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Abstract: Coastal communities are susceptible to the damaging effects of land subsidence caused by
both natural and anthropogenic processes. The Greater Houston area, situated along the Gulf Coast
of Texas, has experienced some of the highest rates of subsidence in the United States. Previous work
has extensively analyzed the role of groundwater levels and oil and gas extraction in land subsidence
of the Greater Houston area, but has failed to adequately incorporate other significant contributing
factors. In this research, we aim to fill that information gap by analyzing the individual effects of
subsidence from multiple different processes including groundwater and hydrocarbon extraction
rates with the addition of population growth, total annual precipitation, and total developed area in
terms of impervious surfaces. We perform a full resolution InSAR analysis of the Katy area using
Sentinel-1 data from 2017 to 2022 and compare contributors of subsidence to vertical displacement
rates calculated by GNSS stations through a generalized linear regression analysis. The InSAR results
show up to 1.4 cm/yr of subsidence in multiple areas of Katy, and the generalized linear regression
results suggest that population growth and total developed area are two of the highest contributors
to subsidence in the area.

Keywords: subsidence; InSAR; GNSS; regression; Houston

1. Introduction

Land subsidence is a globally ubiquitous problem for coastal communities, including
the Greater Houston area in Texas (Figure 1). Subsidence in the Greater Houston area is
caused by a combination of natural and anthropogenic factors. Natural processes include
sediment compaction, faulting, and salt migration [1,2]. These processes cause deformation
over time at a steady rate due to their interaction with natural processes that offset subsi-
dence, such as sedimentation and production of new soil through organic decay [3]. The
main anthropogenic processes that are known to cause subsidence include groundwater
withdrawal, oil and gas extraction [1,4], mining activity [5–7], and triggered geological
processes such as reactivation of dormant faults [8]. As a result, the Greater Houston area
has experienced some of the highest rates of subsidence in the United States, with up to
7 cm/yr in the downtown area from 1996–2003 [9] and up to 2 cm/year in the western
suburbs of the city in more recent years [2,10]. This has led to significant challenges for the
region, including increased flood risk, land loss, and infrastructure damage [11–13].

Previous works have focused extensively on the role of groundwater extraction and
regional groundwater levels in subsidence of the Houston area [14–18]. There has also
been analysis of land subsidence correlating with the extensive flooding caused by Hur-
ricane Harvey in 2017 [19] as well as subsidence risk associated with aquifer storage and
recovery [20]. The role of groundwater in land subsidence of the Greater Houston area
has been thoroughly studied and established over the years. The relationship between
subsidence and reactivation of faults and induced fault motion has also been established in
multiple studies [2,21–24].
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(GNSS) data to create a generalized linear regression model and determine the influence 
of various processes on subsidence. 

  

Figure 1. Study area with InSAR boundary and water wells displayed with reference regional faults
and salt domes in the Greater Houston area [2].

We present the first detailed study focusing on factors of subsidence specifically
in the Katy area, a western suburb of Houston where the highest subsidence rate for
the region is currently observed. Furthermore, we determine the most influential of the
many factors of subsidence, and present a map of areas that are the most susceptible to
infrastructure damage.

Recent studies [2,10,25] highlight that the maximum subsidence centers that were
located in Spring and the Woodlands have transferred to the Katy area in the west. As such,
we focus our analysis on the city of Katy due to the high deformation rate.

We use interferometric synthetic aperture radar (InSAR) to determine the rates and
distribution of subsidence in the Katy area. We also combine a variety of datasets such as
groundwater pumping rates, population growth, and global navigation satellite systems
(GNSS) data to create a generalized linear regression model and determine the influence of
various processes on subsidence.

