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Abstract: Road traffic is occasionally blocked by landslide geological disasters in remote mountainous
areas, causing obstruction to economic society and national defense construction. It is vital to conduct
landslide geological disaster risk assessment and vulnerability research on the road network. Based
on landslide geological disaster risk on the road network, this study analyzed the potential effects of
the main environmental elements. Due to the lack of previous research works, this study proposed
an effective, rational, and understandable multicriteria heuristic analytical hierarchy process model,
fuzzy comprehensive evaluation, and frequency ratio-interactive fuzzy stack analysis for vulnerability
assessment of road networks in large and complex networks. Based on the comprehensive use of
geographic information technology, the road network vulnerability of Tibet in China was evaluated
by introducing slope, topographic relief, normalized difference vegetation index (NDVI), annual
mean precipitation, distance from river drainage, glaciers and snow, habitation, seismic center and
geological fault zone, and soil erosion intensity. According to the findings of the study, the three-stage
framework proposed in this study can provide correct inferences and explanations for the potential
phenomena of landslide geological disasters; the geological disaster risk are unevenly distributed in
the study area; the distribution of the road network vulnerability in China’s Tibet significantly differs
among different cities; the high-vulnerability section presents significant regional characteristics,
which overlap with the area with a high risk of landslide geological disasters, and its distribution is
mostly located in traffic arteries, link aggregations, and relatively frequent human activity.

Keywords: landslide geological disasters; risk assessment; road network vulnerability; Tibet

1. Introduction

Geological disasters occur frequently in China annually. As the main type of collapse
and landslide (hereinafter referred to as “landslide”) these geological disasters have caused
huge losses to the country, economy, and society [1–4]. According to a report by the High-
way Bureau of the Ministry of Transport in 2020, the total mileage of road disasters will
exceed 6000 km and the direct loss of road production costs will reach CNY 22.8 billion [5].
The road failure caused by landslide blocking or even burying, the vulnerability of the
road network is constantly exposed. Landslide geological disasters may greatly impact
the transport capacity of nearby roads. Keeping major highways open, in particular, is
crucial for supporting the functioning of the economy, society, and people. Therefore,
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the risk assessment of road landslide geological disasters is particularly important. The
topography of Tibet in China is very complex, with various types of landform. The natural
conditions of the surface are particularly obvious, and landslide geological disasters are
widely experienced. The occurrence of landslide geological disasters is closely related
to topography, geological structure, stratigraphic lithology, hydrology condition, human
activity, and other factors. Owing to the complexity of the formation mechanism, no set of
risk assessment systems is suitable for all areas, and factor selection is generally determined
by the specific conditions of the study area [6,7]. Over the past few decades, various risk
assessment methods for geological disasters have been developed worldwide, including
analytical hierarchy process (AHP) [8], field surveys [8], satellite remote sensing [9], statis-
tical models [10], deterministic coefficients, and machine learning [11–13]. It was found
that previous studies were mostly from single models or combinations of several models,
which obtained the risk susceptibility degree and partition but lacked research models with
excellent hierarchical measures and high efficiency.

Vulnerability is a measure of the degree of disaster-bearing damage, which is an impor-
tant link in disaster damage estimation and risk assessment and a bridge between disaster
factors and situations. Through a literature review and analysis, it was found that the vul-
nerability evaluation factor mainly focuses on state and structural vulnerabilities [14–16],
and vulnerability analysis methods include single analysis, multidimensional evaluation,
optimization methods, and multiobjective algorithms [17–21]. Vulnerability has been an-
alyzed and applied in power lines [22], communication networks, transportation [23],
natural gas pipelines [24], urban flooding [25], emergency rescue [26], world heritage
sites [27], and many more. The research on the vulnerability of road networks originated
from the 1995 Kobe earthquake in Japan and the terrorist incidents on 11 September 2001.
The 7.2-magnitude earthquake in Kobe, Japan damaged almost all transportation systems
around the city, and the terrorist attacks of September 11th exposed transportation vul-
nerability to road network disruptions [28]. The concept of road network vulnerability
was first proposed by Berdica, who believed that the vulnerability of a road transport
system is a sensitive factor subject to a significant decrease in the service level of the road
network [29]. Taylor et al. also defined the vulnerability of road networks from a similar
point of view [30]; they believe that the vulnerability of the network depends on whether
the accessibility of the network is greatly reduced after a few nodes (sections of road) are
removed. Subsequently, other scholars insisted on an expression of vulnerability and risk,
and vulnerability needs to be defined in the scope of risk degree. Some scholars such as
Sohn tried to explain the vulnerability of road network more precisely. They connected
the vulnerability of road networks with the probability and consequences of risks, and
believed that the vulnerability, reliability, and risk of road networks were closely related
concepts [31]. A statistical model was developed to reveal and quantify the main factors
defining transport related consequences [32]; the integrated equilibrium model of traffic
demand change [33], the attacker–defender model [34], which this research on road net-
works has promoted, has progressed road network research to a certain extent. It should be
pointed out that these scenario-based evaluation methods, strategy-based evaluation meth-
ods, simulation-based evaluation methods and mathematical model evaluation methods
have their own advantages and disadvantages. How to use them together or propose more
effective methods to better evaluate the vulnerability of the road network is also worth
studying [35]. Research on road network vulnerability has gained increasing attention in re-
cent years. Significant changes have taken place in the study of road network vulnerability,
including the study and application of multidimensional assessment, multiobjective algo-
rithms, and optimization methods [19]. Road network vulnerability is an inherent attribute
of the traffic network, which reflects the degree of overall service level decline when the
road network is affected by natural disasters, traffic accidents or road maintenance. There
is no unified definition of road network vulnerability, owing to a lack of clear measures.
Although the global attack–defense model and map of landslide sensitivity, analysis of the
road transportation network vulnerability, travel mode, and travel time affect the capacity
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and emissions [36,37], capacity-weighted spectrum analysis is used to identify potential key
links, cloud model-based urban road network traffic system congestion status, and many
road vulnerability and risk assessment studies [14,20,21,38,39]. However, vulnerability
analysis application in road disasters research is still in the exploration and development
stages, and its theory and methods require further improvement. The precise assessment of
road network vulnerability is difficult because of the uncertainty and complexity of environ-
mental differences and vulnerability-related events along roads [28]. As the road network
system is confronted with multiple disturbances, it is necessary to propose more effec-
tive, rational, and understandable methods for vulnerability assessment of road networks
in large and complex networks [30]. It is worth noting that road network vulnerability
evaluation is particularly urgent and meaningful in remote mountainous areas [4,40].

