
Citation: Huang, W.; Li, Z.; He, X.;

Xiang, J.; Du, X.; Liang, X. DRL-Based

Dynamic Destroy Approaches for

Agile-Satellite Mission Planning.

Remote Sens. 2023, 15, 4503. https://

doi.org/10.3390/rs15184503

Academic Editors: Yansheng Li and

Yihua Tan

Received: 13 June 2023

Revised: 27 August 2023

Accepted: 4 September 2023

Published: 13 September 2023

Copyright: © 2023 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

remote sensing

Article

DRL-Based Dynamic Destroy Approaches for Agile-Satellite
Mission Planning
Wei Huang 1,2,3 , Zongwang Li 2,3, Xiaohe He 1,2,3, Junyan Xiang 1,2,3, Xu Du 4 and Xuwen Liang 2,3,*

1 School of Information Science and Technology, ShanghaiTech University, Shanghai 201210, China;
huangwei3@shanghaitech.edu.cn (W.H.); hexh@shanghaitech.edu.cn (X.H.);
xiangjy2022@shanghaitech.edu.cn (J.X.)

2 Innovation Academy for Microsatellites of Chinese Academy of Sciences, Shanghai 201306, China;
lizw@microsate.com

3 University of Chinese Academy of Sciences, Beijing 100039, China
4 Institute of Mathematics HANS, Henan Academy of Science, Zhengzhou 450046, China; duxu@hnas.ac.cn
* Correspondence: 18217631362@163.com

Abstract: Agile-satellite mission planning is a crucial issue in the construction of satellite constellations.
The large scale of remote sensing missions and the high complexity of constraints in agile-satellite
mission planning pose challenges in the search for an optimal solution. To tackle the issue, a dynamic
destroy deep-reinforcement learning (D3RL) model is designed to facilitate subsequent optimization
operations via adaptive destruction to the existing solutions. Specifically, we first perform a clustering
and embedding operation to reconstruct tasks into a clustering graph, thereby improving data
utilization. Secondly, the D3RL model is established based on graph attention networks (GATs) to
enhance the search efficiency for optimal solutions. Moreover, we present two applications of the
D3RL model for intensive scenes: the deep-reinforcement learning (DRL) method and the D3RL-based
large-neighborhood search method (DRL-LNS). Experimental simulation results illustrate that the
D3RL-based approaches outperform the competition in terms of solutions’ quality and computational
efficiency, particularly in more challenging large-scale scenarios. DRL-LNS outperforms ALNS with
an average scheduling rate improvement of approximately 11% in Area instances. In contrast, the
DRL approach performs better in World scenarios, with an average scheduling rate that is around 8%
higher than that of ALNS.

Keywords: agile-satellite mission planning; graph attention network; deep-reinforcement learning;
large-neighborhood search; dynamic destroy

1. Introduction

Agile satellites have potential applications in various fields, such as agricultural
census [1], disaster relief [2], environmental monitoring [3], urban planning [4], mapping [5],
and military reconnaissance. Due to the limited attitude maneuver ability of traditional
earth-observation satellites (EOSs) and various constraints such as the visible time window,
it is challenging for the mission planning system to schedule all tasks within a mission plan-
ning time range, and only one subset can be selected with its observation order planned [6].
Agile satellites possess three-axis maneuverability, which enhances their flexibility and
efficiency in processing remote sensing missions. On the other hand, the larger solution
space of Agile Earth-Observation Satellite (AEOS) mission planning compared with that
of EOSs considerably amplifies the planning complexity [7]. The increasing number of
remote sensing missions and the complexity of agile-satellite control create a challenge
for agile-satellite mission planning [6,7]. Consequently, a reliable and efficient mission
planning system is of great importance to fully utilize the potent observation capabilities of
agile satellites.

Remote Sens. 2023, 15, 4503. https://doi.org/10.3390/rs15184503 https://www.mdpi.com/journal/remotesensing

https://doi.org/10.3390/rs15184503
https://doi.org/10.3390/rs15184503
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/remotesensing
https://www.mdpi.com
https://orcid.org/0009-0001-3724-0855
https://doi.org/10.3390/rs15184503
https://www.mdpi.com/journal/remotesensing
https://www.mdpi.com/article/10.3390/rs15184503?type=check_update&version=1

Remote Sens. 2023, 15, 4503 2 of 20

Since the inception of the first comprehensive study on the AEOS scheduling prob-
lem proposed by Lemaître et al. in 2002 [8], which proved to be NP-hard, the problem
has experienced a significant surge in interest over the past two decades [7]. Initially,
exact algorithms were employed to tackle this problem, focusing on small-scale instances
without considering satellite maneuvering. These algorithms, such as dynamic program-
ming [8], branch and bound [9], and tree search [10], provide an accurate solution for the
given problem.