2. Geological Background

Natural processes of subsidence such as faulting and sediment compaction are directly
controlled by the underlying geology of the Greater Houston area. About 200 million years
ago, the supercontinent Pangea was fractured and split into two new supercontinents,
Laurasia and Gondwana. A section of the fracture expanded in Laurasia and created a
large depression that became the Gulf of Mexico basin [26]. As new oceanic crust stretched
and deepened the Gulf of Mexico basin in the middle Jurassic, between 160 and 140 million
years ago, it was intermittently filled with seawater, which led to deposition of a salt unit
up to 4 km in thickness [27,28]. These salt deposits were then overlain by an influx of



Remote Sens. 2023, 15, 4424 3 of 18

terrigenous sediments carried to the gulf by large rivers such as the Mississippi [29]. Uplift
of the Rocky Mountains to the west during the Laramide orogeny, during the Cretaceous
about 70 million years ago, greatly increased the volume of sediment transported to the
Gulf of Mexico. As a result of these processes, the Greater Houston area is underlain by a
series of growth faults that divide the region into structural corridors [30].

Due to these formative processes, the geology of the Greater Houston area is charac-
terized by the presence of Cretaceous sedimentary rocks and unconsolidated sediments.
There are also numerous salt domes and extensive faulting, which includes over 300 active
faults with a surficial expression [31].

The Katy area is located entirely within the Lissie formation [32] that ranges from
Middle Pleistocene to Quaternary in age and is part of a deltaic plain [33]. The formation
consists of sand, silt, clay, and small amounts of gravel [33]. The surface of this unit is
relatively flat with various shallow depressions and small mounds [33], and dips seaward
beneath the Beaumont formation, disconfomably overlying the Pliocene and Early Pleis-
tocene Willis formation [33]. These formations have low cohesion contacts that encourage
growth faulting [34].

3. Methods

In order to gain a more comprehensive understanding of the different factors influenc-
ing subsidence in the Katy area, we use several different datasets (Table 1) and geospatial
analysis techniques in this study. These methods include interferometric synthetic aperture
radar (InSAR) for surface deformation analysis and ArcGIS Pro deep learning modules to
classify and calculate total developed area over time, and to perform generalized linear
regression for determining individual contributions of different variables to subsidence.

Table 1. Data used in this study and sources.

Data Source Purpose Method

Sentinel-1 SLC
Alaska Satellite Facility (ASF) Vertex

https://search.asf.alaska.edu/, accessed
on 17 May 2022

Surface deformation InSAR

Copernicus 30 m DEM
European Space Agency (ESA)

https://spacedata.copernicus.eu/,
accessed on 18 May 2022

Surface deformation InSAR

GNSS Vertical Displacement Data

Global Navigation Satellite Systems
(GNSS)

http://geodesy.unr.edu/, accessed on 11
April 2023

Subsidence rate GLR

Population Records

Texas A & M University Texas Real Estate
Research Center

https://www.recenter.tamu.edu/,
accessed on 20 March 2023

Subsidence contribution GLR

Groundwater Pumping Records
Texas Water Development Board (TWDB)
https://www3.twdb.texas.gov/, accessed

on 20 March 2023
Subsidence contribution GLR

Hydrocarbon Production Records
Railroad Commission of Texas

https://www.rrc.texas.gov/, accessed on
23 March 2023

Subsidence contribution GLR

Precipitation Records
Southern Regional Climate Center (SRCC)
https://www.srcc.tamu.edu/, accessed on

22 March 2023
Subsidence contribution GLR

Landsat 8/9 Level 2 Surface
Reflectance Imagery

United States Geological Survey (USGS)
Earth Explorer

https://earthexplorer.usgs.gov/, accessed
on 20 April 2023

Land-use classification ArcGIS Pro

Landsat Land Cover Classification
Deep Learning Model

ESRI
https://arcg.is/HLKyf, accessed on 23

March 2023
Land-use classification ArcGIS Pro

Total Developed Area Generated using Landsat imagery and
ESRI’s pre-trained model Subsidence contribution GLR

3.1. InSAR

We use the interferometric synthetic aperture radar scientific computing environment
(ISCE) developed by NASA’s Jet Propulsion Lab to process 313 descending track and 151
ascending track Sentinel-1 single-look complex (SLC) images acquired between 2017 and
2022 along with a 30 m Copernicus digital elevation model into a stack of co-registered

https://search.asf.alaska.edu/
https://spacedata.copernicus.eu/
http://geodesy.unr.edu/
https://www.recenter.tamu.edu/
https://www3.twdb.texas.gov/
https://www.rrc.texas.gov/
https://www.srcc.tamu.edu/
https://earthexplorer.usgs.gov/
https://arcg.is/HLKyf