In the above context, this study proposed a reasonably efficient and well-measured
hierarchical research paradigm and model to predict vulnerability to geological disasters in
high mountainous areas; exploring the correlation between landslide geological disaster
risk and different environmental elements [41] and predicting the impact of regional
landslide geological disaster risks on road networks to provide a scientific basis and
technical support for taking measures to reduce vulnerability and loss. The remainder of
this article is structured as follows. Section 2 describes the study area overview, datasets,
and processing. In Section 3, the methods and models used in the case study are described.
Section 4 introduces the risk assessment of geological hazards and the results of the road
network vulnerability. Section 5 is the discussion followed by the conclusion.

2. Materials
2.1. Overview of the Study Area

The Tibet Autonomous Region is in the southwest of the Qinghai–Tibet Plateau,
between north latitude 26◦50′ to 36◦53′ and east longitude 78◦25′ to 99◦06′. The region
has jurisdiction over six prefecture-level cities and one region (Figure 1) with a land area
of 1,202,800 km2, accounting for approximately one-eighth of China’s total area. The
climate of Tibet is unique, complex, and diverse, showing characteristics of cold and dry
conditions in the northwest and warm and humid conditions in the southeast. The vertical
zonality is very significant. Mountains, glaciers, lakes, rivers, large terrain fluctuations,
rock layer weathering and crushing, and geological conditions are complex. Tibet has a
fragile ecological environment and poor economic and social development. As an area
sensitive to global climate change, its strategic position is extremely important. In the
context of the current century of change and the epidemic situation, road traffic not only
represents infrastructure connectivity, but also represents the smooth flow of trade and
people. By the end of 2020, the length of highway open to traffic in Tibet exceeded
117,000 km. In 2020, Tibet’s annual cargo transport turnover reached 15.818 billion ton/km,
of which 11.673 billion ton/km were transported by road. Simultaneously, Tibet’s natural
environment is complex, and mountain collapses and landslides occur frequently, with
widespread distribution and serious harm, resulting in dangerous roads and necessitating
higher requirements for high-quality transportation infrastructure construction in Tibet
and economic and social development promotion.

2.2. Data Sources and Preprocessing
2.2.1. Data Collection

Raw data were used for road network vulnerability evaluation, including occurrence
of landslide geological disasters in the study area, national to prefectural roads, ASTER
GDEM(DEM), normalized difference vegetation index(NDVI), annual mean precipitation,
river systems, China’s second glacier cataloging dataset [42], geological fault zone, seismic
center, soil erosion, and habitation (Table 1).
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Table 1. Data used in this study.

