deep-unfolding-based imaging nets have comparable imaging times, and
CSA-Net takes the shortest imaging time among the three methods. Due to the existence
of module N and module Nplus, the parameter sets in SR-CSA-Net and SR-CSA-Net-plus
include learnable parameters related to sparse representation, which results in a slightly
larger imaging time of the proposed imaging nets than that of CSA-Net.

(3) Ablation study: To further evaluate the superiority of our proposed strategy, an
ablation study of SR-CSA-Net-plus with different layers, epochs, and network modules
was performed and is presented in this part. The comparison results of PSNR with respect
to different imaging methods are presented in Figure 8 and Table 4, where SR-CSA-Net-plus
without skip connections (SCs) and Π(·) stands for SR-CSA-Net, and SR-CSA-Net-plus
without SCs, Π(·), F(·), and F̃(·) refers to CSA-Net.

(a) (b)

3 5 7 9 11
12

14

16

18

20

22

24

26

28

30

Imaging Methods with Sparse Representation

Imaging Methods without Sparse Representation

DCT-CS CSA-Net

Figure 8. Performance investigation with respect to the SC and sparse representation with different
layers and epochs (η = 81%). (a) Layer; (b) epoch.

The PSNR curves of the proposed imaging nets increase with the number of layers
or epochs and converge at a certain point, as shown in Figure 8. We also observe that
SR-CSA-Net-plus significantly outperforms SR-CSA-Net, CSA-Net, and other conventional
methods in terms of reconstruction performance. When we remove SCs and Π(·), the
results are still acceptable. However, after removing the sparse representation blocks F(·)
and F̃(·), the system suffers a significant performance degradation. The PSNR curves
converge when L ≥ 7. Table 4 indicates that under this condition, SR-CSA-Net-plus
achieves approximately 3 dB and 12 dB gains over SR-CSA-Net and CSA-Net, respectively.
Furthermore, CSA-Net achieves the fastest training convergence as the number of epochs



Remote Sens. 2023, 15, 4126 20 of 28

increases, while SR-CSA-Net-plus registers as the second-fastest and achieves the best
reconstruction performance among the three deep-unfolding-based imaging nets.

Table 4. PSNR Value of ablation study (η = 81%).

PSNR (dB) (epoch = 101)
Method SC Π(·) F(·) F̃(·)

L = 7 9 11

SR-CSA-Net-plus X X X X 29.15 29.27 29.18
SR-CSA-Net × × X X 26.39 26.55 26.48

CSA-Net × × × × 17.69 17.81 17.94

PSNR (dB) (L = 9)
Method SC Π(·) F(·) F̃(·)

epoch = 71 101 131

SR-CSA-Net-plus X X X X 29.17 29.27 29.20
SR-CSA-Net × × X X 26.37 26.55 26.61

CSA-Net × × × × 17.86 17.81 17.79

The BN operator was designed in our proposed imaging nets to accelerate convergence,
which is also critical to the improvement in network performance. To directly reflect the
influence of the BN operator, the proposed two imaging nets were compared with those
without BN operators. Figure 9 and Table 5 show the NMSE comparison results of four
different imaging nets with various numbers of layers and epochs, where w/o is the
abbreviation of “without”.

(a) (b)

( w/o  BN )SR-CSA-Net SR-CSA-Net-plus( w/o  BN )SR-CSA-Net SR-CSA-Net-plus 

Figure 9. Performance investigation with respect to the BN operator with different layers and epochs
(η = 64%). (a) Layer; (b) epoch.

As illustrated in Figure 9 and Table 5, the NMSE values of SR-CSA-Net and SR-
CSA-Net-plus are lower than those without BN operators at each layer or epoch. The
performance of SR-CSA-Net-plus is not appreciably affected by the removal of BN operators,
whereas the advantages of BN operators are more apparent for SR-CSA-Net. Figure 9a
verifies that the NMSE curves of SR-CSA-Net-plus (two red curves) converge and tend
to be flat when L ≥ 7, while the curves of SR-CSA-Net (two blue curves) converge when
L ≥ 9. Figure 9b shows that SR-CSA-Net-plus with BN operators performs best in terms
of convergence speed and achieves a stable performance over sixty epochs. Hence, the
convergence speed and reconstruction accuracy of imaging nets can be improved to some
extent by introducing the BN operator. Nevertheless, Table 5 suggests that SR-CSA-Net-plus
without BN operators still achieves better reconstruction performance than SR-CSA-Net
with BN operators.



