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Abstract: The concentration of particulate matter (PM2.5) can be estimated using satellite data
collected during the daytime. However, there are currently no long-term evening PM2.5 datasets,
and the application of low-light satellite data to analyze nighttime PM2.5 concentrations is limited.
The Visible Infrared Imaging Radiometer Suite Day/Night Band (VIIRS/DNB), meteorology, Digital
Elevation Model, moon phase angle, and Normalized Digital Vegetation Index were used in this
study to develop a Deep Neural Network model (DNN) for estimating the nighttime concentrations
of PM2.5 in the Beijing–Tianjin–Hebei (BTH) region from 2015 to 2021. To evaluate the model’s
performance from 2015 to 2021, a ten-fold cross-validation coefficient of determination was utilized
(CV − R2 = 0.51 − 0.68). Using a high spatial resolution of 500 m, we successfully generated a PM2.5

concentration map for the BTH region. This finer resolution enabled a detailed representation of the
PM2.5 distribution over the area. Interannual and seasonal trends in nighttime PM2.5 concentrations
were analyzed. Winter had the highest seasonal spatial PM2.5, followed by spring and autumn,
whereas summer had the lowest. The annual concentration of PM2.5 at night steadily decreased.
Finally, the estimation of nighttime PM2.5 was applied in scenarios such as continuous day–night
changes, rapid short-term changes, and single-point monitoring. A deeper understanding of PM2.5,
enabled by nightly PM2.5, will serve as an invaluable resource for future research.

Keywords: nighttime PM2.5 dataset; VIIRS/DNB; DNN; BTH

1. Introduction

Fine particulate matter (PM2.5) is the primary cause of atmospheric pollution and
poses a considerable risk to both human health and environmental quality [1]. The Beijing–
Tianjin–Hebei (BTH) region of China is known for its high pollution levels, with PM2.5 being
a notable cause. According to Zhang et al. [2], the main causes of pollution in an area include
topography, weather, and boundary layer characteristics. Furthermore, the BTH region is
among China’s most heavily polluted areas, with contributions from local emissions and
long-range transport from metropolitan agglomerations in the south [2]. Although several
studies have investigated daytime PM2.5 concentrations [3–7], limited research has focused
on nighttime PM2.5 pollution [8–11]. Nighttime PM2.5 concentrations characteristically
differ from daytime concentrations and affect different processes. To completely understand
the consequences of pollution from PM2.5, more research on nighttime PM2.5 pollution
is required.

Indeed, nighttime PM2.5 concentrations are influenced by a variety of factors, includ-
ing, but not limited to, traffic patterns, weather conditions, and human activities. These
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factors can significantly affect the levels of PM2.5 in the atmosphere during nighttime
hours. Understanding and addressing these factors are crucial for effective air quality
management and mitigation strategies. The relationship between nighttime PM2.5 and
satellite data is not fully explained by traditional linear models. To address this limitation,
previous studies have used machine learning and deep learning techniques, including back-
propagation neural networks (BP), support vector machines (SVM), and random forests
(RF), to estimate nighttime PM2.5 [12,13]. In recent years, machine and deep learning have
been increasingly used to understand the non-linear relationships between meteorological
variables, ground-based PM2.5, and satellite data. Previous research has mainly focused on
investigating the potential of using low-light images to calculate PM2.5 levels at night. For
example, using radiative transfer simulations, Wang et al. [14] demonstrated the sensitivity
of the Visible Infrared Imaging Radiometer Suite/Day/Night Band (VIIRS/DNB) to aerosol
variations in Atlanta. Similarly, Zhao et al. [13] developed a BP model for Beijing using the
VIIRS/DNB, relative humidity, temperature, and other meteorological parameters as inputs.
The model’s correlation coefficient (R) is 0.91. A mixed-effects model was developed by
Fu et al. [15] to investigate the differences between the application of VIIRS/DNB data in
light and light-sparse locations. Their results showed that VIIRS/DNB data could help
estimate PM2.5 even in light-sparse regions.