Item Data
Format Time (Year) Scale or Resolution Sources

Road network Vector 2021 1:1,000,000
National geographic information resource directory service system

(https://www.webmap.cn/main.do?method=inde
(accessed on 18 November 2022))

Landslide Vector – – Environmental Sciences and Data, Chinese Academy of Sciences
(https://www.resdc.cn (accessed on 12 November 2022))

DEM Raster 2019 30 m
Computer Network Information Center of Chinese Academy of Sciences,

Geography (https://www.cnic.cn/front/pc.html?_1608531541135#/cnicSite/
arpKnowledge/324/168/324/TRUE (accessed on 15 November 2022))

NDVI Raster 2001–2020 30 m
The National Data Center for Ecological Sciences Science Data Bank

(http://www.nesdc.org.cn/sdo/detail?id=60f68d757e28174f0e7d8d49
(accessed on 19 November 2022))

Precipitation Raster 2001–2020 1000 m Science Data Bank (https://www.scidb.cn/en/cstr/31253.11.sciencedb.01607
(accessed on 18 November 2022))

River system Vector 2021 1:1,000,000 National geographic information resource directory service system
(https://www.webmap.cn/main.do?method=inde (accessed on 4 December 2022))

Glacier snow Vector 2014 – Cold and arid region scientific data center (http://westdc.westgis.ac.cn
(accessed on 18 November 2022))

Geological fault zone Vector – 1:1,000,000 Data Sharing Infrastructure of National Earthquake Data Center
(http://data.earthquake.cn (accessed on 21 November 2022))

Seismic center Vector 1908–2019 – Environmental Sciences and Data, Chinese Academy of Sciences
(https://www.resdc.cn (accessed on 4 December 2022))

Soil erosion Raster – 1000 m Environmental Sciences and Data, Chinese Academy of Sciences
(https://www.resdc.cn (accessed on 14 November 2022))

Habitation Vector 2021 – National geographic information resource directory service system
(https://www.webmap.cn/main.do?method=inde (accessed on 7 December 2022))

https://www.webmap.cn/main.do?method=inde
https://www.resdc.cn
https://www.cnic.cn/front/pc.html?_1608531541135#/cnicSite/arpKnowledge/324/168/324/TRUE
https://www.cnic.cn/front/pc.html?_1608531541135#/cnicSite/arpKnowledge/324/168/324/TRUE
http://www.nesdc.org.cn/sdo/detail?id=60f68d757e28174f0e7d8d49
https://www.scidb.cn/en/cstr/31253.11.sciencedb.01607
https://www.webmap.cn/main.do?method=inde
http://westdc.westgis.ac.cn
http://data.earthquake.cn
https://www.resdc.cn
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2.2.2. Data Preprocessing

To achieve consistency in the multisource data spatial benchmark, we uniformly
adopted or converted the data layer into the WGS_1984_World_Mercator for processing
and analysis [43]. As shown in Table 1, the resolution of the basic data used in the research
is not completely consistent. This research used the resampling tool in GIS to unify the
resolution of different data to 30 m. Among them, the cubic convolution map algebra
technique was used for continuous data, such as slope, and the nearest neighbor method
was used for categorical data, such as soil erosion intensity [44]. The continuous variable
type environmental factors were graded, while the discrete variable types were classified
and quantified. The classification quantification (Table 2) and thematic map (Figure 2) of
the environmental evaluation factors of each landslide geological hazard were generated.

Table 2. Quantitative classification of landslide environmental evaluation factors.

Primary Variable Environmental Evaluation Factors Sources/Quantization Level

Topography
Slope (◦) (0–8), (8–18), (18–29), (29–41), (41–87)

Topographic relief (m) (0–14), (14–29), (29–48), (48–76), (76–1101)

Soil-vegetation conditions
Soil erosion intensity Slight, mild, moderate, intense, violent

NDVI (0–0.07), (0.07–0.19), (0.19–0.36), (0.36–0.59), (0.59–1)

Hydrology

Annual mean precipitation (mm) (103–307), (307–414), (414–558), (558–702), (702–1292)

Distance from river system (m) (0–2683), (2683–5161), (5161–7892),
(7892–12369), (12369–32160)

Distance from glacier snow (m) (0–22,847), (22,847–50,636), (50,636–84,646),
(84,646–133,843), (133,843–254,081)

Crustal motion

Distance from geological fault zone (m) (0–11,650), (11,650–22,926), (22,926–37,011),
(37,011–55,852), (55,852–126,975)

Distance from seismic center (m) (0–18,107), (18,107–33,688), (33,688–52,430),
(52,430–76,820), (76,820–139,894)

Human activity Distance from habitation (m) (0–27,044), (27,044–79,403), (79,403–150,741),
(150,741–233,019), (233,019–357,650)

Linear vector data, such as rivers and ditches of road networks and drainage elements,
were classified, extracted, stitched, cut, stored, and grid into single values. The European
distance from each cell grid to the nearest source was calculated by using the spatial distance
analysis module of ArcGIS 10.8. The same method was also applied to the single value
raster processing of the spatial distribution vector data of glaciers and snow, geological
fault zones, seismic center, and habitation in the study area to calculate the Euclidean
distance from each cell to the nearest source. In the process of DEM preprocessing, we
used the grid surface analysis and a map algebra module to calculate and derive slope and
topographic relief. After smoothing and normalizing the data, we obtained the average
value of each pixel relative to NDVI over the years. For China’s monthly precipitation
data set from 2001 to 2020 in NetCDF format, the annual mean precipitation data of the
study area in GeoTiff format were obtained through Python programming processing.
Based on the general requirements of soil Erosion Classification Standard SL190-96 of
the People’s Republic of China, the degree of soil erosion in the study area was divided
into five grades: slight, mild, moderate, intense, and violent. According to experimental
requirements, of the 2521 geological disaster points in Tibet in recent years, 70% were
randomly extracted as training sample points [37], and the remaining 30% were used to
test and verify model accuracy.
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Figure 2. Landslide environmental factors: (a) slope; (b) topographic relief; (c) NDVI; (d) annual
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geological fault zone; (h) soil erosion intensity; (i) distance from seismic center; and (j) distance
from habitation.

