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Abstract: Maize is one of the main food crops and is widely planted in China; however, it is difficult
to get timely and precise information on yields. Because of the benefits of remote sensing technology,
satellite-based models (e.g., eddy covariance light use efficiency, EC-LUE) have a lot of potential for
monitoring crop productivity. In this study, the gross primary productivity (GPP) of maize in the
NCP was estimated using the EC-LUE model, and the GPP was subsequently transformed into yield
using the harvest index. Specifically accounting for the spatiotemporal variation in the harvest index,
the statistical yield and estimated GPP from the previous year were used to generate region-specific
harvest indexes at the county scale. The model’s performance was assessed using statistical yield
data. The results demonstrate that the increase in the total GPP in the summer maize-growing season
in the NCP is directly related to the increase in the planting area, and the harvest index has significant
heterogeneity in space, and the fluctuation in time is small, and the estimated yield can simulate
64% and 55%, respectively, of the variability in the yield at the county and city scales. The model
also accurately captures the inter-annual changes in yield (the average absolute percentage errors
are less than 20% for almost all years), but model performance varies by region. It performs better
in continuous areas of maize-growing. The results from this study demonstrate that the EC-LUE
model can be applied to estimate the yield from a variety of crops (other than winter wheat) and
that it can be used in conjunction with a region-specific harvest index to track the production of
large-scale crops.

Keywords: maize yield; light use efficiency model; gross primary productivity; region-specific
harvest index

1. Introduction

Governments have always placed a high priority on maize yield since it is a crucial
economic indicator of a nation or region and is linked to both national and regional food
security [1]. Early warnings on food security can be aided by quick and precise crop output
forecasts, which can offer crucial evidence for the nation’s food policies [2]. The United
Nations’ Food and Agriculture Organization (FAO) claims there will be 9.6 billion people on
the planet, which would require 70% more food, by 2050 [3]. Crop production is currently
facing significant difficulties as a result of worldwide changes, due to the increases in
the population and human activities in recent decades, which has endangered the global
ecosystem. Global warming frequently causes unusual weather phenomena, such as high
temperatures, floods, and droughts, which have gravely impacted agricultural productivity
and caused significant swings in crop yields [4]. Also, food shortages and food security are
becoming a problem around the world due to air pollution and diminishing arable land [5].
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In light of this, timely and accurate crop output forecasts on a local to regional scale are
becoming more and more crucial [6].

Traditional crop yield information statistics mostly employ techniques like field obser-
vation and sampling surveys [7]. Although the statistical results are quite reliable and these
approaches are less susceptible to weather change, survey coverage is limited. Additionally,
it is difficult to update the data on a timely basis, which makes it difficult to fulfill the task
of the dynamic estimation of large-area agricultural yields [8]. They also require a lot of
people and material resource support. With the development of satellite remote sensing
technologies over the past few decades, agricultural yield estimation has become more
accurate, efficient, and affordable [9,10]. The growth of crops can be continuously moni-
tored, and satellite remote sensing technologies can continuously provide information on
the vegetation’s surface in regard to both time and space [11,12]. The normalized difference
vegetation index (NDVI) and the enhanced vegetation index (EVI) are biological metrics
that are closely connected to crop yield and can be obtained by using remote sensing image
analysis [13]. For estimating crop yields using satellite remote sensing technologies, four
widely used methods are: crop growth models, statistical models, machine learning algo-
rithms, and light use efficiency models (LUE) [12,14]. The statistical model uses historical
yield data and several variables [15] to construct a regression relationship between them,
such as the vegetation index (VI) and land surface temperature (LST). It has a high degree
of estimation accuracy for crop yields in the research area, but it must be re-calibrated
when used in other locations and is unsuitable for large-area simulations [16,17]. In recent
years, machine learning algorithms have become more popular, particularly deep neural
networks, to forecast crop yields. Studies have shown that these algorithms can predict
county-level yields up to four months in advance of harvest [18–20]. However, it needs a
lot of historical data to be trained, and the outcomes of the training on a particular period
and region cannot be extended to other times and regions [21,22]. With a high degree
of precision, crop growth models replicate the growth of crops and the reactions to their
surroundings. However, a variety of characteristics, such as environmental factors and
crop physiology, are needed for crop growth models. It is challenging to implement on a
broad scale because of the complexity and ambiguity of these parameters [23,24].