Despite existing studies, the estimation of nighttime PM2.5 concentrations is still in
its early stages. This is primarily due to the limitations of satellite data and nighttime
low-light capabilities. The Defense Meteorological Satellite Program/Operational Linescan
System lacks onboard calibration tools, making its data challenging to use for quantitative
remote sensing [16]. Other low-light satellite data sources such as Satellite de Aplicaciones
Cientificas-C (SAC-C) are not generally available, and the Luojia-1 satellite has a short
lifetime and few image acquisitions [17]. Of the available satellite images, only the VI-
IRS/DNB images have longer temporal coverage and better spatial resolution and are
publicly available [18]. Moreover, the VIIRS/DNB spectral range (0.5–0.9 µm) includes
molecule absorption bands (e.g., 0.69 µm, 0.76 µm, 0.72 µm, and 0.82 µm) that significantly
affect the estimation of PM2.5 concentrations [14]. However, the effect of these absorption
bands on PM2.5 concentration monitoring remains unclear. Finally, low-light sources at
night from the moon and ground lighting produce radiant energy, and it is unclear how
atmospheric transmittance in the DNB varies under different light sources (sodium lamps,
LEDs, etc.) [19]. These limitations prevent the use of nighttime low-light data to estimate
PM2.5 concentrations.

By analyzing PM2.5, the impact of atmospheric pollutants on human health can be
explored in the field of environmental health [20–24]. These data can be used in air pollution
control to formulate control plans and evaluate the effectiveness of control measures [25,26].
Urban planners can also use PM2.5 data to assess air quality and develop plans for future
development [5]. However, accessible daytime PM2.5, such as those managed by Tsinghua
University’s Tracking Air Pollution in China collection, include PM2.5 at geographical
resolutions of 1 km and 10 km [27,28]. The China High Air Pollutants (CHAP) collection,
developed by Wei Jing of the University of Maryland, provides daily, monthly, and annual
PM2.5, along with supplementary PM2.5, offering a spatial resolution of 1 km [29,30].
The estimation of nighttime PM2.5 is challenging because of the need for developing
radiative transfer models at night. As a result, only data without moonlight (moon phase
angle > 120◦) were frequently included in the research, rendering approximately 60% of
the data useless and substantially reducing the temporal coverage of PM2.5 at night.

Our aim was to suggest a method for calculating nighttime PM2.5, which has a greater
geographic resolution and more extensive variables. To gain a deeper understanding of
the nonlinear relationship between PM2.5 and its influencing factors, we proposed a Deep
Neural Network (DNN) model. To estimate PM2.5 concentrations at night in the BTH
region from 2015 to 2021, we used a 500 m resolution VIIRS/DNB product (VNP46A1) and
included meteorological factors, Normalized Digital Vegetation Index (NDVI), moon phase
angle, and Digital Elevation Model (DEM). We also review and discuss the interannual and
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seasonal variations in nighttime PM2.5. Furthermore, we explored the practical application
of nighttime PM2.5 concentration monitoring.

2. Materials and Methods
2.1. Materials
2.1.1. Ground PM2.5 Data

The BTH region is characterized by a complex terrain with mountains, hills, plains,
deserts, and coastal areas. The northwestern and western regions are encompassed by
the Taihang and Yanshan Mountains (Figure 1). By contrast, the central and eastern areas
are mainly covered by hills and plains, where industrial activities are concentrated. Air
pollution is more pronounced in the BTH region due to the combined effects of natural and
anthropogenic factors.
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Figure 1. The distribution of ground stations (white dots) and the elevation map of the BTH region.

The China National Environmental Monitoring Centre website (http://www.cnemc.cn/)
was used to collect hourly ground PM2.5 concentration data from 2015 to 2021, accessed on
18 March 2022. According to the China National Ambient Air Quality Standard (GB3905-
2012), the ground PM2.5 concentration is usually measured using the beta-attenuation
method or the oscillating microbalance method [31]. There are now 131 ground monitoring
stations, up from 80 in 2015, which are relatively evenly distributed across the BTH cities,
with a denser distribution in urban centers, as shown in Figure 1. After eliminating stop-
running sites, the numbers of sites used in this study were 78, 75, 80, 78, 81, and 117 from
2015 to 2021, respectively. Missing data were removed before analysis.

2.1.2. Satellite Data

The VIIRS sensor, mounted on Suomi-National Polar-orbiting Partnership satellite
platforms, offers valuable daily global observations of nighttime visible and near-infrared
light. The overpass time of the VIIRS is 1:30 local time. These observations are extremely
valuable for Earth system studies and a wide range of applications [32].

http://www.cnemc.cn/


Remote Sens. 2023, 15, 4271 4 of 17

The National Aeronautics and Space Administration (NASA) has developed the
Black Marble Product Suite (VNP46), a collection of standard products that facilitate
the utilization of VIIRS/DNB time series recordings [33]. VNP46, which is processed
within 3–5 h after daily acquisition, can be used for both near-real-time applications and
monitoring purposes, as it is processed within 3 to 5 h after acquisition every day.

