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Abstract: The upcoming technology of wide-swath altimetry from space will enable monitoring the
ocean surface at 4–5 times better spatial resolution and 2–3 times better accuracy than traditional
nadir altimeters. This development will provide a chance to directly observe submesoscale sea
surface height (SSH) variations that have a typical magnitude of a few centimeters. Taking full
advantage of this opportunity requires correct treatment of the correlated SSH errors caused by
uncertainties in environmental conditions beneath the satellite and in the geometry and orientation
of the on-board interferometer. These observation errors are highly correlated both along and across
the surface swath scanned by the satellite, and this presents a significant challenge for accurate
processing. In particular, the SWOT precision matrix has off-diagonal elements that are too numerous
to allow standard approaches to remain tractable. In this study, we explore the utility of a block-
diagonal approximation to the SWOT precision matrix in order to reconstruct SSH variability in the
region east of Greenland. An extensive set of 2dVar assimilation experiments demonstrates that the
sparse approximation proposed for the precision matrix provides accurate SSH retrievals when the
background-to-observation error ratio ν does not exceed 3 and significant wave height is below 2.5 m.
We also quantify the range of ν and significant wave heights over which the retrieval accuracy of the
exact spatially correlated SWOT error model will outperform the uncorrelated model. In particular,
the estimated range is found to be substantially wider (ν < 10 with significant wave heights below
8–10 m), indicating the potential benefits of further improving the accuracy of approximations for the
SWOT precision matrix.

Keywords: swath altimetry; error covariance; data assimilation

1. Introduction

The Surface Water and Ocean Topography (SWOT, [1,2]) and Coastal and Ocean
Measurement with Precise and Innovative Radar Altimeter (COMPIRA, [3]) missions
are designed to deliver high resolution maps of ocean surface topography using radar
interferometry. The SWOT satellite was launched on 16 December 2022, initially into a fast
(1-day repeat cycle) sampling orbit for calibration, with plans for a later transition to an
operational orbit having a longer (20.86-day) repeat cycle. The new type of observations
of sea surface height (SSH) available from this satellite will deliver gridded data along
100–160 km-wide swaths at kilometer resolution.

In contrast to traditional nadir-based altimeters that were in operation in recent
decades giving observed SSH anomalies with a typical error of 5–8 cm, this new remote
sensing technology will have several times better SSH uncertainty of 2–3 cm. Achieving this
precision requires taking into account additional spatially correlated observation errors of
both instrumental and environmental origin. Processing data with spatial error correlations
presents a certain challenge for operational data assimilation systems, mostly because of the
huge dimension of the respective error covariance matrices. As an example, a transatlantic
swath segment contains in the order of 106 spatially correlated observations whose error
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covariance matrix will have (potentially) 1012 nonzero elements, creating a formidable
demand on computational resources as a result.

In preparation for the SWOT mission, the Jet Propulsion Laboratory (JPL) developed
an observation error covariance model [2,4] which has served as the basis for numerous
experiments aimed at assessing the added value of the mission in monitoring global ocean
dynamics (e.g., [5–10]). In these studies, simulated SWOT observations were assimilated
into numerical models under the traditional assumption of a diagonal (i.e., spatially un-
correlated) error covariance matrix commonly adopted by operational data assimilation
systems. However, in order to successfully resolve submesoscale SSH variations having
typical magnitudes of a few centimeters, it is necessary to correctly take into account
correlated errors, whose typical magnitudes are in the order of 1–2 cm. These errors are
associated with uncertainties in the geometry and orientation of the interferometer, as well
as with environmental factors, such as water vapor content in the atmospheric column
between the satellite and the ocean surface.

In recent years, various approaches to denoising the SWOT signal from spatially
correlated errors were considered (e.g., [11–17]). In particular, Ref. [11] explored various
forms of high-order differential operators to penalize grid-scale components along the
swath, while [12,13] proposed to filter SSH errors caused by the uncertainties in interfer-
ometer geometry and orientation by explicitly removing the corresponding across-swath
modes from the observed SSH patterns. In a different approach, Ruggiero et al. [14] and
Yaremchuk et al. [15] developed heuristic sparse approximations of the inverse error co-
variance matrix. More recently, separable [16] approximation to the SWOT error covariance
matrix and block-diagonal (hereinafter BD) [17] approximation to its inverse square root
have been developed.