The LUE model was developed to estimate GPP [25], based on the hypothesis of plant
photosynthesis, which contends that the dry matter collected by vegetation is obtained
from photosynthetically active radiation absorbed by LUE. The LUE model has been shown
to be capable of estimating GPP in terrestrial ecosystems at both the regional and global
levels. Several trustworthy and practical products, such as MODIS GPP, VPM GPP, and
EC-LUE GPP, have been released and have been crucial in tracking ecosystem change.
Because crops are not finely separated (e.g., C3 or C4), these products might not be accurate
enough for crop-specific GPP [26,27]. Further, through subdividing crop types, several
studies have successfully simulated various crop yields and their spatiotemporal changes
using LUE models from local to regional scales, by distributing the GPP to crop harvesting
organs. An effective and reliable way to measure agricultural output on a large scale has
been made available by the satellite-based LUE model, which has an ecophysical basis and
simplifies the mechanism model’s complexity.

Crop yield estimates across substantial areas are still challenging. It is well known
that the interaction of the genotype (G), environment (E), and management (M), all of
which exhibit significant variation, determines crop yields [28]. Fortunately, yield may
be calculated by multiplying the GPP by the empirical harvest index (HI) for a certain
crop [29,30]. The HI measures the percentage of above-ground biomass that is converted
to economic yield [31]. Nevertheless, obtaining a HI for a region with significant spatial
variation is still difficult. Some studies have employed biomass or evapotranspiration
before and after anthesis of crops to estimate the HI [32,33]; however, there are significant
uncertainties in crop anthesis judgment and transpiration, which further contributes to
the estimation error of the HI. Utilizing the ratio of estimated biomass to statistical yield
is another approach for determining the HI that lessens acquisition challenges [34]. This
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work intends to investigate the capacity of the EC-LUE model combined with a HI to
measure summer maize yields in the NCP area (North China Plain), taking into account
that previous studies have primarily focused on winter wheat [14,35]. The goal of this
study is to: (1) obtain a region-specific HI for summer maize and (2) assess how well the
EC-LUE model performs for maize yield estimation.

2. Materials and Methodology
2.1. Study Area

This work focuses on the main summer maize producing region in China, the NCP,
which includes most parts of Hebei (HB), Henan (HN), Shandong (SD), and the north of
Jiangsu (JS) and Anhui (AH) provinces. This area of mid-eastern China, which stretches
from 110◦E to 122◦E and from 28◦N to 40◦N (Figure 1), has a semi-humid monsoon climate
with an annual rainfall of 400 to 800 mm (mostly falling from July to August, concentrated
in the maize-growing season), and average annual temperatures that range from 10 ◦C in
the northern part to 15 ◦C in the southern part of the region. The plain, where the growing
season for maize runs from June to September, is one of the important grain baskets in
China, producing one-third of China’s maize. Winter wheat and summer corn are rotated
as the primary agricultural practice.
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2.2. Datasets and Preprocessing

First, we collected data on maize growth and development from monitoring stations
in Fengqiu, Yucheng, and Luancheng from 2004 to 2019 (chinaFLUX). In the NCP, the maize
emergence period is primarily around mid-to-late June, and the harvest period is in late
September. We concentrated on this time period in our investigation. In this study, data on
maize, satellite data, and climatic data were employed.

2.2.1. Maize-Related Data

The statistical data for the county-level maize yields (measured in kg/ha), utilized in
this study, were taken from the Agricultural Yearbook (stats.gov.cn, accessed on 30 October
2022) and covered the years 2000 to 2019 (a few counties have data gaps of a year or more).
The following values were deemed outliers: (1) values beyond the range of biophysically
viable yields; (2) values from between 2000 and 2019 that were two standard deviations
above or below the mean [36,37]. If a value is missing from a time series and only one value
is missing, the average of the two years before and after is used to fill in the gap; if there

stats.gov.cn
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are two consecutive missing years, the most recent year’s data is used; and if missing for
three consecutive years, the data is deemed to be missing. To predict crop yields, it is also
critical to accurately identify the planting area. The planting area’s dynamic change was
considered. From 2000 to 2019, China’s annual maize planting pixels at 1 km resolution,
from Luo et al. [38], were utilized for mask generation.