The VNP46A1 products have provided VIIRS/DNB data since January 2012, including
26 scientific data storage (SDS) layers. For this study, the following parameters were
selected from the SDS layers of the VIIRS/DNB data: radiance, moon phase angle, time,
and cloud flags (accessed 12 April 2022).

2.1.3. Meteorological Data

In this study, we used the fifth-generation reanalysis dataset (ERA5) with a spatial
resolution of 0.25◦ × 0.25◦, accessed on 22 March 2022 [34]. The hourly data of the boundary
layer height (BLH), surface pressure (SP), 2 m temperature (T2M), 2 m dewpoint tempera-
ture (D2M), relative humidity (RH), east wind speed (10 m u-component of wind, U10),
and north wind speed (10 m v-component of wind, V10) were used as input factors in
this study (Table 1). Notably, the existing research surface ERA5 meteorological data are
conducive to PM2.5 estimation in China [35–37].

Table 1. Statistical description of the data.

Category Data Data Source Units Spatial
Resolution

Temporal
Resolution

Satellite data
DNB radiance

VNP46A1
W/(sr·m2)

500 m Daily
moon phase angle degree

Meteorological data

BLH

ERA5

m

0.25◦ × 0.25◦ Hourly

SP Pa
T2M K
D2M K
RH %
U10 m/s
V10 m/s

Auxiliary data NDVI MOD13A1 - 500 m 16 Days
DEM GMTED2010 m 900 m -

Ground PM2.5 data PM2.5 CNMEC µg/m3 - Hourly

At night, the boundary layer stabilizes and decreases in height, allowing pollutants to
accumulate at the ground level. Sulfur dioxide and nitrogen oxides are transformed more
rapidly when humidity is high, which can exacerbate PM2.5. Wind speed directly affects
the rate of pollutant diffusion and low wind speeds are likely to exacerbate air pollution.
The boundary layer height and temperature are indicators of temperature inversion, which
slows pollutant diffusion and exacerbates local air pollution.

2.1.4. Auxiliary Data

This study utilized auxiliary data, such as NDVI and DEM, which may affect PM2.5
concentration during the nighttime (Table 1). A 500 m spatial and 16 day temporal reso-
lution was used to create NDVI data for the MOD13A1 product. The elevation data were
obtained from GMTED2010, with a spatial resolution of approximately 900 m. These data
were accessed on 20 March 2022.

Data from satellites, meteorological stations, and auxiliary sources were spatially and
temporally matched using the latitude and longitude of each station. The resulting dataset
consists of 120,816 valid data samples from 2015 to 2021. The data samples varied slightly
annually, with 14,666, 15,234, 16,705, 16,772, 16,355, 16,749, and 24,335 data points recorded
each year, respectively.
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2.2. Methods
2.2.1. Deep Neural Network (DNN) Model

As the number of input variables increases, their relationships and impact on the
output results become more complex, requiring models with strong nonlinear fitting capa-
bilities. Traditional linear models, such as linear regression and multiple linear regression
(MLR), have a low fitting accuracy and are therefore unsuitable. Hence, a DNN was used
in this study to construct models with multiple parameters that can better capture the
complexity of the relationships between the input variables and output outcomes.

Figure 2 shows the overall technical flowchart of the 11 input variables, including
the VIIRS/DNB and RH. The DNN model used four hidden layer structures. Owing to
the simplicity of its calculation, the hidden layer activation function is a Rectified Linear
Unit [38] a rapid training rate and high efficiency (Formula (1)). The Adam optimization
function was utilized to provide stable parameters during the iteration, offering a range of
learning rates. During training, the weight and bias of each layer was optimized using the
reciprocal of the loss function. The Mean Square Error (MSE) loss function (Equation (2))
was used to optimize the network settings.

f(x) = max(0, x) (1)

Remote Sens. 2023, 15, 4271 5 of 18 
 

 

were obtained from GMTED2010, with a spatial resolution of approximately 900 m. These 

data were accessed on 20 March 2022. 

Data from satellites, meteorological stations, and auxiliary sources were spatially and 

temporally matched using the latitude and longitude of each station. The resulting dataset 

consists of 120,816 valid data samples from 2015 to 2021. The data samples varied slightly 

annually, with 14,666, 15,234, 16,705, 16,772, 16,355, 16,749, and 24,335 data points 

recorded each year, respectively. 