In the present study, we explore the effect of taking spatially correlated SWOT errors
into account in the presence of both mesoscale and submesoscale variability of the back-
ground field. The latter was simulated by a primitive equation model at 1 km resolution
under various assumptions of the magnitude of the background error covariance. Based
on a series of observation system simulation experiments (OSSEs), we evaluate the de-
pendence of the assimilation skill on the magnitude of the mesoscale component in the
background field, significant wave height, and observation-to-background error ratio.

The paper is organized as follows. In the next section we describe the structure
of the SWOT error covariance matrix R developed by the Jet Propulsion Laboratory, as
well as the sparse approximation of its inverse square root and the methodology of its
numerical testing via 2dVar OSSEs. In Section 3 we compare the results of 2dVar retrievals
of the reference fields with regard to different approximations of the inverse square root
of R, including simple diagonal approximation, block-diagonal approximation, and exact
inversion of the JPL covariance model. The findings are summarized and discussed in
Section 4.

2. Setting of the Numerical Experiments
2.1. SWOT Error Covariance Model

The JPL error covariance model [6] is represented by the sum of three major con-
stituents, associated with the errors caused by uncertainties in the geometry and orientation
(GO) of the on-board interferometer, uncertainties in environmental conditions (state of the
atmosphere and ocean waves), and the intrinsic noise of the Ka-band Radar Interferome-
ter (KaRIn):

R = K + Rg + Ra (1)

Here, K, Rg, and Ra and denote the respective KaRIn, GO, and atmospheric error
covariance matrices. In Equation (1), K is diagonal and has full rank whereas the other
two components are positive semi-definite and may represent significant error correlations
in both across- and along-swath directions. In the following, the across-swath and along-
swath directions will be denoted, respectively, by x and y, and matrices associated with these
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directions will be labeled accordingly. In contrast to previous works on the approximation of
R−1 (e.g., [16,17]), in this study we include atmospheric errors in cases where the uncertainty
in the water vapor content is partly removed by twin radiometers ([4]). In accord with the
JPL model, it is assumed that

R = K +
4

∑
k=1

Rk
x ⊗ FT

y Sk
yFy + DT

x FT
xySwFxyDx (2)

Here, Rk
x are the rank-one covariance matrices associated with across-swath uncertain-

ties (namely, roll, phase, dilation, and timing), F is the Fourier transform in the directions
of subscripts, Sk

y, Sw are the diagonal matrices with the respective error power spectra at
the diagonals, and D is the operator removing the across-swath linear trend in the error
field caused by the uncertainty of the water content in the atmosphere. The isotropic 2d
spectrum Sw in Equation (2) is the default spectrum from the SWOT simulator.

In [16,17] it has been shown that R−1 and its symmetric square root R−1/2 could be
well-approximated by sparse block-diagonal matrices if the target SSH features have spatial
scales below 30 km (i.e., spatial frequencies above 0.01 km−1). These features are well
resolved by the SWOT interferometer, whose observation errors do not exceed 2–3 cm at
2 × 2 km grid resolutions. Availability of a numerically efficient approximation of R−1/2

provides an opportunity to inexpensively compute the normalized SWOT innovations
δd = R−1/2[d−H(xb)] in data assimilation systems, based on the inversion of correlations
in data space (see Appendix A):

δx = VCHT(HCHT + I)−1δd; H = R−1/2HbV (3)

Here, δx is the SSH increment on the model grid, H(xb) is the observation operator
projecting the background state of the model xb on observations d, Hb is its linearization
in the vicinity of xb, V is the diagonal matrix of the background error standard deviations,
C is the background correlation matrix, and I is the identity matrix. Formulation (3)
is routinely used in multi-variate data assimilation systems (e.g., [18]), as a (first-level)
preconditioning. The transition of such systems to processing observations with non-
diagonal error covariances requires either a substantial increase in computational power,
or efficient approximations of R−1/2. In this study, we employ an extensive set of OSSEs
with the model SSH fields xb to explore the utility of the sparse approximation proposed
in [17] by comparing its true state retrieval skill vs. the ones obtained using a diagonal
approximation of R−1/2 and using its exact form. Since SSH has never been observed with
zero error, the true ocean state was simulated by the output of a high-resolution primitive
equation ocean model.