2.2.2. Satellite Data

The VI for the growing season is closely related to photosynthesis and the biomass
of crops. We obtained the MODIS NDVI data from the GEE platform, using the latest
version (Collection 6.1), for the summer maize-growing season, from 2000 to 2019. The
Savitzky–Golay (S-G) filter, which has the potential to remove random noise, was used to
smooth the NDVI series in accordance with the “Quality reliability of VI pixels” metric,
which describes the quality of the pixels in the data. Then, the high-quality pixels from the
original sequence were used to replace the pixels at corresponding locations in the new
sequence [39]. To calculate the vapor pressure deficit (VPD), we also downloaded the DEM
data (digital elevation model), with a 90 m× 90 m spatial resolution, from the SRTM digital
elevation dataset (http://srtm.csi.cgiar.org, accessed on 30 October 2022).

2.2.3. Climate Data

In this work, we mainly used three kinds of meteorological data, including air tem-
perature (T), dew-point temperature (Td), and photosynthetically active radiation (PAR),
which were all downloaded from the GEE platform. The daily PAR from 2000–2019, with a
resolution of 0.05◦ × 0.05◦, was derived from the BESS (Breathing Earth System Simulator)
product. This product’s data exhibits a robust linear relationship with in situ measurements
(R2 = 0.94, and the relative bias = 1.7% for PAR) [40]. The air temperature and dew-point
temperature, with a resolution of 0.1◦ × 0.1◦, were derived from ERA-5. The VPD was
calculated using the T and Td according to Yuan et al. [41]. To keep the same resolution as
the NDVI, the climatic data were resampled to 1 km, and a 16-day average was calculated
over the same time frame as the NDVI.

2.3. Methodology

The ecosystem’s source of both material and energy is the GPP that plants make
during photosynthesis. The final crop yield is directly correlated with the amount of GPP
accumulated over the course of crop growth and development. The accumulated GPP of
summer maize over the study area was calculated using the EC-LUE model [42]. Then, the
GPP was transformed into yield by using the HI.

2.3.1. EC-LUE Model

The model’s input data also includes the vegetation index (NDVI), which describes the
biophysical characteristics of the crops, and environmental–meteorological data (including
PAR, T, and Td). The following is a detailed description of the model:

GPP = PAR× fPAR× εmax ×min(Ts, Ws) (1)

fPAR = 1.24×NDVI− 0.168 (2)

TS =
(T− Tmin)× (T− Tmax)

(T− Tmin)× (T− Tmax)− (T− Topt)
2 (3)

WS =
VPDmax −VPD

VPDmax −VPDmin
(4)

where fPAR is the fraction of incident of the PAR intercepted by the crop, which has a
suitable connection with the NDVI; εmax (2.84 g C m−2 MJ−1 APAR) [43] represents the
light use efficiency under optimum growing conditions; and min(Ts, Ws) represents the

http://srtm.csi.cgiar.org
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minimum value between Ts and Ws. Ts and Ws indicate the limitation of the temperature
and water to photosynthesis, varying between 0–1. The most stressed component deter-
mines the final limit in the model. For maize photosynthetic activity, the Tmin, Tmax, and
Topt were adjusted to 0 ◦C, 45 ◦C, and 23 ◦C, respectively, as the minimum, maximum, and
optimal air temperatures [44]. When the temperature exceeds the minimum and maximum
temperature range, Ts is set to 0 [45]. The values of VPDmin and VPDmax are 650 Pa and
4300 Pa, respectively, and they reflect the minimum and maximum values of the VPD. If
the VPD is greater than VPDmax, Ws is set to 0, and if the VPD is less than VPDmin, it is set
to 1 [46].

2.3.2. Yield Estimation

We converted the GPP to crop yield using the following relationship:

Yield = GPP×AR× α× 1
1 + RS

×HI× 1
1−MC

(5)

where Yield is the estimated maize yield in an administrative area. GPP represents the
average of the accumulated GPP over an administrative area in the summer maize growth
stage. AR indicates the fraction of the GPP remaining after autotrophic respiration, which
is set to 0.53, according to Waring et al. [47]. RS is the root-to-shoot ratio with a value of
0.18 [48], which was used to obtain the above-ground biomass. MC, the grain’s moisture
content at harvest, has a value of 0.11 for maize [49]. HI represents the harvest index,
measuring the percentage of the above-ground biomass that is converted to economic
yield. Moreover, α, with a value of 2.22, is the conversion factor of carbon content to dry
matter [50].