Owing to the explosion of the solution space, exact methods are impractical for
larger-scale scenarios. Researchers have explored various heuristic and meta-heuristic
algorithm approaches to accelerate the scheduling process of large-scale AEOS scenarios,
including tabu algorithms [11,12], iterated local search algorithms [13], genetic algorithms
(GA) [14,15], and ant colony optimization algorithms [16]. One of the most popular heuris-
tic algorithms for solving Combinatorial Optimization Problems (COPs), including trans-
portation and scheduling problems, is the Large Neighborhood Search (LNS) [17]. The LNS
framework minimizes problem objectives by iteratively removing and inserting solution
segments using “destroy” and “repair” operators [18,19]. The operators of LNS are fixed,
resulting in reduced search efficiency for more complex and dynamic problems [20]. Addi-
tionally, when considering the implementation of large neighborhood-based heuristics, the
computational time required to explore the large neighborhood becomes a primary trade-
off [21]. The Adaptive Large Neighborhood Search (ALNS) algorithm [22,23] improves
upon the LNS algorithm by modifying the algorithmic framework, leading to enhanced
efficiency and the ability to handle larger problem instances, thereby significantly reducing
the search time for solutions. Liu et al. [19] proposed applying ALNS to address the AEOS
scheduling problem and emphasized the time-dependent transition time in terms of prob-
lem features. Additionally, various deep learning strategies have been proposed to enhance
the search efficiency of ALNS approaches. Hottung et al. [24] proposed a deep neural
network model with an attention mechanism for repairing processes. Paulo et al. [25]
proposed combining machine learning and two-opt operators to learn a stochastic policy to
improve the solutions sequentially. Nonetheless, the quality of the solutions provided by
ALNS for large-scale problems is not guaranteed. The performance of ALNS operators is
solely based on past experiences, and in practical scenarios, it may be necessary to preselect
operators based on the specific problem characteristics [21].

These approaches mentioned above have demonstrated satisfactory performance in
small-sized EOS instances [26]. However, in some actual applications, the aforementioned
methods cannot be applied directly and effectively. In agile-satellite mission planning,
attitude maneuvering introduces additional resources and time consumption, leading to
increased constraints on satellite resources and planning time. Heuristic algorithms face
challenges in optimizing resource utilization and solution search speed. As the scale of
agile-satellite mission planning expands, heuristic and meta-heuristic methods struggle
to balance efficiency and solution quality. Accordingly, the solution quality deteriorates
significantly, and there is a risk of failing to find a feasible solution within the specified
time constraints [19].

Another category of approaches for solving planning problems is known as DRL.
Compared with heuristic algorithms, DRL greatly improves the search speed of optimal
solutions and the ability to solve large-scale problems [27]. Recent research has demon-
strated the effectiveness and excellent performance of DRL in solving agile-satellite mission
planning problems: Wang et al. [28] utilized the DRL framework in real-time scheduling of
image satellites by maximizing a Dynamic and Stochastic Knapsack Problem and the total
expected profit objective. Chen et al. [29] proposed an end-to-end framework based on
DRL, which views neural networks as complex heuristic methods constructed by observing
reward signals and following feasible rules, and incorporates RNNs and attention mecha-
nisms. Huang et al. [30] used the deep deterministic policy gradient algorithm (DDPG) to
solve the time-continuous satellite task-scheduling problem and employed graph clustering
in the preprocessing phase. He et al. [31] modeled the agile-satellite scheduling problem

Remote Sens. 2023, 15, 4503 3 of 20

as a finite Markov decision process (MDP) and proposed a learning-based reinforcement
method, which efficiently generates high profits for various scheduling problems using a
Q-network guided by a trained value function. Despite some work being conducted for
DRL-based mission planning, the results of DRL depend on the effectiveness of neural
network model training, and the data utilization rates are relatively low [32]. Compared
with the traditional heuristic algorithm, it is more facile to converge to a non-optimal
solution, and the solution quality of these DRL methods requires further improvement.

In this paper, we propose a satellite mission planning algorithm based on the dynamic
destroy deep-reinforcement learning (D3RL) model, which combines the DRL framework
with the LNS algorithm to enhance adaptability and computation efficiency while main-
taining the quality of the solution. Specifically, a GAT-based D3RL model is designed to
address the challenges of agile-satellite mission planning. First, based on the MDP, the
Proximal Policy Optimization (PPO) algorithm [33] is used to train the D3RL model. Later,
we integrate the DRL strategy with the heuristic algorithm and apply the D3RL model to
the adaptive destruction process of the LNS. Furthermore, the DRL method, which extends
the application scope of the D3RL model, also demonstrates promising outcomes.

The following is a summary of the main contributions:

• A D3RL model is designed for the AEOS scheduling problem, focusing on large-scale
scenarios. The state, action, and reward function is clearly explained in MDP.

• A GAT-based actor-network is established using the target clustering information. The
clustering graph for the satellite mission is built using an adjacency matrix based on
the constraints provided.

• Two application methods for practical agile-satellite mission planning are proposed:
the DRL method and the DRL-LNS method. The DRL method utilizes the D3RL model
for direct inference, while an improved dynamic destroy operator based on the D3RL
model is developed for the DRL-LNS.

• Comparison experiments are implemented between our algorithms and other algo-
rithms (GA, ALNS). The results show that the proposed methods have fewer iteration
times to convergence and a higher task-scheduled rate than other traditional heuristic
algorithms in large-scale scenarios. The DRL-LNS method outperforms other algo-
rithms in Area instances, while the DRL method performs better in World scenarios.

The remaining sections of this study are structured as follows: In Section 2, the
problem description is introduced. In Section 3, the modeling process of the D3RL model is
presented in depth. The effectiveness of the suggested applications are verified through
comparison experiments in Section 4, and the conclusions are drawn in Section 5.

2. Problem Description

AEOS mission planning is an oversubscribed problem which requires a satellite to
schedule more tasks than its capacity. As depicted in Figure 1, agile satellites with three-
axis maneuvering capabilities must schedule a considerable number of remote sensing
missions within a limited time frame. Based on previous research, the general objectives
and constraints of the AEOS schedule problem are widely discussed in Wang et al. [7],
Peng et al. [13], and Liu et al. [19]. Considering the constraints, the objective function of
satellite mission planning is described as maximizing the total profit of all scheduled tasks.
In this section, some problem assumptions and detailed mathematical formulations are set
up for a specific scenario.