3. Methods
3.1. Multicriteria Heuristic Analytical Hierarchy Process Model

By comprehensively collecting relevant data, the environmental factor mechanism of
road landslide geological hazards in the research area was analyzed, and a heuristic hierar-
chical analysis model with five criteria and ten indicators was established. The multicriteria
heuristic analytical hierarchy process model integrates qualitative and quantitative system
analyses, simulates human thinking and decision-making processes [45], excavates and
extracts the data of multifactor complex systems, and has many advantages, such as clear
thinking and strong systems. Based on prior knowledge of professionals or cross fields, the
method model can be applied in hierarchical clustering and combinations according to its
influence and affiliation when solving specific problems to form an orderly hierarchical
structure analysis and evaluation model.

In this study, the target layer was the road network vulnerability evaluation of the
main environmental factors in Tibet: terrain changes, vegetation–soil conditions, regional
hydrological conditions, geological activity structure, and habitation intensity. The index
layer comprises slope, topographic fluctuation, annual average vegetation coverage, annual
average precipitation, distance from river system, distance from glacier and snow, distance
from geological fault zone, distance from seismic center, distance from habitation and soil
erosion intensity. Constructing a judgment matrix is a key step in the heuristic analytical
hierarchy process. The judgment matrix represents the relative importance of each element
at the previous level. Based on this criterion, the options were compared pairwise and
graded according to their importance. The nth-order judgment matrix is as follows:

A =


b1/b1 b1/b2 . . . b1/bn
b2/b1 b1/b1 . . . b1/bn

: : :
bn/b1 bn/b2 . . . bn/bn

 (1)

where A denotes the judgment matrix. The scales of the judgment matrix elements were
defined in Table 3. Based on multicriteria, prior knowledge, and expert-assisted decisions,
the following judgment matrix was formed for the target layer (Table 4).
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Table 3. Quantitative classification of geological disaster.

Factor i over Factor j Scaling

Equal 1

Moderate 3

Strong 5

Very strong 7

Extreme 9

Median value of two adjacent judgments 2, 4, 6, 8

Opposites Reciprocals

Table 4. Judgment matrix and weight.

B1 B2 B3 B4 B5 W

B1 1 2 3 1/3 1/2 0.17

B2 1/2 1 3 1/3 1 0.14

B3 1/3 1/3 1 1/5 1/3 0.06

B4 3 3 5 1 3 0.44

B5 2 1 3 1/3 1 0.19
B1-terrain change status; B2-soil–vegetation conditions; B3-regional hydrological conditions; B4-crustal motion;
B5-human activity intensity; W is the weight value.

To investigate whether the results of the analytical hierarchy process are reasonable, a
consistency test for the determination matrix is required. To test the consistency index CI of
the judgment matrix, it is necessary to divide the consistency index CI by the same order as
the average random consistency index RI table (Table 5), and the consistency ratio of the
judgment matrix should be recorded as CR.

CI =
λ− n
n− 1

(2)

CR =
CI
RI

(3)

Table 5. Random consistency index (RI).

n 1 2 3 4 5 6 7 8 9 10 11 12 13 14

RI 0 0 0.52 0.89 1.12 1.24 1.32 1.41 1.45 1.49 1.52 1.54 1.56 1.58

The judgment matrix is considered to have satisfactory consistency when CR < 0.1;
otherwise, when CR ≥ 0.1, the judgment matrix is adjusted until it is satisfactory. After
MATLAB programming calculation, the maximum feature root of the above judgment
matrix is λ = 5.19, and the feature vector is the weight vector W in the table, CI = 0.05,
RI = 1.12, and CR = 0.04 < 0.10. This judgment matrix exhibited satisfactory consistency.
Regarding the importance of each index layer element to the corresponding criterion layer,
the evaluation results are prone to overfitting or underfitting phenomena when analyzing
and mining the landslide geological disasters distribution law. Therefore, in this study, the
fuzzy logic model of quantitative statistics was used for improvement.

3.2. Fuzzy Comprehensive Evaluation Model

The fuzzy comprehensive evaluation method transforms qualitative evaluations into
quantitative evaluations according to the membership degree theory of fuzzy mathematics.