2.3.3. Calibration of the Harvest Index

The HI, which represents the percentage of above-ground biomass that is converted
to economic yield and indicates the percentage of the biomass allocated to harvesting
organs, is a significant factor influencing crop yield. Numerous elements, including culti-
vars, management, and growing circumstances, might affect the HI. In order to take into
consideration the temporal and spatial volatility of the HI, we referred back to the method
used by Ju et al. [51] to calculate the HI for each county based on the estimated GPP and
statistical yield in the prior year. Then, the calibrated HI was used to convert the GPP
estimated by the model into the crop yield for the year. For the counties where the HI was
missing, we used the HI mean from the neighboring counties instead.

2.4. Model Accuracy Evaluation and Validation

To assess the estimated maize yield, we computed the coefficient of determination (R2),
root mean square error (RMSE), mean absolute percentage error (MAPE) and the revised
Willmott’s index of agreement (dr) [52]. The general rule is that the higher the R2, the lower
the RMSE, signifying a higher accuracy of the estimated yield, and the lower the MAPE,
the smaller the difference between the estimated yield and the statistical yield. The dr is a
good indicator to evaluate the model performance, especially relative to the 1:1 best-fit line,
and the dr provides information about the predicted and observed values on the deviation
from the observed mean [53,54]. The following calculation formula is used:

RMSE =

√
1
n

n

∑
i=1

(Yi − Xi)
2 (6)

MAPE =
1
n

n

∑
i=1

∣∣∣∣Yi − Xi

Xi

∣∣∣∣× 100 (7)
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dr =


1− ∑n

i=1|Yi−Xi|
c∑n

i=1|Xi−X| , when∑n
i=1|Yi − Xi| ≤ c∑n

i=1
∣∣Xi − X

∣∣
c∑n

i=1|Xi−X|
∑n

i=1|Yi−Xi|
− 1, when∑n

i=1
∣∣Yi − Xi

∣∣> c∑n
i=1
∣∣Xi − X

∣∣ (8)

where n is the number of administrative regions, Yi denotes the estimated yield, and Xi
denotes the statistical yield for the ith region. X represents the statistical yield, on average,
across all administrative regions. Moreover, dr has a range from −1 to 1, which implies
that the model is performing better when its value is nearer 1, and c equals 2.

3. Results
3.1. Gross Primary Productivity of Maize in the NCP

There are large spatiotemporal differences in the estimated GPP in the NCP regions.
For example, in 2019, the high-value GPP zones are concentrated in the southeast of the
NCP (AH and JS), with values greater than 1400 g C/m2 in the majority of those regions,
whereas the low-value areas are primarily located in the centre area of the NCP, with many
values lower than 1000 g C/m2 (Appendix A, Figure A1). The average GPP showed a
declining tendency from 2001 to 2011, with a decrease of up to −15.67 ± 5.76 g C/m2/year,
and an upward trend from 2011 to 2019, with an increase of 14.52 ± 10.00 g C/m2/year
(Figure 2). Also shown in Figure 2 is the cumulative total GPP for the summer maize-
growing season in the NCP region, which increased at an average annual growth rate of
2.30 Tg C/year, from 89.63 Tg C/year in 2001 to 133.34 Tg C/year in 2019. The increase
in the total GPP is primarily due to an increase in the area planted with summer maize.
Summer maize planting space increased from 7.03 × 104 ha in 2001 to 11.09 × 104 ha in
2019, growing at an average rate of 2.14 × 103 ha/year.
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3.2. Distribution of the Harvest Index

The HI is a key parameter in the model that affects how accurately crop yield predic-
tions are made. In this work, the HI was calibrated for each county-level district using the
estimated GPP and statistical yield. Figure 3a illustrates the average HI for each county,
from 2001 to 2019, demonstrating the significant regional variation in the HI. The difference
between the different counties even exceeds 0.4. The HI displays the spatial characteristics,
which are low in the south and high in the north. In general, HB and SD are higher than
in HN, JS, and AH, and the mean values for the HI are, respectively, 0.46, 0.48, 0.41, 0.39,
and 0.37. The HI distribution range consists primarily of the intervals 0.3–0.4 and 0.4–0.5,
accounting for more than 77% of the total, followed by 0.5–0.6, accounting for 17.19%, and
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the sum of less than 0.3 and greater than 0.6 being less than 6%. The calibrated HI values
in this investigation are consistent with the findings in earlier studies, proving that this
approach can successfully invert the HI. For instance, the HI fluctuation range for the main
maize-growing regions in China (2009–2016) was 0.25–0.67, and the values from the HI
in the NCP area were 0.32–0.64, according to the field investigation by Liu et al. [55]. The
corrected HI can be used to convert the GPP to maize output.