2.1. Problem Assumption

The mathematical formulation of agile-satellite mission planning in actual satellite
remote sensing scenarios is highly complex due to the flexibility of satellite maneuvering,
the diversity of satellite loads, and the complexity of remote sensing tasks. In this study, we
focus solely on the task decision component of agile-satellite mission planning. To make
this feasible, we make some reasonable simplifications and assumptions based on actual
engineering backgrounds [34]:

Remote Sens. 2023, 15, 4503 4 of 20

• Each task can only be executed once, and the profit can be obtained when the task is
scheduled.

• The execution time windows of any two scheduled tasks cannot overlap and must be
within the visible time window.

• Satellite storage, power constraints, and image download processes are not considered.
Resource problems are not the key factor for short-term mission planning [6].

• Most of the tasks are regular with equal profit.
• Only the single-orbit scenario of a single satellite is taken into account.

Figure 1. Agile satellite observation. Agile satellites with three-axis maneuvering capabilities must
schedule a considerable number of remote sensing missions within a limited time frame. Targets
beyond the observation range remain undetectable and are therefore considered invalid.

Remark 1. This paper primarily addresses the normalized monitoring scenario of remote sensing
satellites, where regular tasks constitute the majority of actual satellite remote sensing observation
tasks, with only a small number of emergency tasks. In this context, the profit differences between
regular tasks are not apparent, making the direct assignment of task priority based on profit, as
some current studies do, unreasonable. To assess the efficiency of regular task planning, this paper
introduces the task scheduled rate, which is defined in Section 4.3. Future research will delve into a
detailed analysis of the profit function.

2.2. Variables

Define the task set: R = {r1, r2, . . . , rn}, where ri is the i-th task and n is the total
number of target points. X = {x1, x2, . . . , xn} is the n-dimensional decision vector, where
xi ∈ {0, 1}, i ∈ {1, 2, . . . , n}. The task is selected to be completed when xi = 1. [ws

i , we
i] and

[ts
i , te

i] can be calculated using the known satellite orbit and target information. Within the
selected visible time window [ws

i , we
i], the satellite has the capability to detect targets either

through maneuvers or directly within the field of view. The task-execution time window[
ts
i , te

i
]

refers to the specific time during which a satellite task is executed, such as the period
when an optical observation satellite takes photographs.

2.3. Mathematical Formulation
2.3.1. Constraint Conditions

1. Conflict constraint:
A satellite can only perform one mission per observation. There is no crossover
between any two tasks, as the optical sensor cannot perform two observation tasks at

Remote Sens. 2023, 15, 4503 5 of 20

the same time. ∀u, v ∈ {1, 2, . . . , n} and u 6= v:

[ts
u, te

u] ∩ [ts
v, te

v] = ∅ (1)

2. Task execution uniqueness constraint:
In this paper, we do not consider repetitive tasks. Each task can just be observed at
most once in all satellite observation periods:

xi =
|OWi |

∑
j=1

xj
i ≤ 1, ∀ri ∈ R (2)

OWi is the execution time window set for task ri. We define the xj
i as a binary decision

variable indicating whether the j-th excution time window of OWi associated with
task ri is selected or not. It means that for each task we can choose only one execution
time window to fulfill its observation.

3. Satellite-attitude maneuver time constraint:
The actual observation time of the task ru must be within a visual time window of
the task:

ws
u ≤ ts

u ≤ te
u ≤ we

u (3)

te
u = ts

u + td
u (4)

Then, we can obtain the satellite-attitude maneuver time constraint between ru and rv:

te
u + tr

uv ≤ ts
v (5)

The transition time tr
uv, as defined in [19], is approximated using a piecewise linear

function. The time interval between two scheduled tasks must exceed the transi-
tion time required for the satellite attitude maneuver. In the subsequent specific
experiments, the transition time is set as in [35].

2.3.2. Optimization Objective

The specific observation time selection of the satellite is simplified, and the intermedi-
ate of the visible time window of the mission is temporarily set as the optimal observation
time [19]. This is attributed to the characteristics of agile-satellite observation, where the
optimal imaging quality and observation angle can be achieved through observation at the
intermediate of the visible time window of the mission.

If ts
i is the dynamic selected, this introduces a joint problem involving mission planning

and optimal control, which will be explored in future research. Then, the agile-satellite
mission planning problem will become a constraint satisfaction integer programming
problem. To maximize the total observation profit, more tasks will be scheduled. Hence,
the objective function f is designed to maximize the total profit by the sum of scheduled
tasks. In this paper, we only consider the equal profit task, which means wi = 1.

f = max(
n

∑
i=1

xi
n

wi) (6)

Remark 2. Agile-satellite mission planning can be described as a multi-objective optimization
problem which needs to determine the observation time, observation order, and optimizing satellite
control at the same time [36]. In this study, we focus on addressing the decision-making problem of
the observation order for large-scale satellite missions.

Remote Sens. 2023, 15, 4503 6 of 20

3. Modeling Process

In this section, we provide a detailed explanation of the specific modeling process
employed by the D3RL model. This encompasses the creation of the clustering graph, a
description of the GAT network architecture, and the formulation of the MDP.