Remote Sens. 2023, 15, 4221 9 of 20

It has the advantages of being simple, practical, systematic, and can comprehensively
evaluate fuzzy problems [46]. The basic idea of the fuzzy comprehensive evaluation method
is based on the principles of fuzzy linear transformation and maximum membership,
analysis of the factors affecting the objects to be evaluated, and comprehensive evaluation
through fuzzy operation. It is suitable for evaluating objects that are restricted by a variety
of factor attributes; however, a reasonable overall evaluation result can be comprehensively
judged through the information characteristics of the attributes of each index.

In a complex risk evaluation system for landslide geological disasters, there are many
factors, and there are different levels between them [47]. It was necessary to divide the
evaluation factors into several categories according to certain attributes, conduct a com-
prehensive evaluation of each category, and then conduct a high-level comprehensive
evaluation of the various types of evaluation results.

Step 1. Determine the factor set for the evaluation object. The object to be evaluated is
considered as a finite domain U = {u1,u2, . . ., up}, where p is the number of factors involved
in the evaluation, and set U is the factor set. The factor set in this study is the entire element
of the index layer.

Step 2. Determine the evaluation level domain; that is, the set of V levels. Each level
can correspond to a fuzzy subset V = {v1, v2, vi, . . ., vm}, and the evaluation set in this study
is the entire element of the above criterion layer. The grades were divided into five classes:
terrain changes were minor, small, medium, large, and greater; vegetation–soil conditions
were worse, poor, medium, good, and superior; regional hydrological conditions were
worse, poor, medium, good, and superior; distance from crustal motion were near, nearer,
medium, far, and farther; and human activity intensity were slight, mild, moderate, intense,
and violent.

Step 3. Construct the fuzzy relationship matrix, R. The grade fuzzy subset is estab-
lished and needs to consider objects individually from each factor ui (i = 1, 2, . . ., p) on
quantification, namely from the perspective of single factors, evaluated in the grade fuzzy
subset of membership (R|ui), where m represents the level number of the fuzzy set. To
reveal and excavate the nonlinear relationship between environmental factors and induced
landslide geological disasters, the membership function was determined using the fuzzy
statistics method, and the membership frequency method was used to obtain the fuzzy
relationship matrix. The membership function of the corresponding hierarchical fuzzy
subset is.

R | uslope =
n

∑
i≥0

Uislope/
m

∑
x≥1

V xslope (4)

R | utopographic relief =
n

∑
i≥0

Uitopographic relief/
m

∑
x≥1

V xtopographic relief (5)

R | u NDVI =
n

∑
i≥0

UiNDVI/
m

∑
x≥1

V xNDVI (6)

R | uannual mean precipitation =
n

∑
i≥0

Uiannual mean precipitation/
m

∑
x≥1

V xannual mean precipitation (7)

R | udistance from river system =
n

∑
i≥0

Uidistance from river system/
m

∑
x≥1

V xdistance from river system (8)

R | udistance from glacier snow =
n

∑
i≥0

Uidistance from glacier snow/
m

∑
x≥1

V xdistance from glacier snow (9)

R | udistance from geological fault zone =
n

∑
i≥0

Uidistance from geological fault zone/
m

∑
x≥1

V xdistance from geological fault zone (10)
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R | usoil erosion =
n

∑
i≥0

Uisoil erosion/
m

∑
x≥1

V xsoil erosion (11)

R | udistance from seismic center =
n

∑
i≥0

Uidistance from seismic center/
m

∑
x≥1

V xdistance from seismic center (12)

R | udistance from habitation =
n

∑
i≥0

Uidistance from habitation/
m

∑
x≥1

V xdistance from habitation (13)

Step 4. Fuzzy comprehensive evaluation results. Based on the above weight allocation
and fuzzy transformation operation of each evaluation factor, the fuzzy comprehensive
evaluation results were obtained.

B = A · R = [0.17 0.14 0.06 0.44 0.19]·


0.14 0.23 0.18 0.08 0.50 0.42 0.35 0.30 0.32 0.99
0.25 0.32 0.31 0.08 0.32 0.33 0.25 0.23 0.26 0.01
0.25 0.27 0.33 0.36 0.13 0.17 0.17 0.33 0.24 0.00
0.23 0.16 0.12 0.35 0.05 0.04 0.17 0.14 0.15 0.00
0.12 0.02 0.06 0.13 0.01 0.04 0.06 0.00 0.04 0.00

 (14)

where A is the vector of the weight coefficient of each fuzzy subset level, and R is the
decision matrix of the fuzzy relationship. To consider various factors, ordinary matrix
multiplication was used for the synthesis operation because the model is suitable for sorting
multiple factors. B is the fuzzy comprehensive evaluation result of each evaluation index,
which was normalized to

BNormalized weights= [0.11 0.10 0.09 0.13 0.09 0.08 0.11 0.09 0.10 0.10] (15)