Remote Sens. 2023, 15, x FOR PEER REVIEW 7 of 19 
 

 

3.2. Distribution of the Harvest Index 
The HI is a key parameter in the model that affects how accurately crop yield predic-

tions are made. In this work, the HI was calibrated for each county-level district using the 
estimated GPP and statistical yield. Figure 3a illustrates the average HI for each county, 
from 2001 to 2019, demonstrating the significant regional variation in the HI. The differ-
ence between the different counties even exceeds 0.4. The HI displays the spatial charac-
teristics, which are low in the south and high in the north. In general, HB and SD are 
higher than in HN, JS, and AH, and the mean values for the HI are, respectively, 0.46, 0.48, 
0.41, 0.39, and 0.37. The HI distribution range consists primarily of the intervals 0.3–0.4 
and 0.4–0.5, accounting for more than 77% of the total, followed by 0.5–0.6, accounting for 
17.19%, and the sum of less than 0.3 and greater than 0.6 being less than 6%. The calibrated 
HI values in this investigation are consistent with the findings in earlier studies, proving 
that this approach can successfully invert the HI. For instance, the HI fluctuation range 
for the main maize-growing regions in China (2009–2016) was 0.25–0.67, and the values 
from the HI in the NCP area were 0.32–0.64, according to the field investigation by Liu et 
al. [55]. The corrected HI can be used to convert the GPP to maize output. 

 
Figure 3. The spatial distributions (a) and coefficient of variation (b) in the maize HI at the county 
scale. The insert shows the frequency distribution in the HI. 

Furthermore, we explored the volatility of the HI over time. Figure 3b shows the co-
efficient of variation (CV) in the county-level HI from 2001 to 2019. Only a few county-
level administrative regions have a CV in the HI that is greater than 20%, indicating a 
small degree of variation in the summer maize HI from 2001 to 2019. 

3.3. Validation of the Estimated Yield 
Accuracy testing is crucial for agricultural yield estimation. We evaluated the model’s 

performance in estimating maize yield at the county and municipal levels based on the 
statistical yield.  

Across all research years, the estimated yields can account for 64% of the spatiotem-
poral variation in yield at the county level (Figure 4a). The indicators of model perfor-
mance were the RMSE, MAPE, and rd , which were 830.97 kg/ha, 11.20%, and 0.67, re-
spectively. Additionally, we contrasted each year’s statistical yield with the estimated 
yield. The linear regression slope between the statistical and estimated yield varies from 

Figure 3. The spatial distributions (a) and coefficient of variation (b) in the maize HI at the county
scale. The insert shows the frequency distribution in the HI.

Furthermore, we explored the volatility of the HI over time. Figure 3b shows the
coefficient of variation (CV) in the county-level HI from 2001 to 2019. Only a few county-
level administrative regions have a CV in the HI that is greater than 20%, indicating a small
degree of variation in the summer maize HI from 2001 to 2019.

3.3. Validation of the Estimated Yield

Accuracy testing is crucial for agricultural yield estimation. We evaluated the model’s
performance in estimating maize yield at the county and municipal levels based on the
statistical yield.