3.1. Clustering Graph

For intensive large-scale observation, clustering operations can effectively reduce the
scale of the solution search space, decrease task conflicts, and improve problem-solving
efficiency. This paper focuses on leveraging clustering information to generate the cluster-
ing graph and enhance the search speed for the optimal solution. The clustering model
for the satellite mission is built using graph theory in accordance with the provided con-
straints [12,37]:

we
v − ws

u ≥ ∆T (7)

|θu − θv| ≤ ∆θ (8)

Equations (7) and (8) are the detail constraints of the time window and slewing angle
in the clustering process, where ∆T and ∆θ are the specific observation time and angle
limit thresholds, respectively. Whenever two adjacent tasks, u and v, meet the constraint
conditions, the points u and v are connected by the edge euv.

The model consists of a graph, G = 〈V, E〉, comprising a set of vertices, V, and a set of
edges, E. The vertices, V(G), represent the observation tasks. The edges, E(G), represent
the connecting lines between points that satisfy the clustering constraints. All edges that
satisfy the clustering constraints are included in E(G). This way, the undirected graph
model, G = 〈V, E〉, can be utilized to represent the clustering scenario of the satellite among
the observable original tasks. After the embedding operation described in Section 3.3.1,
the original tasks r1, r2, . . . , rn are transformed into a set of vertices V = {v1, v2, . . . , vn} in
the graph. Each vertex vi represents one task in the original task set. If a pair of vertices
(Vu, Vv) ∈ E(G), then the matrix entry Auv is assigned a value of 1; otherwise, Auv is set to
0. Below are the steps to construct the task cluster graph:

1. Iterate through all tasks in V(G) and construct an n× n adjacency matrix A initialized
with zeros. If the two original tasks u and v satisfy the time window constraint, set
Auv to one. This process generates the edge, (Vu, Vv), and eventually constructs the
graph G1.

2. Examine each edge in G1 and remove it if its two endpoints do not meet the roll angle
constraint. This results in a task clustering graph G2.

3. The clustering algorithm concludes, yielding the final clustering graph G and its
corresponding n× n adjacency matrix A.

3.2. GAT-Based Network
3.2.1. Graph Attention Layer

The clustering graph is described as a large-scale sparse matrix. The neighboring
nodes typically possess two characteristics: geographical proximity and alignment within
a satellite’s visual strip, which are determined using the observation mode of satellites.
GAT serves as an effective approach for processing clustering graph data. In comparison
with GCN, GAT offers higher computational efficiency and enables dynamic adjustment
of node importance weights. As shown in Figure 2, each graph attention layer consists
of the attention and the aggregation operations [38]. Task features have been embedded
based on the clustering graph G = 〈V, E〉. The input to our layer is a set of graph nodes
V = {v1, v2, . . . , vn}, vi ∈ RF, where n is the number of nodes and F is the number of
features in each node; it is described in Section 3.3.1. After the processing of the graph
attention layer, we can obtain an output vector V′ = {v′1, v′2, . . . , v′n}, v′i ∈ RF′ .

Remote Sens. 2023, 15, 4503 7 of 20

W W

softmax

concat/avg

Figure 2. The process of attention and aggregation operation in graph attention layer.

In the attention operation, a weight matrix, W ∈ RF′×F, is first performed on the input.
Then, we can calculate the attention parameter:

αij =
exp(LeakyReLU(aT [Wvi ‖Wvj]))

∑vk∈Nvi
exp(LeakyReLU(aT [Wvi ‖Wvk]))

(9)

where ‖ represents the concatenation operation and (·)T represents the transpose of a vector,
Nvi is the one-hop neighborhood of node vi, a is the mapping vector, and LeakyReLU is a
nonlinear activation.

The purpose of the aggregation operation is to aggregate the embedding vector ac-
cording to the attention parameters. The multi-head attention mechanism is applied to
enable node embeddings to stably represent the node vi, resulting in the following output:

v′i =‖K
k=1 σ(∑

vj∈Nvi

αk
ijW

kvj) (10)

where the weight matrix of transformation Wk and attention coefficient αk
ij are computed

using the k-th independent attention mechanism among a total of K mechanisms. Subse-
quently, a nonlinearity σ is applied.

3.2.2. GAT-Based Actor-Network

The architecture of GAT-based actor-networks is illustrated in Figure 3. The input and
output of the actor-network are described in detail in Section 3.3. To extract node features,
we employ a multi-layer GAT approach. Initially, three graph attention layers are utilized
to form a GAT block. For each block, the structure of GAT→GAT→GAT facilitates spatial
exploration and expands the acceptance field to the current solution. Subsequently, the GAT
block is repeated N times to decrease the graph’s density. The value of N is dependent on
the node density of the actual graph, and a larger value can be selected for denser graphs.

A Gated Recurrent Unit (GRU) is employed to integrate information from historical
solutions [39]. At each iteration, the hidden state ht helps calculate the output as a multi-
plicative adaptive weight in the final layer. The configuration of network layers and GRU
is informed by the approach outlined in [40].

Remote Sens. 2023, 15, 4503 8 of 20

Embedding GRU

GAT

GAT

GAT

GAT

N (Block)

Output

Input

tanh

Figure 3. Actor-network. The attention mechanism is incorporated into the network architecture,
where the initial input tasks are embedded as graph nodes. These graph nodes undergo multiple
layers of GAT networks to extract node features, ultimately obtaining the set of nodes to be destroyed
in the next iteration.