2.2. Ocean Simulations

As mentioned above, the key added value of the SWOT altimeter is its higher spatial
resolution and accuracy, which will enable oceanographers to directly observe submesoscale
SSH variability in the open ocean and coastal environments. For this reason, we elected a
high-latitude region (Figure 1) for testing the impact of the spatially correlated components
of the SWOT error covariance matrix on the quality of SSH retrievals. The two major
reasons for such a selection are the small (∼5–10 km) Rossby deformation radius and much
smaller SSH variations (∼5–10 cm) at high latitudes relative, say, to larger values for each
found in the tropics. These features present a challenge for monitoring SSH variability
at high latitudes by nadir radiometers, whose spatial resolution and accuracy are barely
consistent with eddy characteristics. At the same time, the retrieval quality of these features
from SWOT data could be affected by correlated observation errors, whose magnitudes are
comparable to those of the eddies, and, therefore, should be taken into account.

To simulate the “true” ocean, we used a 4-month output of the Navy Coastal Ocean
Model (NCOM, [19]) in the Eastern Greenland Sea (Figure 1). The model was run at
1 km resolution between 1 June and 30 September 2019, nested within a coarser (4 km)



Remote Sens. 2023, 15, 4277 4 of 14

configuration that was used to study the impact of freshwater runoff from the Greenland
ice sheet on the local coastal circulation [20]. Apart from the runoff, the solution was
forced by atmospheric fluxes of heat, freshwater, and momentum from the Navy Global
Environmental Model (NAVGEM) [21]. To explore the impact of correlated SWOT errors
on the retrieval quality of ocean states of various configuration, we picked three snapshots
(Figure 2). The snapshots were extracted from the model hindcast on 20 July, 10 August,
and 10 September 2019 at the three swath segments shown in Figure 1 .

Figure 1. Model domain and swath segments used in OSSEs. The field of temporal RMS variations
of the SSH is shown by color shading on the background. Labels a, b, and c denote locations of model
snapshots extracted from the hindcast on 20 July (a), 10 August (b), and 5 September (c), 2019.

Figure 2. The true SSH fields used in the assimilation experiments. The simulation dates and swath
segment labels (Figure 1) are shown. Sampling of these fields by simulated SWOT observations is
shown by dots in the bottom panel only. Units are in meters.

2.3. Methodology of the OSSEs

The numerical experiments were performed in a standard setting: First, the target
“true” SSH fields xt were picked from the model and interpolated on 512 km-long segments
(Figure 1) at 2 km resolution. Each field was 128 km-wide, contained 64 × 256 grid points,
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and enveloped a 120 km-wide swath segment of the SWOT satellite giving a total number of
12,800 observation locations, shown as a grid in the bottom panel of Figure 2. In this setting,
simulated SWOT observations were collocated with the grid points of the background
state. Second, the true fields xt at the SWOT observation locations were contaminated by
an ensemble of 100 noise realizations generated by the SWOT simulator. The resulting
“observed” fields were then used to retrieve true fields by computing corrections δx to the
background SSH fields xb via Equation (3). For each member of the observation ensemble,
a background field xb (simulating an uncertain “model forecast”) was specified by imposing
background noise on the true solution, xt:

xb = xt + VC1/2n (4)

where n is a realization of the 2d Gaussian random field with zero mean and unit variance.
V = vI is a diagonal matrix of (spatially homogeneous) standard deviations from the true
fields, caused by simulated forecast errors. Similar to the SWOT errors, the model errors
were assumed to be Gaussian with the correlation matrix

C = N exp(∆/2a2)N, (5)

where ∆ is the 2d Laplacian operator on the swath segment with Neumann boundary
conditions, N is the diagonal matrix of normalization factors (e.g., [22]) setting the diagonal
of C to 1, and a is the decorrelation scale.

The values of background noise, v, and decorrelation scale, a, were varied in the
course of the experiments. Since the magnitude of SWOT errors depends on the significant
surface wave height [6] (hereinafter SWH and denoted by w), and since SWH modulates
the diagonal elements of K in Equation (2), the impact of surface waves on the accuracy of
SSH retrievals was also assessed in an additional set of numerical experiments.