Across all research years, the estimated yields can account for 64% of the spatiotempo-
ral variation in yield at the county level (Figure 4a). The indicators of model performance
were the RMSE, MAPE, and dr, which were 830.97 kg/ha, 11.20%, and 0.67, respectively.
Additionally, we contrasted each year’s statistical yield with the estimated yield. The
linear regression slope between the statistical and estimated yield varies from 0.75 to 1.08
(Figure 4b), and the average value is 0.88, indicating a lower deviation between the two
yields at the county level. The R2 values are higher than 0.57 every year, the RMSE values
are between 555.47 kg/ha and 1018.53 kg/ha, all of the MAPE values are below 20%, and
the majority of the dr values are above 0.5 (Figure 4c–f). However, there are still some
years where the estimated and statistical yields diverge significantly. For instance, even
though the R2 values are higher than 0.57 and the MPEA values are lower than 20%, the
dr in 2006 and 2012 is only 0.48 and 0.47, respectively, indicating that these two years saw
poor performance.
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In addition, based on the HI calibrated at the county scale, the estimated yields and
statistical yields were also contrasted at the municipal scale. On the city level, the estimated
yields can account for 56% of the variation in the yield for all years (Figure 5a). The RMSE,
MAPE, and dr were 813.78 kg/ha, 11.21% and 0.61, respectively. Additionally, we ran
regression analysis for each year’s estimated and statistical yields. In general, the model
predictions can also simulate how the statistical yield changes in the majority of the years.
The linear regression’s slope for statistical and estimated yields ranged from 0.6 to 1.22 for
all years (Figure 5b). The R2 values range from 0.37 in 2002 to 0.84 in 2015. Figure 5b–e
shows that the model can still estimate maize production well at the city scale. The RMSE
ranges from 420.14 kg/ha (2008) to 1523.37 kg/ha (2012), the MAPE values are less than
20%, except for 2012 (22.24%), and the dr values are greater than 0.45, except for 2004 (0.38)
and 2012 (0.28) (Figure 5c–f), which also shows that the model can still estimate the yield
well at the city scale. All of these results imply that, despite its inconsistent performance in
some years, the estimated yield accurately captures the changes in production over time,
particularly at the county level. The model’s accuracy met the requirements for assessing
regional maize yield across the NCP.

The crop output varies from region to region and is influenced by climate factors, soil
characteristics, and management techniques [18]. As a result, we compared the model
in different provinces to confirm how well it performed in various places. Overall, good
performance was achieved in HB, HN, and SD; the R2 values are 0.74, 0.57, and 0.58 at
the county level and 0.61, 0.48, and 0.41 at the city level, respectively (Figure 6a–c). While
it performed poorly in AH and JS, the R2 are only 0.29 and 0.40 at the county level, and
0.20 and 0.33 at the city level, and all the MAPE values are larger than 14% for both
levels (Figure 6d,e). There exist some differences between different provinces, and great
uncertainties in the AN and JS provinces.
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3.4. The Pattern of the Summer Maize Yield’s Spatial Distribution

In this work, we converted the estimated GPP using the LUE model to the summer
maize yield based on the corrected HI. Figure A2 shows the maize yield’s spatial dis-
tribution, at the pixel scale, from 2001 to 2019. Generally, the estimated maize yield in
the NCP region is mainly distributed between 5000–7000 kg/ha, accounting for 61.6%.
There are a few pixels less than 1000 kg/ha or more than 11000 kg/ha. In addition, we
compared the spatial distribution of the estimated and statistical yields. Figure 7a,b shows
the county-level spatial distribution of the mean statistical yield and the mean estimated
yield from 2001 to 2019, demonstrating good consistency between the two and the accuracy
of the model’s estimated yield. The projected yields display a distribution pattern of high
in the north and low in the south, similar to the statistical yields. Overall, HB and SD
had greater maize mean yields than HN, AH, and JS. Moreover, they demonstrate the
significant regional variation in the maize yield over the NCP. In certain areas, like Dezhou
city in SD province, the maize mean yield estimations are greater than 7000 kg/ha or even
exceed 8000 kg/ha, while in other areas, like the majority of the county-level administrative
districts in AH and several county-level areas in western and southern HN province, they
are less than 5000 kg/ha. Additionally, we subtracted the estimated yield from the statisti-
cal yield and discovered that the results were concentrated between −300 and 200 kg/ha.
The difference between the statistical and estimated mean yield is particularly noticeable
in areas with small and dispersed planting areas, like some counties in SD province and
western HN province (Figure 7c).
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We also investigated the spatial association between the yield distribution and climate
factors, such as precipitation (pre), air temperature (T), and photosynthetically active
radiation (PAR). Pre is mainly found in the southeast, gradually decreasing from southeast
to northwest. From south to north, T declines. Although PAR is higher in the SD Peninsula,
it does not vary significantly throughout the research area (Figure 8). The average maize
yield’s regional distribution pattern differs from that of Pre, T, or PAR. Irrigation can be
an important factor in influencing maize yields in the NCP, especially in HB and western
SD provinces. From previous studies, it can be concluded that the NCP area has a high
proportion of crop irrigation [56,57]. In addition, we averaged the irrigation water use data
(IWU, driven by Zhang et al. [58]) during June-September from 2011 to 2018 and found
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that the maize yields were highly consistent with IWU in HB and western SD provinces,
with a high yield in areas with high IWU and a poor yield in areas with low IWU.
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4. Discussion