Remote Sens. 2023, 15, 4424 4 of 18

SLCs. We use the Sentinel-1 tops stack processor [35] to co-register the SLCs with 10 nearest
neighbor connections (Figure 2).
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Figure 2. ISCE2 TOPS stack processor workflow. Raw data in the form of Sentinel 1 SLCs, precise 
or restituted orbit files, and a digital elevation model are loaded into the ISCE2 tops stack processor. 
Burst overlaps are extracted from secondary SLCs and geometrical offsets with the reference SLC 
are calculated. ESD method is used to estimate azimuth misregistration followed by calculation of 
range misregistration. Geometrical offsets are calculated between all secondary SLCs and stack 

Figure 2. ISCE2 TOPS stack processor workflow. Raw data in the form of Sentinel 1 SLCs, precise or
restituted orbit files, and a digital elevation model are loaded into the ISCE2 tops stack processor.
Burst overlaps are extracted from secondary SLCs and geometrical offsets with the reference SLC are
calculated. ESD method is used to estimate azimuth misregistration followed by calculation of range
misregistration. Geometrical offsets are calculated between all secondary SLCs and stack reference
using orbit and DEM files, precise co-registration is performed, and bursts are merged back into
full SLCs.

We import the stack of co-registered SLCs into the Miami phase linking in Python
(MiaplPy) software to perform full resolution InSAR processing using non-linear phase
inversion [36–38] (Figure 3). The resulting files are then processed using MintPy [39] for
phase unwrapping error corrections and time series analysis. The implemented InSAR
methodology reduces the systematic bias known commonly as the fading signal [40]
in traditional SBAS processing and integrates both persistent and distributed scatterer
methods to improve InSAR accuracy.
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Figure 3. MiaplPy (red boxes) and MintPy (green boxes) workflow. The stack of co-registered
SLCs and geometry files produced by the Sentinel-1 tops stack processor in ISCE are loaded at
full resolution into MiaplPy. Miaplpy is used for non-linear phase linking followed by generation
and unwrapping of interferograms. The unwrapped interferogram stack is loaded into MintPy for
unwrapping error corrections. The corrected interferograms are then loaded into MiaplPy to convert
the estimated unwrapped timeseries into a range–change time series. The range–change time series
is then imported into MintPy for time series error corrections, velocity estimation, and geocoding.
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The stack of co-registered SLCs and geometry files produced by the Sentinel-1 tops
stack processor in ISCE are loaded at full resolution into MiaplPy. To improve processing,
the SLC stack is divided into patches of 200 × 200 pixels and processed in parallel on
a Beowulf cluster. The patches are arranged into mini-stacks consisting of 10 images
each for phase linking. A full network non-linear phase linking is performed by the
sequential Eigenvalue decomposition-based maximum likelihood of interferometric phase
(EMI) method to estimate the wrapped phase time series [41,42] using the following
equation [36,42]:

(|Γ̂|−1 ◦ Γ̂)ν̂ = ζminν̂ (1)

where Γ̂ is the estimated complex coherence matrix and ◦ represents the Hadamard prod-
uct. The desired solution for this equation is the eigenvector (ν̂) that corresponds to the
minimum eigenvalue (ζ min) [36].

Interferograms are generated from the concatenated patches using a single reference
and unwrapped using the statistical cost, network flow algorithm for phase unwrapping
(SNAPHU) [43].