For each true field xt and each set of the retrieval parameters v, a, w, three ensembles of
2dVar assimilation experiments, which used three models of the square root of the SWOT
precision matrix, were performed: (a) the exact JPL model based on Equation (2); (b) a
block-diagonal model R−1/2

b [17], allowing only for across-swath correlated errors; and
(c) a diagonal approximation R−1/2

d ≈ K−1/2, which does not take any spatially correlated
errors into account. The computation of a block-diagonal approximation was performed
using a column-wise splitting scheme to compute an approximate precision matrix (see
Appendix B) and then taking the square-roots of its diagonal blocks. This approach takes
advantage of the specific structure of R−1/2

b and allows for efficient parallelization in the
along-swath direction.

The 2dvar retrieval skills of the true states were quantified using the error reduction ratios

ρij =
〈|δxb + δxi|〉
〈|δxb + δxj|〉

; ρij =
〈δxb + δxi〉
〈δxb + δxj〉

. (6)

Here, δxb = xb − xt is the background error, angular brackets denote ensemble av-
erages, an overline denotes the standard deviation of a field, and indices i, j = 0, 1, 2, 3
enumerate increments obtained using the exact (1), block-diagonal (2), and diagonal (3)
models of R−1/2, respectively. For the error reduction ratio, with respect to the background
state, the index j is set to zero, implying that the increment δxi = 0 (i.e., the skill) is assessed
with respect to the background error, without assimilation.

3. Results
3.1. Sensitivity to Background Errors

The analysis Equation (3) can be rewritten in the equivalent form

δx = BHT
b (HbBHT

b + R)−1(d−Hbxb); B = VCV , (7)
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providing better insight on the impact of the background errors on the results of assimilation.
In particular, one may expect that, when the magnitude of R (as measured by the sum
of its eigenvalues, trace(R)) is much smaller than the uncertainties in the approximation
of R and, respectively, of R−1/2 in Equation (3), as measured, say, by trace(HbBHT

b )), will
have a relatively small impact on the results of assimilation. For that reason, the ratio
β = trace(HbBHT

b )/trace(R) is likely to be a key parameter, controlling the accuracy of the
SSH retrievals with various approximations of the precision matrix.

In our assimilation experiments, the background error magnitude v was measured in
terms of the true states magnitude s = xt, while the background noise level ν = v/s was
varied across the range between 0.2 and 0.8. The related norm of the background error
covariance projection on SWOT observation points, trace(HbBHT

b ), experienced variations
between 1.3 and 21 m2.

At the same time, varying the SWH magnitude, w, changed the observation noise
level, trace(R), in an interval between 3 and 14 m2. This range covered SWH changes
ranging between calm seas (SWH = 1 m) to severe storm conditions (SWH = 8 m). It should
be noted that, since the magnitude of the correlated errors trace(Rg + Ra) in Equation (1)
does not depend on SWH, their relative contribution κ = trace(Rg + Ra)/trace(R) to the
SWOT covariance decreases with an increase in sea surface roughness (Figure 3), indicating
a reduction in the diagonal approximation error due to growth of the diagonal dominance
of R.

Figure 3. Contribution κ of the correlated errors to the SWOT covariance for spatially homogeneous
(black circles) and inhomogeneous (open circles) distributions of the SWH over the swath segment b
shown in Figure 1.

Figure 3 shows the potential importance of the proper treatment of spatially correlated
errors in realistic conditions: SWH climatologies (e.g., [23,24]) indicate that there is more
than a 95% chance of observing SWH below 4 m over the global ocean, with an average
SWH value of about 1.8–2 m. These numbers correspond to 50–70% contribution of the
correlated errors to the SWOT observation covariance. For calm sea conditions (w < 1 m),
the contribution 1− κ of KaRIn noise falls below 20% and becomes nearly negligible.

In the main series of experiments, we explored the dependence of the error reduction
ratios (Equation (6)) on the decorrelation scale a of the background states. In the reference
ensemble of 2dVar runs with the variable background noise level v, the value of a was set to
the Rossby deformation radius, which is approximately 5 km for the summer stratification
of the East Greenland Sea [25], and the SWH was set to a default constant value of 2 m.
An example of typical error reductions ρ13, ρ23, with respect to the errors obtained under
the assumption of uncorrelated SWOT noise (diagonal approximation of the precision
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matrix), are shown in Figure 4 for the true state in Figure 2b. Similar distributions were
obtained for the states displayed in Figure 2a,c.

Figure 4. Spatial distributions of relative error reduction ratios for the exact (1st and 3rd panels from
the top) and block-diagonal (2nd and 4th panels) approximation of R−1/2 and β = 0.4. The horizontal
decorrelation scale a of the background error covariance and the horizontally averaged values of ρ

are shown.