The output of the last layer in the actor-network represents the probability of removing
each node, and it is obtained using a softmax function. We sampled nodes based on the
normalized removal probability. The total count of selected removal action nodes M is
determined according to Equation (11):

M =
⌊

n× rd
⌋

(11)

In the above formula, n denotes the initial total number of task nodes, and rd is the
preset destroy rate, which ranges from 0 to 1. We sampled the top M nodes with the highest
removal probability to create a set of removal action nodes:

Ω = {Ω1, Ω2, . . . , ΩM} (12)

The hidden state ht of GRU and the ELU function are utilized to generate two node
coefficients, βi, and γi, for each node i, which are then used to construct a sampling prob-
ability distribution Beta(βi, γi). The corresponding removing coefficients were sampled
from Beta(βi, γi) for each removing action node:

Λ = {Λ1, Λ2, . . . , ΛM} (13)

The concept of Ω and Λ constitute two essential parameters in the “destroy” process,
and their specific usage is elaborated on in Section 3.3.2.

3.3. Markov Decision Process Modeling

The interaction between agent and environment is depicted in Figure 4. Firstly, the
state vector is embedded based on the clustering graph discussed in Section 3.1. Subse-
quently, the embedded initial state is fed into the actor-network to obtain the destroy nodes
and the coefficients of destroy range of the current solution. Once the environment receives
an action from the agent, a new state and the corresponding reward of this action are

Remote Sens. 2023, 15, 4503 9 of 20

calculated. The agent repeatedly outputs actions until the terminal state is reached. The
state, action, and reward of the MDP are introduced in this section.

Reward

State

Action
AgentEnvironment

Constraints

Actor Network

Critic Network

Discounted

Reward

Figure 4. Agent–environment interaction in AEOS.

3.3.1. State Space

In order to facilitate the extraction of node features by the graph neural network, the
task information (td, ts, te, Roll, Pitch) and environmental information (P, T) are embedded
into a seven-dimensional vector, as shown in the input and embedding of Figure 3:

si =
[
td
i , ts

i , te
i , Rolli, Pitchi, Pi, Ti

]
(14)

where, in Equation (14), the first three dimensions, td, ts, and te, are defined in Table 1,
representing the task-execution time, task-start execution time, and task-end execution
time. Rolli and Pitchi represent the roll and pitch attitude angles observed by the satellite
to the task node i, respectively [35]. st

i denotes the embedded vector in the t-th iteration,
while Pi and Ti represent the cumulative profit and execution time, respectively, of the
scheduled list corresponding to the t-th iteration. td, Roll, and Pitch are normalized by
the corresponding maximum value in the task node; ts and te are normalized by the total
planning time; and P and T are normalized by the total cumulative value of the scheduling
process.

Table 1. Summary of variables and notation.

Name Description

ri The i-th task
xi A binary variable representing whether task ri is selected

[ws
i , we

i] The selected visible time window for task ri
[ts

i , te
i] The selected execution time window for task ri, which is a subset of OWi

td
i Execution time for task ri

wi The profit for task ri
tr
ij Satellite attitude maneuver time between tasks ri and rj

θi Satellite observation angle for task ri
OWi The set of task-execution time windows for task ri

vi The i-th embedded graph node
W The weight matrix of transformation

Rolli Roll attitude angle observed by the satellite to the task node i
Pitchi Pitch attitude angle observed by the satellite to the task node i

St The state in t-th iteration
At The action in t-th iteration
Ω The set of removing action nodes
Λ The set of corresponding removing coefficients
Gt The reward function
R The discounted cumulative reward

Therefore, the state space is defined as a vector containing task information, scheduled
task lists, and environmental information:

St = [st
1, st

2, . . . , st
n]

T (15)

Remote Sens. 2023, 15, 4503 10 of 20

St represents the current state in the t-th iteration. As shown in Equation (15) and
Figure 3, each element of St represents a scheduled embedding task vector st

i .

3.3.2. Action Space

The actor-network will generate action destroy nodes Ω and destroy coefficients Λ.
Then, the tasks will be rescheduled when the removeing nodes are calculated according to
action destroy nodes and the coefficients. The architecture of the actor-network is depicted
in Figure 3. Graph feature extraction was conducted using a multi-layer GAT network.
Specific network parameters refer to [40].

At = (Ωt, Λt) (16)

In the t-th iteration, At represents the action, Ωt represents the removing action nodes,
and Λt is the corresponding removing coefficients.

For the n-dimensional decision vector in the t-th iteration, Xt = {xt
1, xt

2, . . . , xt
n}. If the

scheduled embedding task vector st
i is removed from St−1, the corresponding value xt

i will
be set to 0.

According to the defined state and action space, the state transitions with a given
action by adhering to the dynamic process:

1. Initialize all the parameters, given a feasible initial decision vector Xt and state St.
2. “Destroy” process: We determined the final set of removal points RemovingNodest

using Ωt and Λt. The length of the removal point set, denoted as M′, is also influenced
by the predetermined destroy rate rd′ . Similar to Equation (11), the computation
process is as follows:

M′ =

⌊
n× rd′

M

⌋
×M (17)

where both n and M are defined in Equation (11). Taking the example of destroy action
node Ωt

i , we performed sampling among its neighboring nodes (including the Ωt
i).

The sampling space is defined as the set of NeighborNodesi, with the sampling rate
set to Λt

i , and the number of sampled points set to the product of |NeighborNodesi|
and Λt

i . The RemovingNodest is generated by sampling M′ points from the entire set
of destroy points. According to the RemovingNodest, the corresponding value of Xt is
set to 0, and the corresponding nodes are removed in St.

3. “Repair” process: The repair process involves re-planning, where the repair operator
TimeInsert is employed to include task nodes that adhere to the constraints in St,
setting the corresponding decision variables in Xt to one, thereby generating a new
state St+1. TimeInsert, which is a designed repair operator, will improve the destroyed
solution by inserting new tasks into it, following the time sequence of the task’s
arrival [19].