According to previous studies, the EC-LUE model is capable of simulating the spa-
tiotemporal variation in winter wheat yield at the national level and has the capacity to
do the same for other crop yields [35]. However, few studies have focused on maize yield.
MODIS remote sensing images remain an important source of information for monitoring
crop yields over large areas. In this study, maize yield in the NCP region was successfully
estimated using an EC-LUE model based on MODIS vegetation index data and ERA-5
reanalysis data, indicating that the yield of different crops can be estimated using the
EC-LUE model combined with the calibrated HI.

In this work, we treated the HI calibrated at the county scale as the HI for each planted
cell of maize within the corresponding administrative region. In China, farmers are basic
agricultural production units [59], which increases the spatial variability in the crop HI. It
can be particularly difficult to directly obtain the HI per pixel on a large spatial scale, because
of the lack of regional cultivar and management data. The validation results show that it is
feasible to use a calibrated HI in the model. Some studies have used similar methods to
calibrate the HI for yield estimation with good results [51,60]. In many crop models, such
as AQUACROP [61] and CROPSYST [62], the HI is a crucial variable. Some methods for
estimating the HI based on remote sensing are considered feasible in large areas. Based
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on fractional post-anthesis phase growth, Kemanian et al. [33] devised a straightforward
method to calculate the HI, proposing that the HI was correlated with the ratio of the
above-ground biomass produced following blooming with that produced throughout the
entire growing season. However, this method requires a high temporal resolution in the
remote sensing data in order to accurately extract the flowering period. Campoy et al. [32]
used the ratio between the variables (e.g., absorbed photosynthetically active radiation,
crop transpiration coefficient, and crop transpiration) related with biomass production to
estimate the HI. However, the difficulty in accurately estimating the crop transpiration
will lead to huge errors [35]. Although the HI estimated by remote sensing methods has
high accuracy (R2 values ranging from 0.69 to 0.79), further research is needed [12]. In
this study, the calibrated HI for maize mainly varies between 0.2–0.6 at the county level,
which is comparable to the reported values. Liu et al. [54] summarized the HI with values
ranging from 0.25 to 0.67 in the main corn producing regions across China (2009–2016),
and the values in the HI are between 0.32 and 0.64 in the NCP. In addition, some counties
have a calibrated HI less than 0.2 or greater than 0.6, and these areas tend to have fewer
maize-growing pixels. In addition, the uncertainty in the statistical yield causes errors
in the calibration of the HI [63]. Furthermore, a higher cumulative GPP of maize during
the growing season does not imply a higher grain yield, and there is a significant positive
correlation between grain yield and the HI [64]. The regional distribution of the estimated
maize yield in this study is similar to the HI. One study showed that the contribution rate
of the HI (52.67%) was higher than that of dry matter (47.33%) in the NCP [54]. Although
the use of the calibrated HI in the model performed well, it ignores the changes in maize
varieties and cultivars. The HI differed significantly between different maize cultivars [55].
Future studies will benefit from more precise variety and yield data for yield estimation.

In addition, the crop area and NDVI have a significant impact on how accurately the
GPP and yield are estimated. The crop area dataset that was employed in this study was
spatially explicit and temporally continuous, which considerably reduced inaccuracies
brought on by changes in maize planting areas. A pixel with a 1 km resolution may
contain several different forms of land cover or crops, which might cause uncertainty in
the results [65,66]. In this instance, regions with large, contiguous planting areas have
smaller errors in the results, while regions with tiny, dispersed planting areas have more
errors in the results. A further factor in the inaccuracy is the treatment of non-crop growing
areas as crop growing areas, or crop growing areas as non-crop planting areas, due to the
intricacy of the surface. In terms of the NDVI, pixels that are combined with trees will have
higher values, whereas pixels that are mixed with impermeable surface or bare ground
will have lower values, resulting in a higher or lower GPP for estimation. This introduces
an inevitable error in the harvest index correction. This is also one of the reasons for the
extremely low or extremely high values in the yield estimates. In contrast, AH and JS have
smaller and more dispersed maize planting areas than HB, HN, and SD, which may be one
of the causes of the inaccurate maize yield estimations in these two regions. Fortunately, we
were able to preserve the original signal when reconstructing the NDVI time series using
the S-G filter, allowing the NDVI series to accurately depict maize growth and development.
Although Landsat and Sentinel-2 have higher spatial resolution, they are more affected
by noise [67]. In order to facilitate crop production estimation using remote sensing data,
more advanced processing techniques are urgently required.