3.3. Frequency Ratio-Interactive Fuzzy Overlay Analysis

Because existing related studies have the problem of training the model with the
training set, the test set was used to test the model generalization ability and adjust the
model according to the accuracy of the test set. To improve the operational efficiency
and generalization ability of the presentation model, this study proposed a ubiquitous
machine-learning model that attempts to supervise the model training stage based on
the feature vector and regional fuzzy measure operator. The ubiquitous machine learn-
ing model is based on set theory [3,48]. In the “fuzzy superposition” analysis, the set
corresponds to the subordinate class, and the data value is reclassified or transformed to
the same informational feature level of each element. The results of the frequency ratio
interactive fuzzy superposition analysis quantified the likelihood that each position in the
input grid belonged to the fuzzy set of each evaluation index grade. Figure 3 shows the
landslide frequency ratios [49] of the grid values for each environmental assessment factor.
For example, the slope of a region indicates the possibility of transformation and fuzzy
superposition.

The grid layer of multiple landslide geological hazard risk indicators was compre-
hensively analyzed, and a regional vulnerability analysis was conducted by grading the
combination of nonlinear superposition operators. Because the membership frequency
ratio of each environmental risk factor in this study is between [0, 1] and is stored in grade,
a nonlinear superposition operator should be used for fuzzy stack analysis [50]. Through
reference to related studies and experimental analysis, it is found that the combination
of Fuzzy Gamma and Fuzzy Product superposition operators, especially the value of
0.95 < γ < 1, has a good measure for the dispersion of local risk values in the study area.
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Figure 3. Landslide frequency ratio curve of each evaluation index: (a) grade of slope; (b) grade of
topographic relief; (c) grade of NDVI; (d) grade of mean annual precipitation; (e) grade of distance
from river system; (f) grade of distance from glacial snow; (g) grade of distance from geological fault
zone; (h) grade of soil erosion; (i) grade of distance from seismic center; and (j) grade of distance
from habitation.

4. Results
4.1. Frequency Ratio-Interactive Fuzzy Overlay Analysis

In this study, we adopted the natural breakpoint method to classify the risk index
into five categories [51]: very low (0.00–0.68), low (0.68–0.73), medium (0.73–0.77), high
(0.77–0.82), and very high (0.82–1.00). As can be seen from Figure 4, the high hazard risk is
in the eastern and southern regions of the study area, relatively dispersed in the middle,
western, and northern regions of the area, the median risk is relatively evenly distributed,
and the low hazard risk is distributed in the midland, northern, and western regions. Areas
with very low, low, medium, high, and very high risk indices accounted for 6.29%, 19.07%,
25.80%, 26.21%, and 22.63% of the study area, respectively.
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From the distributed regional environment perspective, landslide development is not
only affected by regional hydrological conditions, geological environment, topography,
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vegetation coverage, soil erosion, and other natural conditions, but also by the frequency of
human engineering activity near towns and along highways. The Himalayan–Hengduan
Mountain valley with great topography and a developed water system, located in the
alpine and canyon areas of eastern Tibet, with its strong precipitation, broken structure,
and crushed fault zone, is a high-risk area for landslide geological disasters. However, the
vast areas in midland, western, and northern Tibet, with less human engineering activity,
and valleys and basins are mild- and medium-risk areas for landslide geological disasters.

4.2. Test of Evaluation Results

In this study, the rationality of the evaluation results was tested by selecting the
distribution of the sample points at risk levels (Figure 5) to ensure the objectivity and
robustness of the evaluation model [51]. From the test results, the risk division results, and
the distribution of the test sample points were analyzed by spatial statistics. The results
showed that 291 geological disaster test sites are in very high-risk areas, 270 in high-risk
areas, 123 in medium-risk areas, and only 41 and 31 in low-risk and very low-risk areas,
respectively. That is 90.48% of the geological disaster test sites were located above the
medium-risk zone and 74.21% were located above the high-risk areas. With an increase in
risk level of landslide geological disasters, the geological disaster occurrence rate increases
significantly. The diagnosis indicated the excellent accuracy of the evaluation model.
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4.3. Analysis of Road Network Vulnerability

The linear data of the main road network from national to prefectural roads in the
study area were associated with the landslide geological hazard-prone risk results obtained
from the comprehensive evaluation. The vulnerability distribution of the regional road
network in Tibet, China, is shown in Figure 6. The vulnerability index was divided into
five grades: very low (0.52–0.66), low (0.66–0.71), medium (0.71–0.76), high (0.76–0.80), and
extremely high (0.80–0.90). In addition, we proposed a method to calculate the vulnerability
distribution percentage of the interurban regional road network.

Pvul = M(vh + veh)/Mtotal (16)
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where Pvul is the vulnerability distribution percentage of the regional road network,
M(vh + veh) is the mileage value of vulnerability grade of high and extremely high level of
the road network in a city, and Mtotal is the total mileage value of all studied roads in the
city. Table 6 presents the distribution of road network vulnerabilities among the cities in
the study area. Overall, more than two-thirds of the roads in Qamdo and Nyingchi had
high and extremely high vulnerability levels, but less than a third of the roads in Ngari and
Xigazehad had the same vulnerability. More than half of the roads in Lhasa and Shannan
cities had high and extremely vulnerability levels while Naqu city is the opposite.
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Table 6. Road network vulnerability distribution of seven Tibetan cities.