2.2. Methods 

2.2.1. Deep Neural Network (DNN) Model 

As the number of input variables increases, their relationships and impact on the 

output results become more complex, requiring models with strong nonlinear fitting 

capabilities. Traditional linear models, such as linear regression and multiple linear 

regression (MLR), have a low fitting accuracy and are therefore unsuitable. Hence, a DNN 

was used in this study to construct models with multiple parameters that can better 

capture the complexity of the relationships between the input variables and output 

outcomes. 

Figure 2 shows the overall technical flowchart of the 11 input variables, including the 

VIIRS/DNB and RH. The DNN model used four hidden layer structures. Owing to the 

simplicity of its calculation, the hidden layer activation function is a Rectified Linear Unit 

[38] a rapid training rate and high efficiency (Formula (1)). The Adam optimization 

function was utilized to provide stable parameters during the iteration, offering a range 

of learning rates. During training, the weight and bias of each layer was optimized using 

the reciprocal of the loss function. The Mean Square Error (MSE) loss function (Equation 

(2)) was used to optimize the network settings. 

f(x) max(0, x)=  (1) 

Satellite data

Meteorological data

DNB radiance

moon phase angle

BLH

SP

U10

V10

RH

T2M

D2M

Auxiliary data

NDVI

DEM

Model dataset

Spatial and temporal matchup

DNN model

Three cross 

validation methods

Estimation model of 

PM2.5 concentration 

at night

Ground PM2.5 data

Predication dataset

 

Figure 2. Overall flow chart of this study. 

The formula defines x as the linear combination of the weights and biases of all 

previous layer neuron values. The output neuron f(x) is used as the input for the neurons 

of the next layer. 

Figure 2. Overall flow chart of this study.

The formula defines x as the linear combination of the weights and biases of all
previous layer neuron values. The output neuron f(x) is used as the input for the neurons
of the next layer.

MSE =
n

∑
i=1

(PM2.5i − PM̂2.5i)
2 (2)

where PM̂2.5i is the model estimate of PM2.5, PM̂2.5i is the measured value of PM2.5 from
the ground stations, and n is the number of samples.

To estimate nighttime PM2.5, this study proposed a DNN-based multiparameter inte-
grated method. The model combines VIIRS/DNB and meteorological and auxiliary data as
input variables to estimate PM2.5 concentrations in the BTH region. The meteorological
and auxiliary data were resampled to match the resolution of the satellite data, which was
0.00416667◦.
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2.2.2. Model Evaluation Methods

This study used three different methods for model evaluation, as illustrated in Figure 3.
These methods include ten-fold sample-based cross-validation (Figure 3a), ten-fold site-
based cross-validation (Figure 3b), and leave-one-city cross-validation (Figure 3c).
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The sample was subjected to ten-fold cross-validation. Subsequently, the sample was
split into ten subsets using randomization. In each cycle of the approach, nine subsets were
used for model training and the last subset was used for model validation. This procedure
was carried out 10 times. Finally, for model evaluation, comparisons between the estimated
PM2.5 values of all ten iterations and the measured PM2.5 concentrations were made [39].

The monitoring sites were divided into ten parts on average for site-based
cross-validation, and the verification process was consistent with the sample-based
cross-validation process.

In the leave-one-city cross-validation approach, all monitoring stations within a single
city were used for verification, whereas stations located in other cities were used for model
fitting. This ensured that the monitoring stations in each city were verified.

In summary, the sample-based cross-validation method can assess the overall perfor-
mance of the model, whereas spatial cross-validation methods, such as site-based cross-
validation and leave-one-city cross-validation, can evaluate the spatial performance more
accurately. Sample-based cross-validation is introduced in Section 3.1.1, and the site-based
and leave-one-city cross-validation results are presented in Section 3.1.2.

3. Results
3.1. Model Performance
3.1.1. Accuracy of Models

Figure 4 shows the cross-validation results between daily nighttime PM2.5 and ob-
served values at all ground sites in the BTH region from 2015 to 2021. The amount of data
utilized in this study has been growing annually, especially with the rapid increase in the
number of ground sites by 2021.