As can be seen, both exact and approximate versions of the SWOT precision matrix
demonstrate significantly better retrievals of the true SSH field with an ensemble-mean
error reduction ratio persistently below 1 throughout the domain. Quantitatively, the area-
mean ratio deteriorates from 0.55 to 0.72 with a 3-fold increase (from 5 to 16 km) of the
background decorrelation scale, but nevertheless maintains persistent improvement of
the analysis (values below 1) throughout the domain. Degradation of ρ caused by an
increase in a primarily occurs due to error diffusion from the 10 km-wide nadir swath (that
is unobserved by the interferometer) and the larger contribution of long-wave background
error components to the overall error budget.

With an increase in ν, the patterns exposed in Figure 4 deteriorate, resulting in the
gradual increase in ρ13 up to 0.9 at β > 5. The value of ρ23 characterizing the fidelity of the
BD approximation eventually exceeds 1 (i.e., the BD approximation becomes indistinguish-
able from the diagonal representation of R) when the background-to-observation noise
ratio β goes beyond a certain threshold, β∗, whose magnitude depends on the values of a
and SWH.
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Figure 5 gives insight into the dependence of β∗ on the background decorrelation
scale a for the most common case of 2 m waves. Irrespective of a, taking correlated errors
into account appears to be prudent when the magnitude of observation errors exceeds
those of the background (β < 1); in these cases, the diagonal approximation of R fails
to substantially reduce the initial difference with the true state, keeping the reduction
ratio ρ30 (thin lines) within the range of 0.8–1.1. Increasing a from 5 to 16 km shrinks the
range of applicability of the block-diagonal approximation from β∗ < 3.5 to β∗ < 2.5.
Although the exact form of R−1/2 (thick black lines in Figure 5) consistently demonstrates
better skill than the diagonal approximation (thin lines), it eventually becomes worthless
as the skill difference (thick-to-thin lines ratio) becomes statistically indistinguishable from
1 at fairly large values of β (β > 12 for a=5 km and β > 8 for a = 16 km). We assume
that these effects are caused by the gradual saturation of the initial error field δxb by
the long-wave harmonics which tend to suppress visibility of the SWOT signal, whose
errors are significantly correlated mostly on smaller scales. Nevertheless, it is obvious
that using the exact SWOT error covariance is useful throughout the entire range of the
background-to-observation noise ratio.

Figure 5. Dependence of the error reduction ratios ρi0 on the relative magnitude β of the background-
to-observation error for a = 5 km (left) and a = 16 km (right). The error bars derived from the
respective ensembles of 2dVar assimilations are shown.

In practice, employing the exact SWOT covariance model in the analyses (Equations (3)
and (7)) would be difficult because, typically, neither R nor R−1/2 are compactly repre-
sentable in a way that is advantageous for inversion or solving linear systems. In particular,
neither matrix will normally be sparse. The difficulties in dealing with this challenge could
be relaxed to some extent by either using a BD approximation to R−1/2, or in the case of
rough seas, by recognizing the potential diagonal dominance of R due to the amplification
of KaRIn noise (Figure 3) by surface waves.

3.2. Impact of Surface Waves

At first glance, increasing the diagonal dominance of R would improve the quality
of the block-diagonal approximation of R−1/2. However, this would be correct only in
the case of relatively small background errors. In real situations, the latter often dominate
the error balance in the analysis of Equations (3) and (7), so that inflating the diagonal of
R would instead cause a rapid loss of information on the true state arriving from SWOT
observations. This will, in turn, result in very small analysis increments (cf. Equation (3)).

To study the impact of surface waves, we conducted a series of OSSEs using
four spatially homogeneous SWH fields with w = 1, 2 4, and 8 m. In these experiments,
the background noise level ν was varied in the range between 0.15 and 0.6, and the value
of the background decorrelation scale a was 5, 8, and 16 km. The results of these OSSEs are



Remote Sens. 2023, 15, 4277 9 of 14

displayed in Figure 6 for a = 5 and 8 km. It is remarkable that using the exact formulation of
R−1/2 yields a quite significant (20–30%) amount of information on the true state, even for
SWH = 8 m. For a calm sea (SWH = 1 m) and background noise levels of 0.15–0.3, SWOT
observations provide on average more than two times better (ρ10 < 0.5) approximation to
the true states relative to background forecasts.