Remote Sens. 2023, 15, 4126 21 of 28

Table 5. NMSE Value of ablation study (η = 64%).

NMSE (epoch = 101)
Method SC Π(·) BN

L = 7 9 11

SR-CSA-Net-plus X X X 0.0072 0.0066 0.0069
SR-CSA-Net-plus (w/o BN) X X × 0.0085 0.0083 0.0086

SR-CSA-Net × × X 0.0120 0.0092 0.0097
SR-CSA-Net (w/o BN) × × × 0.0229 0.0206 0.0213

NMSE (L = 9)
Method SC Π(·) BN

epoch = 71 101 131

SR-CSA-Net-plus X X X 0.0074 0.0066 0.0068
SR-CSA-Net-plus (w/o BN) X X × 0.0114 0.0083 0.0081

SR-CSA-Net × × X 0.0157 0.0092 0.0091
SR-CSA-Net (w/o BN) × × × 0.0276 0.0206 0.0168

In conclusion, F(·) and F̃(·) are notably beneficial for the high-quality reconstruction
of nonsparse SAR scenes. The superiority of SR-CSA-Net-plus over SR-CSA-Net can be
attributed to the high-frequency component recovery operator Π(·) and SCs introduced by
module Nplus. These two designs in SR-CSA-Net-plus improve the sparse representation
ability and reconstruction performance. For both SR-CSA-Net and SR-CSA-Net-plus, the
BN operator introduced by module N and module Nplus facilitates the convergence of the
network training while improving the reconstruction accuracy.

4.2. Simulated Experiments of Real Scenes

The simulated experiments in Section 4.1 proved the effectiveness and feasibility of
SR-CSA-Net and SR-CSA-Net-plus for nonsparse SAR reconstruction by comparing them
with traditional MF and CS-driven methods. In this subsection, we further compare them
with state-of-the-art deep unfolding methods, including RMIST-Net [25] and RDA-Net [31],
which also reduce the storage burden and are designed by unfolding ISTA. To demonstrate
the universality of the proposed imaging nets, we chose three real scenes with weak sparsity
in an open SAR ships detection dataset (SSDD) [46] to generate the SAR echoes, which were
directly input into the trained imaging nets in Section 4.1, avoiding unnecessary training and
calculation. The three real scenes with the indices 231, 1080, and 1088 in the SSDD were cut
into images of size of 256 × 256, and their sparsity degrees were scene 3 > scene 1 > scene 2.
The radar system parameters were the same as those in the previous section, and the
fixed mutual parameters of all networks were set to be the same for a fair comparison.
Figure 10 shows the imaging results of three real scenes obtained by RMIST-Net, RDA-Net,
SR-CSA-Net, and SR-CSA-Net-plus when downsampling with η = 81% and η = 64%. In
addition, the corresponding evaluation indices are listed in Table 6, where the best values
are marked in boldface.

Figure 10 and Table 6 reflect the superiority and robustness of our proposed two
imaging nets for a real SAR scene reconstruction when downsampling. Although the
reconstruction quality of all the above imaging nets weakens with the decreasing scene
sparsity and sampling rate, SR-CSA-Net-plus has the best advantage in all three scenes and
both downsampling schemes, followed by SR-CSA-Net. For the other two comparative
imaging nets, the imaging results of RDA-Net and RMIST-Net are acceptable when η = 81%,
but those of RMIST-Net are streaky when η = 64%. Furthermore, RDA-Net performs better
than RMIST-Net because the iterative parameters and compensation matrices in RDA-
Net are learned, while RMIST-Net only learns the ISTA parameters, and its RM kernel is
predefined. This issue leads to RDA-Net having the largest number of learnable parameters
but RMIST-Net having the least number of learnable parameters. In contrast, the number
of parameters in our methods is moderate. Therefore, our proposed imaging nets achieve a
compromise between reconstruction performance and computing speed compared with
RDA-Net and RMIST-Net.
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Figure 10. Imaging results of three real scenes by RMIST-Net, RDA-Net, SR-CSA-Net, and SR-CSA-
Net-plus from top to bottom. (Columns 1 and 2: scene 1. Columns 3 and 4: scene 2. Columns 5 and 6:
scene 3. Columns 1, 3, and 5: downsampling with η = 81%. Columns 2, 4, and 6: downsampling
with η = 64%.)
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Table 6. Performance comparison of different imaging nets in nonsparse SAR scenes.