The sample-based cross-validation accuracy of the model was evaluated using the
coefficient of determination (R2) and varied from 0.51 to 0.68 across different years, with an
average of 0.58. From 2015 to 2016, the root mean square error (RMSE) was largely stable
and decreased from 54.25 µg/m3 in 2016 to 24.96 µg/m3 in 2021. The mean absolute error
(MAE) decreased from 32.42 µg/m3 in 2015 to 14.11 µg/m3 in 2021. The observed reduc-
tion in both RMSE and MAE suggests that the uncertainty in PM2.5 estimates gradually
decreased over time, primarily due to the improvement in air quality [30]. In recent years,
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the range of PM2.5 sample data has decreased, whereas the number of ground-based air
quality monitors providing multiple samples for model training has increased.
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3.1.2. Spatial Performance

The spatial performance of the ten-fold site-based cross-validation used to estimate
nighttime PM2.5 concentration in the BTH region from 2015 to 2021 is shown in Figure
S1. Although Chengde and Zhangjiakou showed poorer accuracy than the central and
eastern BTH regions, the model performed better there. The poor performance of the model
can be attributed to the absence of ground stations in these two cities. Figure 1 illustrates
that compared with other cities, these two cities have higher altitudes, denser vegetation
coverage, and fewer ground monitoring sites, which could result in the model’s subpar
performance in these regions. The site-based cross-validations with R2 greater than 0.6
accounted for 32%, 24%, 28%, 32%, 32%, 52%, and 68% from 2015 to 2021. Although there
was a slight decline in 2016 and 2017, the proportion of site-by-site R2 was greater than 0.6,
increasing annually.

From 2015 to 2021, the BTH region’s nighttime PM2.5 spatial estimation uncertainty is
shown in Figure S2. As shown in Figure S2, the RMSE of nearly 90% of the sites was above
30 µg/m3 in 2015, 2016, and 2017, whereas the percentages of sites with an RMSE below
30 µg/m3 for 2018, 2019, 2020, and 2021 were 27%, 44%, 73%, and 87%, respectively. The
annual increase in R2 (Figure S1) and decrease in RMSE (Figure S2) indicate that the model
has exhibited better performance in recent years as the air quality has improved.

Figures S3 and S4 show the spatial performance and uncertainty of the model based
on the leave-one-city cross-validation method to estimate nighttime PM2.5 for the BTH
region from 2015 to 2021. The leave-one-city cross-validation method uses data from one
city as validation data and the remaining data from the other 12 cities as training data. This
process was repeated until all cities were used as validation sets.

The leave-one-city cross-validation results utilized in this investigation exhibited an
unsatisfactory performance, as illustrated in Figures S3 and S4. The primary cause of the
difference in performance between day and night was the light source. Specifically, sunlight
is used during the day, while the light sources for the night include ground light, moonlight,
and other sources. However, the energy entering the satellite detector at night is weak and
ranges between 10−5 and 10−6 of that in sunlight. Moreover, the radiation intensity of the
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ground light source is at least ten times greater than that of moonlight [40], making ground
light the primary light source for the DNB. As the intensity of the ground light source
varies owing to the different economic developments and population densities of each
city, the leave-one-city cross-validation process performs poorly at night. Consequently, a
localized model is required to better estimate nighttime PM2.5 concentration.

3.1.3. Influence of Input Factors

To test the importance of the model input, we circularly eliminated each input variable
and conducted experiments (Table 2). Based on the annual model for 2015−2021, after
removing the moon phase angle, the R2 model exhibited the largest decline, followed by
RH, BLH, and V10. Finally, SP, U10, T2M, D2M, DEM, and NDVI had relatively weak
impacts on PM2.5; however, the lack of any factor had a slight impact on the accuracy of the
model. Nighttime illumination data include not only the energy of lunar radiation but also
the radiation of ground light. Fine particles in the atmosphere directly affect the upward
radiation of light at night, which is directly reflected by the energy levels received by satellites.
Therefore, when there is no DNB radiance as an input, the accuracy of the model is reduced.

Table 2. Model performance after cyclic removal of each factor (R2).