Figure 6. Dependence of the true state retrieval error 〈ρi0〉 on SWH for the exact (i = 1, solid lines)
and block-diagonal (i = 2, thin lines) approximations of R−1/2 for the gradually increasing noise
levels ν of the background error. The OSSE results shown are averaged over the three true states in
Figure 2.

It is also notable that, under calm sea conditions (w = 1 m), the BD approximation
of R−1/2 yields only a slightly (10–15%) worse retrieval skill compared to the exact case.
However, with SWH growth, the BD skill deteriorates much faster, becoming nearly
worthless for significant wave heights exceeding 2.5–3 m (thin lines in Figure 6). Despite
this, the block-diagonal approximation appears to be applicable to SWOT data analysis
over the entire globe with the exception of the Southern Ocean and high latitudes in the
winter of the Northern Hemisphere [24].

Results shown in Figure 6 were obtained with idealized (spatially homogeneous) SWH
patterns over the swath. To assess the impact of SWH inhomogeneity, we conducted addi-
tional experiments by picking a realistic SWH distribution (Figure 7, upper panel) caused by
a storm on 31 August 2019 (Copernicus Global Ocean Wave Reanalysis https://data.marine.
copernicus.eu/product/GLOBAL_MULTIYEAR_WAV_001_032/description, (accessed on
11 July 2023)). Estimates of the respective true state retrieval skills were conducted for all
of the states in Figure 2 and then compared with similar results obtained for the spatially
averaged SWH of the pattern displayed in the upper panel of Figure 7.

The OSSEs demonstrated statistically insignificant differences in skill, and remained
basically within the standard deviations around means produced by the respective 2dVar
ensembles (see Table 1).

https://data.marine.copernicus.eu/product/GLOBAL_MULTIYEAR_WAV_001_032/description
https://data.marine.copernicus.eu/product/GLOBAL_MULTIYEAR_WAV_001_032/description
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Figure 7. From top to bottom: (a) SWH map w(x, y) during the storm observed on 31 August 2019;
(b) the respective map of the diagonal elements of K1/2; (c) the diagonal of (K/K∗)1/2 where K∗
is KaRIn noise variance when SWH is spatially homogeneous and equal to the horizontal average
(2.8 m) of the pattern shown in the upper panel.

Table 1. Mean retrieval skills for various combinations of the background error decorrelation scale a
and noise level ν. The asterisks in the column headers denote spatially homogeneous versions of K in
the assimilation experiments with exact (E, bold), block-diagonal (B, italic), and diagonal (D) versions
of R−1/2. Table entries are the retrieval skills averaged over the ensembles of assimilations for the
three true states shown in Figure 2.

a, km ν E E∗ B B∗ D D∗

5 0.15 0.57 ± 0.02 0.58 ± 0.02 0.66 ± 0.02 0.67 ± 0.03 1.09 ± 0.22 1.11 ± 0.21
5 0.30 0.39 ± 0.02 0.39 ± 0.02 0.52 ± 0.02 0.53 ± 0.02 0.62 ± 0.11 0.63 ± 0.12
8 0.15 0.55 ± 0.04 0.56 ± 0.04 0.66 ± 0.04 0.67 ± 0.05 1.11 ± 0.25 1.13 ± 0.24
8 0.30 0.37 ± 0.03 0.37 ± 0.03 0.51 ± 0.03 0.51 ± 0.04 0.60 ± 0.12 0.61 ± 0.13

This result is due to two factors. First, the relative SWH variations across the swath are
small because the typical horizontal scale of wind stress variation in the ocean is an order
of magnitude larger than the swath half-width. Second, the response of the KaRIn noise
magnitude to SWH variation is rather weak; in the test case considered, diag(K)1/2 changes
at most by a factor of two (middle panel in Figure 7b), whereas SWH varies by up to a
factor of five over the same area. When combined, these factors produce relatively small
(10–15%) variations in the KaRIn noise relative to the noise generated by the area-mean
SWH (bottom panel in Figure 7). These small variations are further dispersed across the
final skill estimates (Table 1) due to the presence of background errors in the analysis
equation that are usually several times larger than observational ones.