Risk Level (km) Ngari Prefecture Qamdo City Lhasa City Nyingchi City Nagqu City Xigaze City Shannan City

Very low 1590 1 153 0 660 945 28

Low 2734 91 319 11 2833 2470 322

Medium 3001 579 504 268 3763 3206 976

High 1394 2059 714 1597 2785 1972 1467

Extremely high 144 3861 525 1981 1316 421 1043

Total mileage 8862 6591 2215 3858 11357 9015 3836
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We selected four high risk road aggregation areas (Figure 6a–d). From the perspective
of the distribution of high (including extremely high) vulnerability sections, the eastern
and western sections of national highway G219 (Xin–Zang highway), G317 (north line
of Sichuan–Tibet highway), the eastern and middle sections of G318 (southern line of
Sichuan–Tibet highway), G214 (Yunnan–Tibet highway), G559, the provincial highways
S201, S303, S8, and the prefectural highways X108, X321, X402, X508, and X606 all be-
long to this vulnerability level. The road network had denser branch lines than the road
network structure. From a geographical perspective, these highly vulnerability sections
exhibit distinct regional characteristics. In addition to overlapping with the high risk of
landslide geological disasters, they occur in traffic arteries, link aggregations, and areas of
relatively frequent human activity. For example, the G219 line and the Prochacha highway
extending to Yunnan Province have been incorporated into the new G219, which serves
the construction of the new Yunnan–Tibet highway and connects with the Sichuan–Tibet
highway, namely the G318. In addition, G317, G318, G214, G559, S303, and other highways
into Tibet have become important links for transportation, social production, border trade,
cultural tourism, national defense construction, and ethnic unity. The S201 and S302, X108
and X401, and other branch roads in the area are the only sections for intercounty and
rural trade, medical treatment, schools, and commuting. The vulnerability of these typical
sections was prominent because of the landslide geological disaster risk.

5. Discussion

There is increasing concern about lifeline systems (e.g., water and energy supply,
sewage, communication, and transport systems) and their vulnerability to damage and
cause disruption during disasters such as geological hazards [1,17,52]. Vulnerability can be
characterized across road networks or between risk scenarios for different networks [53].
Currently, most vulnerability studies focus on one aspect of vulnerability of the road net-
work and lack an integrated consideration of indicators at different levels. In addition, there
were more studies on the vulnerability of road networks in urban transport systems, while
few studies have been conducted on transport networks in border areas [54]. Therefore,
in this study, in response to the characteristic that road network vulnerability is mainly
affected by natural environmental factors. We achieved qualitative and quantitative anal-
ysis and evaluation by combining a multicriteria heuristic analytical hierarchical process
model [55] and fuzzy set theory [56,57], which is used for geological disaster risk assess-
ment and mapping [58], on the basis of the existing studies and expert knowledge. In
addition, we proposed a frequency ratio interactive fuzzy superposition algorithm. The
landslide geological disaster risk map was generated by integrating the selected thematic
layers through the comprehensive analysis of multiple landslide geological disaster risk
indicators. Then, the credibility and accuracy analyses were carried out and the results were
verified. Finally, the road network data in the study area were correlated with the landslide
geological hazard susceptibility risk results obtained from the comprehensive evaluation
to obtain the susceptibility distribution. The results show that the proposed three-stage
framework based on the multicriteria heuristic analysis hierarchical process model, fuzzy
comprehensive evaluation, and frequency ratio-interactive fuzzy superposition analysis
is a reliable risk classification method, which is effective for vulnerability evaluation and
zoning of road networks [59].