The resulting stack of unwrapped interferograms is loaded into MintPy and a reference
pixel is chosen in the far field of deformation with high temporal coherence (≥0.85 by
default). Temporal coherence (γ) is calculated to assess the quality of each pixel in the raw
phase time series [39] using the initial phase value (θn) and the estimated phase value (ϕn)
in the following equation [36,44]:

γ =
1

N2 − N

N

∑
n=1

N

∑
k 6=n

eiθnk e−i(ϕn−ϕk) (2)

where N is the number of SAR images in the stack, i represents individual images, and
nk is a wrapped phase interferogram generated using images acquired at time n and k.
Temporal coherence is used as a reliability measure or statistical “goodness of fit” [36,44].
Unwrapping errors are then determined and corrected using the bridging method [39].

We use MiaplPy to perform a least square inversion of the corrected unwrapped inter-
ferogram network and convert the estimated unwrapped time series into a range–change
time series.

The range–change time series is imported into MintPy for time series error corrections
and geocoding. After the data are loaded, we mask out anomalous and unreliable pixels
by generating and applying a mask with a temporal coherence threshold of 0.7. Residual
tropospheric and ionospheric delays are corrected by estimating and removing a quadratic
phase ramp from the reliable pixels in the data [39]. We then correct the data for the topo-
graphic residual [39]. To further improve data quality, we calculate the root mean square
error on the residual phase and use the results to identify and remove noisy acquisitions
through the following equation from [39]:
where i = [1, . . . , N], Ω represents the reliable pixels chosen from temporal coherence mask-
ing, ϕ̂i

resid represents the residual phase at time i, and λ represents the radar wavelength.
The median absolute deviation is calculated and SAR acquisitions with an RMS higher
than three median absolute deviations are considered noisy and excluded from further
processing. Finally, the average velocity is estimated from the time series to determine the
rate of deformation using the following equation [39]:

RMSi =

√√√√ 1
NΩ

∑
p∈Ω

(
ϕ̂i

resid(p)· λ

−4π

)2
(3)

v·ti + c = ϕ̂i
disp·

λ

−4π
(4)
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where v is the velocity, ti represents the time at the ith acquisition, c is an unknown
offset constant, and ϕ̂i

disp is the displacement timeseries. We resample and geocode the
ascending and descending track velocities and subset them to the same spatial resolution
and coverage. We then use the resampled, geocoded velocities to decompose the LOS
velocities into horizontal and vertical displacements.

The LOS velocity can be decomposed into three individual directional components of
displacement. These are north–south (vn), east–west (ve), and vertical (vu) [45,46]:

vlos = [vnsin α− vecosα]sin θ + vucos θ + δlos (5)

where vlos is the line-of-sight displacement velocity, α is the azimuth angle of the satellite
heading, θ is the radar incidence angle at the ground surface, and δlos is measurement
error due to precision errors in satellite orbit geometry, tropospheric delay, topographic
phase contribution, etc. This equation can be applied to both ascending track (vasc

los ) and
descending track (vdesc

los ) results to form an equation with three unknowns for each track:

vasc
los =

(
sin θ sin α)ascvn −

(
sin θ cosα)ascve + cos θascvu + δlos

asc (6)

vdesc
los =

(
sin θ sin α)descvn −

(
sin θ cosα)descve + cos θdescvu + δlos

desc (7)

Assuming negligible contributions from both the measurement error δlos and north–
south displacement component vn, Equations (6) and (7) can be used to determine the dis-
placements in the horizontal (east–west) and vertical directions using Equations (8) and (9),
respectively [47]:

ve =
cos θascvdesc

los − cos θdescvasc
los

sin θasccos αasccos θdesc − cos θascsin θdesccos αdesc
(8)

vu =
sin θdesccos αdescvasc

los − sin θasccos αascvdesc
los

cos θasc sinθdesccos αdesc − sin θasccos αasccos θdesc
(9)

Using the raw decomposed vertical displacement results, we calculate an InSAR
deformation gradient to highlight areas most at risk for infrastructure damage. This is
achieved by applying an inverse distance weighted interpolation to fill in masked out areas
and produce a continuous raster. We apply a Sobel operator on the raster followed by
convolution using a 3 × 3 kernel to smooth the data.