3.3.3. Reward

Designing a better reward function can expedite the convergence of the model training
process. In this study, we evaluate the efficiency of the dynamic destroy operator by
considering the total profit of the scheduled tasks, denoted as f , as defined in Equation (6).

Gt = f (TimeInsert(Xt))− f (TimeInsert(Xt−1))

R = {G1, G2, . . . , Gt, . . . }
(18)

where R is the discounted cumulative reward, and the reward function Gt is set as the
difference in the total profit.

Remote Sens. 2023, 15, 4503 11 of 20

3.3.4. Training Process

The model was trained using the PPO algorithm framework [33], which is easily tuned
and easy to implement. The loss function of PPO is defined as [40]:

Lclip(θ) = Et[min(rt(θ)advt, clip(rt(θ), 1− εclip, 1 + εclip)advt)]

Lv f (θ) = MSE(φθ(St), R)

Lt(θ) = Et[L
clip
i (θ)− c1 ∗ Lv f

t (θ) + c2 ∗ S[πθ](St)]

(19)

where advt is the advantage function, rt(θ) =
πθ(At |St)

πθ old(At |St)
denotes the probability ratio, and

φθ(St) is the state-value function. R is the discounted cumulative reward. c1 and c2 are
hyperparameters and S[πθ] is an entropy bonus of πθ . The critic network is built by the
form of three fully connected layers, whose input is the hidden state ht of the actor-network.
The training process is illustrated in Algorithm 1.

Algorithm 1 Training process based on PPO

Input: Tasks list
Output: The new mission planned index list

1: Initialize policy params θ
2: for scene in training Scenarios do
3: Import a new scene
4: for Iteration = 1, 2, . . . , I do
5: Parameters initialization
6: for t = 1, 2, . . . , tm do
7: Get action At from policy θold
8: Update new state St+1
9: Calculate instant reward Rt

10: Put [St, At, Rt, St+1] into memory buffer B
11: Calculate advantage estimates adv1, adv2, . . . , advtm

12: end for
13: for epoch = 1, 2, . . . , K do
14: Sample a random minibatch of N transitions [St, At, Rt, St+1] from B
15: Computing training loss as in (19)
16: Update θ with stochastic gradient ascent
17: θold ← θ
18: end for
19: end for
20: end for

3.4. Applications

The trained D3RL model focuses on the destroy process of the existing solution and
needs to be complemented with a repair process to obtain a viable solution for agile-satellite
mission planning. To address this, we designed two applications of the D3RL model: the
DRL method and the DRL-LNS method. The DRL method utilizes the D3RL model for
inference directly, then use the TimeInsert operator to repair and obtain a feasible solution.
In the DRL-LNS method, we integrated the D3RL model as a dynamic destroy operator
within the LNS framework, which finds the local optimal solution via heuristic iteration.
The specific steps of the DRL-LNS approach are shown in Algorithm 2.

Remote Sens. 2023, 15, 4503 12 of 20

Algorithm 2 DRL-LNS

Input: Testing Scenarios
Output: Average(X)

1: for scene in Testing Scenarios do
2: Import test Scenario
3: Initial dynamic removal, repair operators D, Random
4: Initial solution: x = Initial(x0)
5: repeat
6: xi = Random(D(x))
7: if accept xi then
8: x = xi

9: end if
10: if f (xi) < f (x∗) then
11: x∗ = xi

12: end if
13: until Terminal condition is met
14: Put x∗ into X
15: end for

Remark 3. The implementation of the DRL-LNS algorithm can be divided into four steps:

1. Parameter initialization. The initial solution, denoted as x0, can be arbitrary. The initialization
function, Initial, checks the initial solution for compliance with the rules and reorders it
according to the constraints to obtain a feasible initial solution.

2. Destruction and repair process. Tasks are first removed from the current solution, and then
new tasks are added to generate a new solution. The repair process employs a Random repair
operator, which randomly samples from the set of pending tasks when inserting new tasks. The
destruction process utilizes the D3RL-based destruction operator, denoted as D.

3. Parameter update. The obtained solution is evaluated, and if the reward of the new current
solution improves, parameter updates are performed. We mainly use simulated annealing for
optimal solution selection.

4. Termination criterion determination. If the termination criterion is met, the algorithm ends
and returns to the optimal value. If not, the iteration continues to search for solutions.

4. Experimental Simulation
4.1. Simulation Scenarios

We obtained the original AEOS mission targets dataset from [35]. As shown in Table 2,
the targets were generated over two geographical regions: Area and World. Area targets
are defined by the area corresponding to 3◦N–53◦N and 74◦E–133◦E, and the World targets
are located randomly in a region of 65◦S–65◦N and 180◦W–180◦E. Regarding the observed
target data, there is currently no reliable publicly available real dataset. It is worth noting
that the majority of the literature also uses simulated generated targets, often employing
random generation. Maintaining generality, we have aligned the simulation scenarios with
theirs [18,19,30,31].

Table 2. Simulation scenarios.

Scenario Region Num of Points Instance Sizes Training Scenarios Test Scenarios

Area 3◦N–53◦N, 74◦E–133◦E 400 50, 100, 150, 200 20 10
World 65◦S–65◦N, 180◦W–180◦E 600 100, 200, 300, 400 20 10

The existing 1000 original point targets (Area: 400, World: 600) were sampled multiple
times and divided into different scenarios of various sizes. A total of 50 to 200 Area tasks
and 100 to 400 World tasks were sampled to simulate practical users’ requests. We sampled
randomly to generate 20 training scenarios and 10 test scenarios for each instance size.