4. Summary and Discussion

In this study, we investigated the retrieval skill of the BD approximation to the SWOT
precision matrix using summer-time SSH variations in the East Greenland Sea. In contrast
to the previous study [17], which focused on the retrieval of an idealized SSH variability at
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submesoscale, the tested background fields were characterized by wider spectra containing
both mesoscale and submesoscale SSH variations in a realistic proportion. The retrieval
skill of the BD approximation was assessed through the ensembles of 2dVar assimilation
experiments with variable parameters of the error statistics in both SWOT observations
and the background states.

The results of the study are summarized as follows. The correlated SWOT errors
provide a significant contribution to the analysis if the background-to-observation noise
ratio does not exceed 2.5–3 when the significant wave height is below 3 m. Above these
levels, either SWOT observation information tends to be lost against the background
noise and/or correlated errors become too small compared to the uncorrelated KaRIn
noise, and, therefore, provide a negligible contribution to the structure of SSH signal to
the analysis. The BD approximation to the SWOT precision matrix is especially efficient
for calm seas (w <1.5 m); with SWH growth, its validity quickly degrades and becomes
virtually indistinguishable from the uncorrelated approximation of the SWH above 2–2.5 m.
In contrast, employing the exact R−1/2 in the analysis persistently yields 20–60% better
assimilation accuracy, even at rough seas (Figure 6). Finally, inhomogeneities of the SWH
distribution along the swath weakly affect the analysis quality delivered by both the exact
and BD approximations of the precision matrix.

The general, the conclusion is that SWOT-correlated errors, whose overall magnitude
ranges within 1–3 cm, are most efficiently taken into account when the background SSH
errors are below 5–7 cm and the SWH does not exceed 6–8 m. Otherwise, the diagonal
approximation of the SWOT error covariance matrix will suffice in producing an essentially
correct analysis.

Our experiments show that the computational cost of the BD approximation is signifi-
cantly (30–50 times) less than when using the exact inversion of the SWOT error covariance.
At the same time, the overall computational advantage of the diagonal approximation over
the BD deteriorates, due to the necessity to compute the action of the (non-sparse) matrix B
during the optimization process. As a result, the BD solutions are only 1.5–3 times more
computationally expensive, depending on the decorrelation scale of the background error
covariance. We also note that the computational efficiency of the BD approximation can be
potentially improved by computing, in parallel, the action of the diagonal blocks on the
observation vector along the satellite swath.

In the present study, we took into account correlated errors caused by the state of
the atmosphere under the assumption that uncertainty in the atmospheric water content
is partly removed by twin radiometers [6]. In this case, the residual atmospheric error is
approximately two times smaller than Rg. Therefore, its effect on the validity of the BD
approximation would be minor. In that respect, it is worthwhile to note that adding the dry
atmosphere errors (not yet implemented in the JPL model) is likely to expand the above
limitations on the applicability of correlated errors in SSH retrieval.

Another important issue is the significant spectral gap between the mesoscale and
submesoscale SSH variability in the open ocean. Usually, the SSH signature of mesoscale
features is significantly larger than that of submesoscale features, resulting in a SWOT
signal-to-background-noise ratio of β−1 < 0.2, and, therefore, making it difficult to retrieve
submesoscale features from a the mesoscale background. This will be true especially in
the tropics, where the Rossby radius is much larger than in high latitudes. This difficulty
could be relaxed to some extent in coastal regions by means of multi-scale data assimilation
(e.g., [26,27]). In the latter approach, the mesoscale component of the increment δx is
computed first, in order to update the background state under the diagonal approximation
of the observation error covariances. After that, the (submesoscale) model-data misfits are
reduced in magnitude and analyzed using a more sophisticated observation error model.

As an alternative to the linear framework used in the present study, SWOT errors could
be filtered on the basis of neural networks [28,29] and other machine learning methods.
This approach, however, requires the development of an extensive database spanning all
configurations of the SSH fields on the satellite swaths, which is a considerable endeavor
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on its own. In addition, there is still a problem of independent in situ observations needed
for calibration of all of the above-mentioned algorithms. Despite numerous experiments
(e.g., [9,30]) conducted prior to the SWOT mission, more observational and numerical
studies are still required for correct and accurate assessment of the SWOT error covariances.