NMSE/PSNR (dB)/SSIM, η = 81% NMSE/PSNR (dB)/SSIM, η = 64% Runtime (s)
Method

Scene 1 Scene 2 Scene 3 Scene 1 Scene 2 Scene 3 GPU

RMIST-Net [25] 0.0938/16.08/0.5866 0.1487/15.28/0.4947 0.1791/17.16/0.3930 0.1984/12.82/0.4241 0.1685/14.74/0.3871 0.2413/15.89/0.3352 0.042
RDA-Net [31] 0.0449/19.27/0.7533 0.0811/17.92/0.6314 0.1042/18.81/0.6073 0.0677/17.49/0.6564 0.1482/15.30/0.5495 0.1609/17.41/0.4627 0.075
SR-CSA-Net 0.0259/21.66/0.8575 0.0490/20.11/0.8603 0.0527/22.47/0.8279 0.0542/18.45/0.7117 0.1281/15.93/0.6167 0.1414/18.19/0.4521 0.064

SR-CSA-Net-plus 0.0123/24.88/0.9033 0.0283/22.49/0.8931 0.0237/25.94/0.9164 0.0439/19.37/0.7669 0.1187/16.26/0.6974 0.1066/19.42/0.6326 0.068
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4.3. Measured Experiments

The previous simulated experiments validated that SR-CSA-Net and SR-CSA-Net-plus
were superior to conventional CS-driven and deep-unfolding-based algorithms in both
reconstruction quality and efficiency. In this subsection, some experimental results are
given based on the measured data of RADARSAT-1 to investigate whether the proposed
imaging strategy still performs well in the measured experiments. Since SR-CSA-Net-plus
performed better, we chose it as an example to further verify our proposed strategy and
retrain it in the way introduced at the beginning of Section 4. SR-CSA-Net-plus was tested
and compared with the four above-mentioned methods, including CSA, MSR-CS, RMIST-
Net, and RDA-Net. In addition, an AMP-unfolded 2D SAR imaging method inspired
by [30], called AMP-Net, was introduced in this experiment for comparison with other
SAR imaging methods unfolded by ISTA. The corresponding imaging results with η = 81%
and η = 64% of a sparse scene and a nonsparse scene, namely, a harbor and seashore, are
shown in Figures 11 and 12, respectively. The image entropy (ENT) and the previously
mentioned evaluation values are listed in Table 7.

Figure 11. Imaging results of measured data for a harbor by CSA, MSR-CS, AMP-Net, RMIST-Net,
RDA-Net, and SR-CSA-Net-plus from left to right. (Rows 1: downsampling with η = 81%. Rows 2:
downsampling with η = 64%).

Figure 12. Imaging results of measured data for a seashore by CSA, MSR-CS, AMP-Net, RMIST-Net,
RDA-Net, and SR-CSA-Net-plus from left to right. (Rows 1: downsampling with η = 81%. Rows 2:
downsampling with η = 64%) .
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Table 7. Performance comparison of different imaging nets on measured data.

NMSE/PSNR (dB)/SSIM/ENT, η = 81% NMSE/PSNR (dB)/SSIM/ENT, η = 64%
Method

Harbor Seashore Harbor Seashore

CSA 0.0509/18.07/0.4988/3.7511 0.0488/18.41/0.6472/4.0985 0.0587/17.18/0.4511/3.9849 0.0536/17.96/0.6206/4.1333
MSR-CS [18] 0.0110/23.86/0.6246/3.1717 0.0266/19.90/0.6310/4.0857 0.0127/23.24/0.5823/3.5203 0.0302/19.35/0.5978/3.9964

AMP-Net [30] 0.0065/27.14/0.8858/1.5613 0.0143/23.30/0.7062/2.6594 0.0066/26.10/0.8651/1.5712 0.0122/23.27/0.6721/2.6949
RMIST-Net [25] 0.0063/27.08/0.8632/1.7454 0.0278/21.80/0.7284/2.7329 0.0065/25.08/0.8376/1.9739 0.0334/19.87/0.6349/2.7519
RDA-Net [31] 0.0042/27.93/0.8946/2.1576 0.0055/26.49/0.8682/3.4257 0.0055/25.85/0.8632/2.4056 0.0071/24.61/0.7405/3.8262