Remote Sens. 2023, 15, 4503 13 of 20

4.1.1. Task Scheduled Rate

In scenarios involving intensive regular tasks, the primary evaluation metric for
planning is the number of scheduled tasks. Given that there is no significant difference in
the profit of regular tasks, the task scheduled rate serves as a more accurate reflection of the
algorithms’ planning efficiency. Emergency tasks, on the other hand, can be given priority
and scheduled in advance to ensure their timely execution. The calculation formula of the
task scheduled rate is as follows:

rs =
nScheduled

NTotal
(20)

where nScheduled is the number of tasks that have been scheduled, and Ntotal is the total
number of tasks waiting for planning.

4.1.2. Algorithm Parameters

We chose a task at random to serve as the initial solution first, fixed it using the
TimeInsert repair operator, and then derived the repaired solution, which was organized
chronologically. All experiments were implemented by Pytorch in Python and compared
on a computer with Intel Core i5-12500H CPU @ 4.50 GHz, 16 GB RAM. Parameters of the
training model are shown in Table 3.

Table 3. Training parameters.

Parameters Value

Learning rate 0.001
Discount factor γ 0.99
The clip rate εclip 0.2

Batch size 16
Number of iterations in each scene 3000

Number of training scenes 20
Number of epoch K 2

Destroy rate 0.2
Initial temperature 100
Final temperature 1

4.2. Training Performance
Training Comparison

The training process of D3RL model is essentially similar to solving a local optimal
solution using the heuristic algorithm [20,22]. Each iteration is a dynamic destruction of
the existing local optimal solution, and the TimeInsert operator is used for a repair.

Figure 5 illustrates that the agent can continue to achieve an improved task scheduling
rate as the number of iterations increases, and with sufficient iterations, the training process
converges. In Figure 5a, the scheduled rate gradually decreases as the number of tasks in
the intensive Area scenario increases. The convergence of each scenario is influenced by
the specific difficulty of task planning, which is the primary reason for the reduction in the
scheduled rate. The more challenging the task planning, the more iterations are required
for convergence, and it does not simply correlate positively with the number of targets in
the region.

Figure 5b exhibits a similar trend to the Area scenario. Due to the increase in the
number of tasks and the expansion of the coverage area, the model for the “World” scenario
generally approaches convergence after 4000 iterations, which is considerably more than
the “Area” scenario. Additionally, in the seed sensitivity experiments, it was observed
that the “World” scenario is much more sensitive to the random seed settings compared
with the “Area” scenario, particularly for the instance with a task count of 100. This
sensitivity is particularly pronounced for the instance with 100 tasks, where the planning
rate notably increases for two specific random seed settings. As a result, the average task

Remote Sens. 2023, 15, 4503 14 of 20

planning rate for instance 100 is considerably higher than instances with larger numbers
of tasks. For subsequent validation experiments, we employed a consistent random seed
across scenarios.

(a) (b)

Figure 5. Training curves for the Area and World scenarios. The two plots show the average
scheduled rate of Area and World instances, respectively. The results were obtained by conducting
experiments with 5 different random seeds. (a) Training process for Area targets. (b) Training process
for World targets.

4.3. Testing Performance
4.3.1. Model Generalization Test

We transferred a trained model to other instances in the training dataset. Table 4
and Figure 6 demonstrate the generalization ability of a well-trained agent in different
instances of training. This is mostly attributed to the similarities of the planning tasks and
the significant generalization ability of the D3RL model.

(a) (b)

Figure 6. Optimization scheduled rate performance contrast. Boxplot illustrating comparison based
on 10 different instances. Each box represents the interquartile range (IQR) of the data distribution,
with the median marked by a horizontal line inside the box. Triangle markers indicate the mean
values of the test results. (a) Scene: Area. (b) Scene: World.

Initially, a scenario was randomly sampled from the training set for each instance size
to train the scheduling network. Afterwards, the trained network was utilized to process
the remaining training instances in the set (the results are denoted as trained). This was
primarily performed to assess the model’s generalization ability. Models that perform well
in unknown training scenarios demonstrate reduced reliance on specific data and require
a smaller training set. The variable train_num in Table 4 represents the average training

Remote Sens. 2023, 15, 4503 15 of 20

results obtained from 10 unknown scenes in the training set. The training process consisted
of a specific number of iterations denoted by the variable num, which can take three values:
50, 500, and 5000. As shown in the training curves of Figure 5, the training process was
considered to be completely convergent when iteration times exceeded 5000.

Table 4. Comparison of model generalization on train set.

Methods
Area World

50 100 150 200 100 200 300 400

train_50 0.5080 0.3460 0.3387 0.3070 0.6160 0.5980 0.6020 0.6215
train_500 0.5120 0.3660 0.3493 0.3230 0.6560 0.6080 0.6120 0.6280

train_5000 0.5360 0.3920 0.3827 0.3600 0.7020 0.6680 0.6667 0.6740
trained 0.5280 0.3860 0.3600 0.3310 0.6720 0.6280 0.6240 0.6470

Metric is scheduled rate.