Finally, our experiments indicate that utilization of the exact JPL model of R keeps
performing better than the diagonal approximation up to the background noise levels of
ν < 8–12 and significant wave heights less than 10 m. Therefore, it is quite important to
further develop numerically efficient approximations to R−1/2 by exploiting symmetries in
the structure of R, which is the subject of our current studies.
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Appendix A. H-Preconditioned Formulation of the Optimization Problem

The observation space solution δx to the least squares problem

δ̃x = argmin
δx

1
2

[
δxTB−1δx + δdTδd

]
(A1)

is given by Equation (7). The condition number of the system matrix HbBHT
b + R can

be improved by representing the background error covariance in the form B = VCV
(Equation (7)). and transforming the observation operator

Hb → R
1
2 HV−1 (A2)

in accordance with the right relationship in Equation (3). Substitution of (A2) into
Equation (7) yields Equation (3):

δx = VCVHT
b R

1
2 (R−

1
2 HbVCVHT

b R−
1
2 + I)−1R−

1
2 (d−Hbxb) =

= VCV(V−1HTR
1
2 )R−

1
2 [R−

1
2 (R

1
2 HV−1)VCV(V−1HTR

1
2 )R−

1
2 + I]−1δd = (A3)

= VCHT(HCHT + I)−1δd

Appendix B. Block-Diagonal Approximation of the SWOT Precision Matrix

Since the SWOT covariance matrix R is symmetric, we look for an approximation to
R−1 in the form of a symmetric block-diagonal nxny × nxny matrix B with ny diagonal blocks
each of size nx × nx. We denote the set of such matrices by Sym(nx), and seek a solution to

B̃ = argmin
B∈Sym(nx)

‖RB− I‖2
F (A4)

Partition R as [R1, ..., Rny ], where each Rk denotes the kth block column of R having the
dimension nxny× nx. Partition the nxny× nxny identity I = [E1, ..., Eny ] in the same manner
and write B = diag[B1, ..., Bny ], where each Bk is a symmetric nx × nx matrix. In this case,
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‖RB− I‖2
F =

ny

∑
k=1
‖RkBk − Ek‖2

F (A5)

Evidently, each term within the sum can be minimized independently. Perform a singular
value decomposition of each Rk = UkDkVT

k for k = 1, . . . , ny. Here, Uk is an nxny × nx

matrix of orthonormal vectors, Dk is a diagonal matrix of singular values, d(k)1 ≥ d(k)2 ≥
. . . ≥ d(k)nx > 0, and Vk is an nx × nx unitary matrix. The individual norms under the sum
in (A5) can then be rewritten as

‖RkBk − Ek‖2
F = ‖UkDkVT

k Bk − Ek‖2
F = ‖UkDkVT

k BkVk − EkVk‖2
F (A6)

= ‖Uk(DkVT
k BkVk −UT

k EkVk) + (I−UkUT
k )EkVk‖2

F

= ‖Dk(V
T
k BkVk)−UT

k EkVk‖2
F + ‖(I−UkUT

k )EkVk‖2
F (A7)

where we have made use of the unitary invariance of the Frobenius norm in (A6) and
the Pythagorean Theorem in (A7). Introduce the substitutions, Mk = VT

k BkVk and
Nk = UT

k EkVk. Noting that the second term in (A7) does not depend on Mk, one may
minimize ‖RkBk − Ek‖2

F, taking into account the symmetry of Bk, simply by minimizing the
first term, ‖DkMk −Nk‖2

F, subject to the equivalent constraint that Mk be symmetric. This,
in turn, can be accomplished via the method of Lagrange multipliers, producing ultimately
an optimal symmetric M̃k having (i, j) elements given explicitly as

m̃(k)
ij =

d(k)i n(k)
ij + d(k)j n(k)

ji

d(k)2i + d(k)2j

where the (i, j) elements of Nk are denoted n(k)
ij .

The optimal (symmetric) solution B̃k is then given by B̃k = VkM̃kVT
k . Significantly,

the solution to the originally posed problem (A4) can be solved in parallel by minimizing
the ny independent subproblems, B̃k = argminBk=BT

k
‖RkBk − Ek‖2

F, as described above.
This can be carried out in parallel with minimal data motion and synchronization. Notice
further that an approximation to the inverse square root of R is available by computing
immediately the (symmetric) square roots of the individual blocks B̃k, for k = 1, . . . , ny so

that, R−
1
2 ≈ diag

(
B̃

1/2
1 , B̃

1/2
2 . . . , B̃

1/2
ny

)
.
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