3.2. Land Cover Classification

In order to determine the total developed area in the Katy area, we use Landsat 8/9
Collection 2, level 2 surface reflectance data. A single Landsat image for each year is used
for classification. We limit our search to images acquired between the end of March and
beginning of May with 0–5% scene cloud coverage to avoid classification errors due to the
change in spectral response with seasonal variability. The images are loaded into ArcGIS
Pro, clipped to our study area, and reprojected to Web Mercator (Auxiliary Sphere) to
ensure compatibility with the deep learning model. Each image is processed using ArcGIS
Pro’s classify pixels using deep learning tool with ESRI’s pre-trained deep learning model.
Once all the images are classified, we run the zonal geometry tool on the classified image
for each year to obtain the total area for every land cover class (Figure 4).

These main classes of concern are pasture, herbaceous, and developed areas, defined
by the following characteristics:

• Pasture: “areas of grasses, legumes, or grass-legume mixtures planted for livestock
grazing or the production of seed or hay crops, typically on a perennial cycle. Pas-
ture/hay vegetation accounts for greater than 20% of total vegetation” [48];
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• Herbaceous: “areas dominated by gramanoid or herbaceous vegetation, generally
greater than 80% of total vegetation. These areas are not subject to intensive manage-
ment such as tilling, but can be utilized for grazing” [48].
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Figure 4. (top) Landsat 8 image clipped to study area. (bottom) Clipped Landsat image classified by
land-use/land cover type. Each Landsat image is processed using ArcGIS Pro’s classify pixels using
deep learning tool with ESRI’s pre-trained deep learning model. Once all the images are classified,
we run the zonal geometry tool on the classified image for each year to obtain the total area for every
land cover class.

The developed areas are subdivided into three classes based on the total percentage of
impervious surface [48] as follows:

• Developed, open space: impervious surfaces <20% of total cover;
• Developed, low intensity: impervious surfaces 20–49% of total cover;
• Developed, medium intensity: impervious surfaces 50–79% of total cover;
• Developed, high intensity: impervious surfaces 80–100% of total cover.

3.3. Generalized Linear Regression

We compile the different datasets into a single table sorted by year. For each year, the
table contains a record for population, total groundwater pumped, total precipitation, total
developed area, and GNSS-derived subsidence in the form of cumulative annual average.
This table is then joined to a polygon of our study area and processed using the generalized
linear regression (Spatial Statistics) tool.
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We use GLR to model the relationship between each of the independent/explanatory
variables (population, groundwater pumping, precipitation, and developed area) and the
dependent variable (GNSS-derived subsidence). Each independent variable is accompanied
by a regression coefficient that describes the strength of that variable’s relationship with the
dependent variable. This relationship can be expressed through the following equation [49]:

Y = β0 + β1X1 + β2X2 + . . . βnXn + ε (10)

where Y represents the dependent variable, βn represents the regression coefficients, Xn
represents the independent variables, and ε is a term for random error and/or residuals.
The regression tool calculates the regression coefficients to determine the strength and type
of relationship each explanatory variable has with the independent variable [49].

4. Results

The ascending and descending track line of sight velocity change results can be seen
in Figure 5. The descending track results have a more discontinuous distribution of points
most likely due to descending track SLC images being captured later in the day when
the atmosphere has more pollutants, leading to lack of coherence between images. Low
coherence areas are masked out during InSAR processing for reliability.
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Figure 6. LOS velocity change results corresponding to the key areas labeled A through D in Figure 5
for ascending (top) and descending (bottom) tracks. The majority of the Katy area appears to have a
displacement rate between −0.4 to −0.8 cm/year, some key areas show deformation rates of up to
−1.4 cm/year.

Results from both tracks show movement away from the satellite in the same key areas.
While the majority of the Katy area appears to have a displacement rate between −0.4 to
−0.8 cm/year, some key areas show deformation rates of up to −1.4 cm/year (Figure 6).

The decomposed InSAR line of sight vertical displacement results (Figure 7) show a dis-
tinct circular pattern of downward deformation around the city of Katy, up to 1.4 cm/year
in the key areas mentioned above.