Input Variables 2015 2016 2017 2018 2019 2020 2021

Without DNB radiance 0.55 0.53 0.50 0.52 0.56 0.66 0.61
Without moon phase angle 0.51 0.50 0.42 0.49 0.50 0.61 0.56

Without BLH 0.53 0.53 0.49 0.51 0.53 0.67 0.61
Without D2M 0.54 0.52 0.50 0.50 0.54 0.65 0.62
Without RH 0.53 0.50 0.46 0.50 0.54 0.63 0.59
Without SP 0.54 0.52 0.49 0.51 0.55 0.64 0.61

Without T2M 0.53 0.51 0.49 0.50 0.54 0.66 0.60
Without U10 0.53 0.52 0.49 0.52 0.55 0.64 0.61
Without V10 0.53 0.52 0.48 0.52 0.53 0.66 0.59

Without NDVI 0.55 0.54 0.50 0.53 0.57 0.68 0.62
Without DEM 0.53 0.52 0.50 0.52 0.56 0.67 0.62

All 1 0.56 0.55 0.51 0.53 0.58 0.68 0.63
1 All input variables are DNB radiance, moon phase angle, BLH, D2M, RH, SP, T2M, U10, V10, NDVI, and DEM.

3.2. Spatial Distribution Characteristics

Figure 5 shows the estimated average yearly concentration of PM2.5 with a spatial
resolution of 500 m, in the BTH region from 2015 to 2021. The model employs all samples
of the moon phase angle for model training (with moon phase angle from 0 to 180◦) in
this study, which offers a broader scope compared to previous research (moon phase
angle > 120◦). The spatial patterns across the different years were consistent. The higher
concentration of PM2.5 in the central and eastern parts of the BTH region can be attributed
to the high population density, rapid economic development, and unique terrain in cities
such as Beijing and Tianjin. In contrast, the northwestern region has less human activity,
and PM2.5 concentrations are typically low. Overall, the interannual patterns indicate a
decreasing trend of PM2.5 pollution in the BTH region from 2015 to 2021, which is mainly
attributed to China’s emphasis on implementing air pollution control measures such as the
“Blue Sky Protection Campaign” over these years [41].

Figure 6 shows the seasonal average PM2.5 concentration distribution in the BTH
region from 2015 to 2021. There were considerable seasonal variations in the spatial
distribution of PM2.5 concentration. With PM2.5 concentrations above 80 µg/m3 in the
central and eastern districts of the BTH region during winter, PM2.5 pollution is substantially
worse. This phenomenon can be attributed to the heating measures adopted in the northern
region during winter. In addition, low temperature and high humidity can facilitate
the occurrence of inversion phenomena at night, thereby affecting pollutant diffusion.
Conversely, the concentration of PM2.5 in summer was relatively lower. This may be due to
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frequent rainfall deposition during the summer months. In terms of spatial patterns, the
concentrations of PM2.5 in spring and autumn were comparable.
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3.3. Applications in Different Scenarios

Figure 7 illustrates the daytime and nighttime variations in air quality from 17 to
21 October 2019, using an air pollution process as an example. The estimated results are
shown in Figure 7a,c,e,g. In contrast, Figure 7b,d,f,h show the daytime PM2.5 concentration
distributions from the CHAP dataset. Figure 7a shows that on 18 October, PM2.5 concentra-
tions were higher in the early morning in the central and southern cities of the BTH region.
The lower wind speed and higher relative humidity in the central, eastern, and southern
BTH region led to higher pollution levels on the morning of 18 October (Figures 7b and 8a).
On October 19 the central and eastern cities experienced considerable pollution in the
early morning (Figure 7c). On 19 October (Figure 7d), the southeasterly wind moved
pollutants toward the cities in front of the mountain, resulting in increased pollution levels
in Shijiazhuang, Baoding, and other cities (Figure 8b). PM2.5 concentrations decreased in
southern Hebei during the early morning of October 20 (Figure 7e) but increased again
during the daytime in Shijiazhuang, Handan, and Xingtai (Figures 7f and 8c). The early
morning of 21 October was influenced by cold air (Figure 7g). This led to a decrease in
PM2.5 concentrations in cities in the northern BTH region (Figures 7h and 8d). Nevertheless,
PM2.5 concentrations in the southern cities remained unsatisfactory. By supplementing the
data with nighttime PM2.5, we can comprehensively understand the diurnal variation and
diffusion/dissipation direction of PM2.5.
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Figure 7. Process of atmospheric pollution from 17 to 21 October 2019. (a) DNN Model estimates
for 17 October 2019, (b) CHAP of 18 October 2019, (c) DNN Model estimates for 18 October 2019,
(d) CHAP of 19 October 2019, (e) DNN Model estimates for 19 October 2019, (f) CHAP of 20 October
2019, (g) DNN Model estimates for 20 October 2019, (h) CHAP of 21 October 2019.