Moreover, uncertainty exists in the parameters characterizing crop biophysics. A
fixed value for εmax, a crucial model parameter, may result in systematic uncertainty or
mistakes in the GPP for dynamic simulations of a specific region [63,68]. Wagle et al. [69]
demonstrated that even in the same site, the εmax changed from year to year. Although
utilizing fixed efficiency values to estimate the biomass over crop growth cycles has advan-
tages, meteorological and management conditions are nonetheless crucial determinants of
their dynamic variations, according to a recent study [30]. Additionally, variable canopy
structures, row spacings, and plant densities effect the εmax of maize [70,71]. Although
the εmax value we used (2.84 g C m−2 MJ−1 APAR) was in the right range, GPP errors
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were inevitable. For the temperature, we set the suitable growing temperature for maize
to 0–45 ◦C, which is within the reported growth temperature range. Crafts-Brandner and
Salvucci [72] discovered that the ideal temperature for maize ranged from 28 ◦C to 37.5 ◦C,
and that setting the ideal temperature at 23 ◦C can cause GPP mistakes. The three pa-
rameters (AR = 0.53, RS = 0.18, and MC = 0.11) that translate GPP into crop production
still have considerable room for error. These three criteria may change based on crop
cultivars and varieties, as well as environmental factors [65]. For instance, Wang et al. [73]
discovered that there was significant uncertainty in the allocation of GPP with a fixed
root/shoot ratio since the maize cultivar and planting year had a significant impact on the
root/shoot ratio. The AR varies with the temperature and crop development stage [74].
Future efforts to accurately predict GPP and enhance yield estimates will benefit from the
rigorous calibration of these parameters for particular regions. Additionally, because there
are variations in cultivation seasons, particularly in regions where farmers are the primary
unit of production, using a set summer maize-growing period across the whole research
area creates errors [75]. Therefore, it is noteworthy that thorough crop phenology enables
more precise production estimations to be made on a broader scale [14,21,38].

5. Conclusions

In this study, the EC-LUE model was used to estimate the cumulative values on the
gross primary productivity of maize during the growing season in the NCP from 2000 to
2019, based on satellite data and meteorological analysis data. The county-level HI was
calibrated by combining the GPP and statistical yield. Then, the GPP was converted into
the yield by using the calibrated HI. To evaluate the accuracy of the estimated yield, we
compared the estimates and statistics on the county and city scales. The results show that
the average growth rate in the total GPP in the summer maize-growing season from 2001 to
2019 was 2.30 Tg C/year, which was directly related to the increase in planting area. The HI
has significant heterogeneity in space and little fluctuation in time between 2001 and 2019.
Our estimated yield can simulate 64% and 55% of the yield variability on the county and
city scale, respectively, and the model captures accurately the inter-annual changes in the
maize yield. The county-level and city-level linear regression slopes vary between 0.75–1.08
and 0.6–1.22, respectively, and the MAPE is less than 20% in almost all years for both scales.
But the model performance varies from region to region, HB (R2 = 0.74), HN (R2 = 0.57),
and SD (R2 = 0.58) outperformed AH (R2 = 0.29) and JS (R2 = 0.40) in terms of performance.
That is especially true because the combination of the model and the calibrated HI enables
estimates on the maize yields from county to province, and for even larger areas. Our study
demonstrates that the EC-LUE model can be used to estimate maize yield and highlights
the importance of employing a dynamic HI. This study can be considered as a complement
to previous studies, demonstrating that the EC-LUE model can be applied to the large-scale
estimation of crop yields for various crops, and can contribute to regional and national
food production security.
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