The generalized linear regression results (Figure 8) show the highest correlation
between the GNSS-derived vertical displacement rates and population growth, total de-
veloped area, and groundwater pumping. The R2 values range from 0 to 1 and can be
interpreted simply as the percentage of variation in the dependent variable that can be
explained by each individual independent variable.
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Figure 8. Generalized linear regression results. The bottom left displays scatterplots of variable
relationships, the middle diagonal displays histograms, and the upper right displays R-squared values
between variables. The R2 values range from 0 to 1 and can be interpreted simply as the percentage
of variation in the dependent variable that can be explained by each individual independent variable.
The boxes range in color from low values (yellow) to high values (red) to help visualize the distribution
of R2 values. Negligible values have no background color. The generalized linear regression results
show the highest correlation between the GNSS-derived vertical displacement rates and population
growth, total developed area, and groundwater pumping.

5. Discussion
5.1. Groundwater Withdrawal

Excessive groundwater extraction from the Gulf Coast Aquifer has been determined to
play a leading role in subsidence along the Gulf Coast and the establishment of regulatory
agencies in the form of groundwater conservation districts has been an attempt to address
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the problem. Despite regulation, the amount of groundwater extraction has continued to
rise (Figure 9).
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Although there is evidence that subsidence in historically critical areas has slowed
down or halted [50], and even reversed [10] in some cases, there is still active subsidence in
the Gulf Coast region, with new areas becoming critical subsidence centers that need to be
addressed. For example, in studies conducted over the past decade, the critical subsidence
hotspots in the Houston area were identified in the north and north-east [15,25,51,52]. These
areas included Spring, the Woodlands, and Montgomery County. A report [10] published
by the Harris–Galveston Subsidence District on subsidence with a project timeline of
2019–2021 suggests that the maximum subsidence rate has now moved from the north and
north-east to the Katy area in the west. This trend is consistent with subsidence centers
following population growth [2]. There is a direct correlation between population growth
and groundwater extraction to meet increased demands, and has been documented in
particular for the greater Houston area [53]. This correlation is also evident for the Katy
area (Figure 9). The regression analysis results give groundwater extraction an R2 value of
0.91, suggesting that it is still one of the primary contributors to subsidence in the area.

5.2. Hydrocarbon Withdrawal

Along with excessive groundwater abstraction, the withdrawal of hydrocarbons in
the form of oil and natural gas is considered to be a major contributor to subsidence in the
Greater Houston area [54–57]. The history of subsidence attributed to hydrocarbon extrac-
tion in this area dates back to 1918 in the Goose Creek Oil Field, where up to 11 cm/year
of subsidence was observed [58]. Annual production data for oil and gas in the Katy area
have a high correlation (0.87 and 0.85 R2 values, respectively) with the GNSS vertical
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displacement. Despite a decline in annual oil and gas production since 2014 (Figure 9),
there are numerous oil and gas wells within our study area (Figure 10) that are significant
contributors to subsidence in the area.
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Figure 10. Hydrocarbon wells in the Katy area. There is a wide distribution of both oil and gas
extraction wells ranging from dry holes to active production and plugged wells. There is a high
concentration of oil and gas wells in the east and northeast portion of the study area that correspond
to some of the areas with the highest subsidence rate in Katy.

5.3. Total Developed Area

Developed or urbanized areas are composed of a variety of impervious surfaces that
significantly alter or disrupt local hydrological processes. These surfaces, such as concrete
pavement, roads, and rooftops, hinder the natural infiltration of water into the soil, resulting
in increased surface runoff and reduced groundwater recharge [59–63].

One of the primary effects of impervious surfaces is the alteration of the natural
flow patterns of water. The rapid runoff generated from these surfaces can overwhelm
drainage systems and natural waterways, leading to increased flood risk, particularly
during heavy rainfall events [60,63]. Disruption of the natural ground infiltration process
due to impervious surfaces reduces the amount of water that replenishes aquifers and
increases surface runoff [61,64,65].

Between 2013 and 2022, the amount of developed area has almost doubled in the Katy
area (Figure 9). Furthermore, the majority of this development has replaced pasture and
herbaceous land.