The estimated PM2.5 concentration at night before, during, and after the Spring Festival
in China is presented in Figure 9. The first, second, and third columns show the estimations
before, during, and after the festival, respectively. In 2018, the Chinese government imple-
mented strict regulations limiting the use of fireworks and firecrackers during the Spring
Festival. A noticeable trend was observed in the average concentrations of PM2.5 from 2015
to 2017 and from 2018 to 2021. Before Chinese New Year, PM2.5 concentration increased,
peaked during the event, and then gradually decreased. Despite overnmentment’s efforts
to restrict fireworks, it is difficult to completely ban fireworks during the Spring Festival
because of traditional folk customs. Although the air quality has improved annually, there
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are still substantially higher PM2.5 concentrations during the Spring Festival. However,
compared with 2015–2017, PM2.5 pollution levels were lower before and after the Spring
Festival in 2018–2021.
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As one of China’s foremost centers for steel production, Tangshan produces a sig-
nificant amount of particulate matter during its production process. As a result, the
concentration of PM2.5 in Tangshan was higher than that in other regions. Figure 10 shows
the average yearly PM2.5 concentration in Qian’an, BTH, in 2016. The figure reveals high
PM2.5, which is abundant in iron ore resources and has a high concentration in iron factories.
To further illustrate this, two images (obtained from Google Maps) show images of two
steel mills located at (118.68662◦E, 39.92575◦N) and (118.59248◦E, 39.90758◦N), respectively.
Owing to the presence of steel mills, PM2.5 concentrations are expected to be higher at night
in and around the region. Consequently, monitoring PM2.5 concentration during nighttime
is crucial for single-point monitoring, such as in heavy industry factories, or continuous
monitoring covering both day and night. Because steel mills may emit PM2.5, it is necessary
to monitor nighttime emissions and single-point exceedance of steel mills to assess their
health risks and provide valuable references for environmental policies and public health.
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4. Discussion

In this section, we compare our results with those of previous studies and discuss the
trend consistency of nighttime PM2.5 concentration with daytime PM2.5 on interannual and
daily scales.

Table 3 summarizes the different models used in previous studies, which are usually
limited by their sample size and research duration. First, in terms of data volume, the
sample size of this study was nine times that of other existing research samples (maximum
value), reflecting the diversity of the samples. Simultaneously, due to a large amount of
data and multiple features, the DNN model has a better nonlinear fitting ability. Second,
in terms of time span, this study uses data for all moon phase angles, which can obtain a
long-term series of datasets and estimate long-term, continuous PM2.5. Most of the existing
studies use cloudless and moonless data (moon phase angle > 120◦) to construct the model,
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which affects the amount of data available for research. In this study, the lunar phase
angle was used as the input of the model to estimate long-term nighttime PM2.5, with
improved spatial and temporal resolution (2015–2021). Compared to previous studies, this
improvement in data quality and resolution allows for a more accurate analysis.

Table 3. Comparison of the performance of previous models and the DNN model in estimating PM2.5

concentration at night.

Model Numbers of
Samples Time Span Spatial

Resolution (m) Region R2 RMSE (µg/m3) Reference

MLR 75 1 August 2012–30 October 2012 750 Atlanta 0.45 4.112 [14]
SVM 50 March–May 2013 750 Beijing 0.9 - [42]
MLR 488 December–February 2012–2018 750 Shanghai 0.77 19.21 [43]

RF - September–December 2020 500 Nanjing 0.81 - [12]
BP 198 March–May 2013 750 Beijing 0.83 12.02 [13]