SR-CSA-Net-plus 0.0037/28.13/0.9083/2.1361 0.0026/29.67/0.9145/3.2951 0.0049/26.77/0.8878/2.2255 0.0043/27.86/0.8680/3.6207
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From Figures 11 and 12 and Table 7, the four networks achieve comparable recon-
struction results in the sparse scene, but the proposed strategy has apparent advantages in
the nonsparse scene. Specifically, SR-CSA-Net-plus achieves approximately 3∼8 dB PSNR
gains over RDA-Net, AMP-Net, and RMIST-Net, and reconstructs more details and sharper
edges. Furthermore, the NMSE, PSNR, and SSIM values of SR-CSA-Net-plus are optimal
among the six algorithms, which is consistent with the simulated experiments, while the
ENT of SR-CSA-Net-plus ranks third. However, for nonsparse scenes, ENT cannot be
used solely as an indicator to evaluate reconstruction performance. Although AMP-Net
and RMIST-Net obtain smaller ENT values for both the harbor and seashore, they lose
much information in the reconstruction process due to the lack of sparse representation
ability, such as the structure, edges, and smooth components of scattered fields. This loss
of information is especially pronounced in nonsparse scenes. In addition, since AMP is
superior to ISTA, the reconstruction performance of AMP-Net is slightly better than that
of RMIST-Net and has comparable performance with RDA-Net for sparse scenes. Thus,
we are interested in combining AMP-Net with a sparse representation structure, which
is expected to achieve better reconstruction performance than SR-CSA-Net-plus in our
future work. According to the complexity analysis in Section 3.4, the number of parame-
ters in RMIST-Net, AMP-Net, RDA-Net, and SR-CSA-Net-plus is 18, 20, 9.437 × 106, and
3.738 × 105, respectively, when the echo size is 512 × 512. Therefore, RMIST-Net spends
the least runtime among the four networks under the premise of the same fixed mutual
parameters and 2D imaging mechanism, followed by AMP-Net and SR-CSA-Net-plus. In
conclusion, the proposed strategy combines the merits of the CS and DL methods and
achieves consistently high-quality reconstruction results in sparse and weakly sparse scenes
while remaining computationally competent.

5. Conclusions

In this article, we presented a novel deep unfolding strategy for SAR imaging of
nonsparse scenes. There are two limitations in conventional nonsparse SAR scene recon-
struction: the vectorized CS optimization model requires a high computational cost to
process the large-scale matrix, and the transform-domain-based methods cannot obtain an
optimal sparse basis. Thus, the approximated observation model and CNN blocks were
introduced in place of the conventional exact observation model and sparse transform func-
tion. This strategy combined deep unfolding and traditional neural network architectures,
unlike model-driven CS reconstruction algorithms and data-driven DL imaging methods.
In practical terms, we incorporated the CSA operator and ISTA within an efficient deep
SAR imaging net, SR-CSA-Net, and developed its enhanced version, SR-CSA-Net-plus.
Theoretically, these two imaging nets pertained to the model-driven deep hierarchical
architecture. Each layer of our proposed imaging nets was designed as a combination
of the linearity and nonlinearity modules, corresponding to the iteration steps of ISTA
optimizations. Moreover, we embedded CNN blocks in the nonlinearity module for the
sparse representation instead of adopting the existing sparse transform methods. The
experimental results indicated that our proposed imaging strategy achieved significant
performance improvements for the reconstruction quality of nonsparse scenes, showing su-
periority in terms of computational efficiency and complexity compared with conventional
CS-driven and deep unfolding methods.

As a general imaging strategy, we envisage that such model-driven deep unfolding
methods with CNN structures will have significant potential in various SAR imaging
applications. However, our proposed nonsparse SAR scene imaging nets only consider the
side-looking mode; they suffer from imaging quality degradation in squint mode. In future
work, we are interested in integrating the processing of range cell migration and Doppler
center shift (resulting in geometry distortion) into the proposed strategy to improve its
adaptability and reconstruction ability for squint imaging.
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