The spatial distribution of these changes is determined using the classified 2013 and
2020 Landsat images with the compute change raster function in ArcGIS Pro (Figure 11).
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Figure 11. Change in land cover from 2013 to 2022. (top) Pixels that were classified as natu-
ral/vegetated cover in 2013 but a different class in 2022. (bottom) Pixels that changed from any other
class to developed area by 2022.

The R2 value for total developed area in the generalized linear regression analysis
is 0.95, making it one of the most influential variables with respect to the GNSS vertical
displacement measurements.

Our findings are supported by previous studies that draw a strong correlation of
increasing amounts of land subsidence in the presence of impervious surfaces [66,67].

5.4. Population

The highest R2 value in the generalized linear regression analysis is 0.99 assigned to
population. A fast population growth rate leads to an increase in factors that directly influ-
ence subsidence such as groundwater extraction and land development to meet demand.
Furthermore, urbanization leads to other changes in water demand based on economic de-
velopment and changes in the efficiency of water use [68]. As such, population growth is the
biggest driving factor in subsidence based on how strongly it influences other contributors
that have a direct physical impact on subsidence.

5.5. Risk to Infrastructure

Infrastructure most susceptible to damage from the effects of subsidence is located
in areas where there is a steep gradient in the line of sight velocity. Differential subsi-
dence has been shown to cause surficial fracturing and faulting [69,70]. We calculate an
InSAR deformation gradient to determine the areas that are most at risk of infrastructure
damage (Figure 12). Previous studies have shown that an InSAR gradient map can be an
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effective tool in determining the areas that require careful monitoring for infrastructure
damage [69,71].
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In summary, in this work, for the first time, full resolution InSAR data are analyzed
to assess and understand subsidence in Katy, a sprawling suburban area located west of
Houston. Population growth, extensive groundwater withdrawal, and land-use changes
associated with constructing new structures are the main drivers of subsidence in this region.
Hydrocarbon production is an important driver in some parts of Texas, but production
of oil and gas is on the decline in the Katy area. Recent studies support the findings of
this work. For example, Younas et al. analyzed data for the fifty-six counties along the
Gulf Coast of Texas, including Katy. They suggested population growth, groundwater
withdrawal, and hydrocarbon extraction as the main drivers [72]. Similarly, our previous
work on statistical analysis of InSAR time series data of the greater Houston area from 2016
to 2020 suggested groundwater pumping to be the primary driver of subsidence in the
Katy area [2].

6. Conclusions

The Greater Houston area has a long history of subsidence primarily driven by ground-
water pumping and hydrocarbon extraction. While groundwater extraction continues to
be one of the main drivers of subsidence, we found the growth of population and expan-
sion of developed areas to be the primary contributors to subsidence in the Katy area.
Between 2013 and 2022, the developed areas in Katy nearly doubled, predominantly re-
placing pasture and herbaceous land, which may have significant implications for future
subsidence patterns.
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It is important to note that although hydrocarbon production has historically influ-
enced subsidence trends in some parts of Texas, the Katy area has experienced a steady
decline in production of oil and gas over the past few years. This has led to a lower
subsidence contribution from hydrocarbon production activities in the Katy area.

Recent studies found that the main hotspot for subsidence in the Greater Houston
area has shifted in recent years from Spring and the Woodlands in the north to Katy in
the west, and our research provides further insight into the rates and spatial distribution
of this deformation. Our InSAR analysis identifies key hotspots of subsidence within the
Katy area with a subsidence rate of up to 1.4 cm/yr from 2017 to 2022. Furthermore, we
determined areas most susceptible to infrastructure damage and development of surficial
fractures and strongly recommend monitoring of critical infrastructure in these areas.

This study highlights the multifaceted nature of subsidence in this region. It is evident
that urban expansion and groundwater extraction demand strategic consideration to mit-
igate the effects of subsidence. Our findings emphasize the need for proactive planning,
sustainable urban development, and comprehensive management strategies to effectively
address the complex issue of subsidence within the Katy area.
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