SADBN 13,393

13–23 February 2013;
4–12 February 2016; and 24

January to 1 February 2017; and
12–22 February 2018

750 China 0.89 19.94 [44]

DNN 120,816 2015−2021 500 BTH 0.51–0.68 54.25–12.11 This study

Figure 11 illustrates the annual average PM2.5 concentration during the daytime and
nighttime at four urban sites from 2015 to 2021. Data from the CHAP dataset were used to
represent daytime PM2.5; Day_CHAP is the estimated daytime concentration, and Day_site
is the measured value at the site during the same period. Night_Model represents the
estimated concentration of this study, and Night_site represents the measured value of
the site in the same period. Figure 11a shows the site (116.4072◦E, 39.8863◦N) located in
Beijing. The annual average concentration showed a year-by-year decrease in PM2.5, and
the concentration difference between daytime and nighttime was minimal. The site in
Tianjin (117.202◦E, 39.0927◦N), shown in Figure 11b, presented a similar trend of annual
decrease; however, the results indicated an underestimation of both daytime and nighttime
PM2.5 concentrations. Figure 11c shows the changes in the site (112.5331◦E, 38.0178◦N)
in Shijiazhuang City, where the PM2.5 concentration showed a slight peak in 2016 and a
continuous steady decreasing trend from 2017 to 2021. Figure 11d shows the changes at
the site (112.4704◦E, 37.0886◦N) located in Xingtai, a southern city in the BTH region. The
concentration of PM2.5 decreased from over 100 µg/m3 in 2015 to roughly 40 µg/m3 in
2021. Although there were significant discrepancies between daytime and nighttime PM2.5,
across different sites and years, the results from different cities demonstrated a consistent
interannual variation trend in both daytime and nighttime PM2.5.

To further illustrate the differences in PM2.5 concentration between day and night, we
calculated the quarterly average error from 2015 to 2021 (Figure 12). The absolute difference
in PM2.5 concentration between day (CHAP) and night was used for calculation. It can be
observed from Figure 12 that the error in winter was higher than that in the other three
seasons, and the maximum error was 58.93 µg/m3. By contrast, the error in summer was
the smallest, with a difference of 9.82 µg/m3.

Although this study generated a dataset of nighttime PM2.5 concentrations for the
BTH region from 2015 to 2021, some limitations need to be considered. The proposed
model has only been tested in the BTH region and requires further validation through
an expanded spatial scale and an extended time-series investigation. Land-use change,
population migration, or industrial growth may affect PM2.5 concentration, but they are
not reflected in this study, and their impact on the model will be discussed in a future
study. Moreover, VIIRS/DNB radiances are mainly derived from moonlight and ground
light. To more accurately estimate nighttime PM2.5, atmospheric contributions must be
obtained by implementing a nighttime low-light radiation transfer model. Therefore, there
is an urgent need to develop such models. In existing research, scholars have combined the
lunar irradiance model (MT2009) with the daytime radiative transfer model (SCIATRAN)
to obtain a radiative transfer model using moonlight as the light source [45]. Subsequent
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research will focus on a radiative transfer model derived from a combination of moonlight
and ground light.
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Figure 11. Different urban sites’ average annual change trends from 2015 to 2021. (a) Beijing,
(b) Tianjin, (c) Shijiazhuang, and (d) Xingtai. The Night_Model shows the estimated concentration of
this study. The Night_site shows the observed concentration of nighttime. The Day_CHAP shows
the estimated concentration of daytime. The Day_site shows the observed concentration of daytime.
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5. Conclusions

A deep neural network model was developed using VIIRS/DNB, moon phase angle,
ERA5 meteorological data, NDVI, and DEM as inputs to generate a dataset for night-
time PM2.5 from 2015 to 2021. Our findings show that the developed model reliably
estimates PM2.5, which is crucial for continuous daytime and nighttime air pollution moni-
toring. Our results suggest that the proposed model is a valuable reference for day and
night monitoring.

(1) Studies have shown that the proposed model outperforms most existing models,
including MLR, BP, and SVM, in terms of time coverage and spatial resolution. Among
them, the R2 of the 2015–2021 model is 0.56, 0.55, 0.51, 0.53, 0.58, 0.68, and 0.63,
respectively. Cross-validation based on samples, sites, and leaving one city showed
that the models in this study had better spatial performance. The method of circularly
removing each input variable showed that the input variables used in this study had
an impact on the estimation of PM2.5 and that the model performed best when all
input variables were used.

(2) This study produced a map of nighttime PM2.5 concentrations for 2015–2021, which
exhibited a yearly decrease. The lowest PM2.5 was recorded in summer, followed
by spring and autumn, with the highest levels recorded in winter. Higher pollution
levels were observed in the central and eastern parts of the BTH region, whereas
lower levels were observed in the northwest region.

(3) A comparison of daytime and nighttime PM2.5, shows that there is a large difference
in PM2.5 concentrations between day and night, indicating that nighttime PM2.5
concentration monitoring is meaningful, and the production of nighttime PM2.5
provides the possibility of continuous monitoring day and night. Simultaneously,
nighttime PM2.5 provided data support for short-term surge events and environmental
pollution monitoring, such as setting off fireworks during the Spring Festival and
excessive emissions from the Tangshan Iron and Steel Plant.
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