Whether single knowledge driven or data-driven [2,60,61], the evaluation results are
prone to over or underfitting. Although this study analyzes and excavates the distribu-
tion law of landslide geological disasters and adopts a fuzzy logic model of quantitative
statistics with hierarchical thought, some deficiencies remain. For instance, only the eval-
uation factors for road network vulnerability were selected, and traffic accidents were
not included. In the frequency ratio-interactive fuzzy superposition of the model training
stage, the γ values of the nonlinear superposition operators need to be adjusted within
a reasonable range to obtain evaluation results with good measurement significance and
astringency. Although the relevant evaluation model has moved toward complexity, re-
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gional environmental differences combined with road network vulnerability analysis is
weak, and prediction accuracy and versatility require further improvement. Over the
past years, observational, environmental, and instrumental data and the method of index
verification was analyzed and verified by concerned study. These methods include support
vector machine models [62], logistic regression models [63], random forest models [64],
artificial neural networks [65], and deep learning algorithms [48]. In addition, uncertainty
quantification (UQ) is an important benchmark to assess the performance of artificial intel-
ligence (AI) and particularly deep learning ensembled-based models [66]. In the fairness of
decision making, we should also pay attention to the characteristics of the road network
itself and the local disaster relief capacity, and then combine the local economy, environ-
ment, and population to quantify the evaluation indicators. Meanwhile, because of the
complex internal mechanism of the landslide geological disasters factors, there is no unified
selection standard. Challenges still exist regarding how AI can be better applied to the
vulnerability assessment of landslide geological disasters. Therefore, determining a set
of general factor selection criteria and evaluation models should be the subject of future
research and development. The three-stage framework proposed in this study can provide
correct inferences and explanations for the potential phenomena. Firstly, on the basis of
constructing a target-based vulnerability assessment system of the mountain road network,
the preliminary vulnerability assessment of the mountain road network was completed.
Then, using the preliminary results as a sample set, a road vulnerability prediction model
can be constructed using the multiple machine learning algorithms. Finally, the model with
the highest prediction accuracy was selected to complete the vulnerability assessment of
road network for landslide geological disasters in high and remote mountainous areas.

The strategic position of the study area is important, and human activity is mainly
concentrated in towns and plateau valleys with relatively dense road networks. The
road network vulnerability research results were based on the risk of landslide geological
disasters, and for different vulnerability sources, different measures or techniques can be
taken to reduce the risks and consequences of vulnerability. For example, increasing the
connection strength of low-grade and high-grade roads; exploring scientifically feasible
three-dimensional traffic in plateau mountainous areas; improving the operational rate
of road networks; construction and regular inspection of slope protection engineering
facilities; scientific and reasonable allocation of emergency rescue facilities, personnel,
and materials; difficult highway construction and maintenance in the study area; and
strengthening traffic control and diversion based on the carrying capacity of roads and big
data of traffic flow in key areas with frequent human activity [67,68].

6. Conclusions

The three-stage framework proposed in this study can provide correct inferences
and explanations for the potential phenomena of landslide geological disasters. Land-
slide geological disasters are among the most destructive disasters and can cause traffic
blockages related to road facilities, as well as direct and indirect economic losses. This
study, guided by objectivity and operability, started with the main environmental elements
of geological disasters in the breeding area, adopted a multicriteria heuristic analytical
hierarchy process model, fuzzy comprehensive evaluation, and frequency ratio-interactive
fuzzy stack analysis of the hierarchical thinking mode, and comprehensively evaluated the
road vulnerability network in Tibet, China. In this study, based on relevant research results
and expert consultation, regional characteristics, evaluation factors, and an index system
were selected, and multisource data were investigated and collected. The environmental
factors of the continuous variable type were classified and discretized, while those of the
discrete variable type were classified and quantified. First, a heuristic hierarchical analysis
model with five criteria and ten indexes was established. Subsequently, according to the
evaluation object being restricted by various factors, a fuzzy comprehensive evaluation
logic model of quantitative statistics was used, and the fuzzy comprehensive evaluation
results of each evaluation index were obtained. Moreover, through frequency ratio interac-
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tive fuzzy superposition, the risk evaluation of the hierarchical superposition combination
of the nonlinear superposition operator was adopted, and the spatial distribution char-
acteristics were obtained. Finally, the road network vulnerability in the study area was
evaluated. This research proposed a reasonably efficient and well-measured hierarchical
research paradigm and model to predict road network vulnerability to geological disasters
in high mountainous areas. The limitation is that the values of the nonlinear superposition
operators need to be adjusted within a reasonable range to obtain evaluation results with
good measurement significance and astringency. The main conclusions were summarized
as follows.

(1) The high-value areas of geological hazard risk are in the eastern and southern parts
of the study area and are relatively dispersed in the western part of the study area; the
medium geological hazard risk is relatively evenly distributed in the north; and the low-
value area of geological hazard risk is distributed in the midland, northern, and western
regions. The Himalayan–Hengduan Mountains in southern Tibet, located in the alpine and
canyon areas of Tibet, with great topography and a developed water system with strong
precipitation, broken structures, and crushed fault zones, are high-risk areas for geological
landslide disasters. However, the vast areas in midland, western, and northern Tibet, with
less human engineering activity, and valleys and basins, are mild- and medium-risk areas
for landslide geological disasters.

(2) The distribution of road network vulnerability in China’s Tibet has the following
characteristics. In general, more than two-thirds of the roads in Qamdo and Nyingchi have
high and extremely high vulnerability levels, but less than a third of the roads in AliNgari,
Xigaze, and Nagqu have more than half the same vulnerability. More than half of the roads
in Lhasa and Shannan Cities have high and extremely high vulnerability levels while Naqu
city is the opposite.

(3) In the study area, the high-vulnerability section presents significant regional char-
acteristics. In addition to overlapping with the area with a high risk of landslide geological
disasters, its distribution is mostly located in traffic arteries, link aggregations, and relatively
frequent human activity.
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