In the Area data (Figure 6a), the scheduled rate obtained through model inference
(trained) can even reach 91.9% to 98.5% of model converged (train_5000). Similarly, in the
World instances (Figure 6b), the scheduled rate can range from 93.3% to 96%. In the World
instances depicted in Figure 6b, the results of direct model inference (trained) exhibit a
similar pattern to the Area instances. However, the task scheduled rate does not simply
decrease as the number of tasks increases. Interestingly, when the observed targets increase
from 300 to 400, the task scheduled rate actually improves. This phenomenon can be
attributed to the fact that the observed targets in the World instances are extremely sparse
compared with the targets in the Area instances. Increasing the number of observable
target points can enhance the task scheduled rate in scenarios where there are relatively
few target points to begin with. In the results depicted in Figure 6, for the train_num
results, it is evident that as the instance size increases, the height of the boxes consistently
decreases. With 50 iterations of training, the model’s training remains incomplete, resulting
in a more dispersed distribution of outcomes. This corresponds to the training process.
Within the Area scenario results, the results of trained also become more concentrated
with the enlargement of the instance size. However, this characteristic is not observed
within the World scenario. This discrepancy could potentially be attributed to the larger
geographical scope and the significant variations in the distribution of target points in the
World scenario.

We have conducted some ‘transfer’ experiments (i.e., trained the model on the World,
then evaluated it on some Area setups) and found that the model’s generalization perfor-
mance between “Area” and “World” scenarios is not satisfactory. The inference results of
the well-trained model in “Area” were slightly lower than training a new model for the
“World” scenario 500 times. This might be attributed to the significant differences between
“Area” and “World” scenarios and the scenario dependence of our DRL model.

4.3.2. Comparison of Algorithms Test

Table 5 and Figure 7 present the performance of different optimization algorithms in
terms of the task scheduled rate across 10 test scenarios for each instance size. The DRL
application method is denoted as DRL. In the comparison of the DRL-LNS, GA [41], and
ALNS [42] algorithms, the number of iteration times was set to 1500. Agile-satellite mission
planning problem is NP-hard. Our goal was not to obtain the optimal solution, but rather
to achieve a satisfactory feasible solution within the constrained resources and time, which
differs significantly from ground-based optimization scenarios. We chose 1500 iterations as
an economically viable solution, considering the trade-off between solution quality and
computational cost. The specific value of 1500 iterations may vary based on the specific
context. It was observed that the GA algorithm failed to find a feasible solution when the
number of planning tasks exceeded 200. In contrast, the other comparison algorithms,
including DRL-LNS and ALNS, successfully completed the planning process. As a result,
the task scheduled rate of the GA algorithm exceeding 200 was 0.

Remote Sens. 2023, 15, 4503 16 of 20

50 100 150 200
�
��
�������

0.0

0.1

0.2

0.3

0.4

0.5

��
��

�	
��

���
�

Area_GA
Area_ALNS
Area_DRL-LNS
Area_DRL

(a)

100 200 300 400
�
��
�������

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

��
��

�	
��

���
�

World_GA
World_ALNS
World_DRL-LNS
World_DRL

(b)

Figure 7. Optimization Scheduled rate performance contrast. (a) Scene: Area. (b) Scene: World.

Table 5. Comparison of the iteration times.

Scenarios
Average Scheduled Rate 1

GA ALNS DRL-LNS DRL

Area_50 0.2640 0.4680 0.5000 0.4080
Area_100 0.2400 0.3760 0.4020 0.3640
Area_150 0.2080 0.3267 0.3747 0.3107
Area_200 0.0000 0.3010 0.3520 0.2840

World_100 0.6000 0.6620 0.7000 0.7020
World_200 0.0000 0.6150 0.6400 0.6660
World_300 0.0000 0.6093 0.6320 0.6640
World_400 0.0000 0.5795 0.5940 0.6350

1 Iteration times for GA/ALNS/DRL-LNS was 1500.

In Figure 7a, the task scheduled rate of our DRL-LNS algorithm is, on average, 11.35%
higher than those of the ALNS for Area instances. With the increase in instance size, the gap
between ALNS and DRL-LNS increases and becomes the highest at 200, which is around
17%. It can be found that the task scheduled rate of DRL method is slightly lower (average
6.6%) than that of ALNS algorithm, which is consistent with the results obtained by the
current main neural network learning algorithm [28,30,31]. From the above results, it can be
found that the combination of the GAT-based model and heuristic algorithm brings about
a notable enhancement in the computational efficiency of the algorithm. This improvement
is particularly prominent when dealing with large-scale complex constraint problems that
involve dense targets in local regions. At the same time, due to the increase in tasks that
cannot be completed in the over-intensive scenarios, the scheduled rate declines with the
increase in the number of Area missions.

Compared with the Area scenarios, the World instances involve planning more tasks,
but the actual task distribution may be much sparser than the regional scope. As shown
in Figure 7b, the DRL method achieved the best performance on the World instances, in
which the task scheduled rate of the DRL approach was, on average, 8.2% higher than
those of the ALNS. In large-scale AEOS task scheduling problems, heuristic algorithms are
limited by time and resource constraints and can only converge to suboptimal solutions.
As the scale and complexity of the problem increase, along with tighter time and resource
constraints, the quality of the solutions obtained through a heuristic search deteriorates,
leaving room for improvement in solution quality for the DRL approach. Neural networks
have an advantage in handling large-scale data. The use of the D3RL model enhances the
algorithm’s adaptability to highly complex problems, and the GAT network allows for

Remote Sens. 2023, 15, 4503 17 of 20

faster extraction of relevant features from the data. These enable the DRL method to obtain
satisfactory suboptimal solutions in a single inference.

The results indicate that the D3RL-based approaches (DRL-LNS, DRL method) have
faster convergence speeds and higher solution quality than the traditional heuristic algo-
rithms (GA and ALNS). And the DRL-LNS is more suited to scenarios with regionally
dense targets on a small scale (less than 200), while the DRL method is better-suited to
scenarios with large-scale global targets (more than 200). Figure 8 displays a detailed
comparison of the algorithm iteration curves for both Area and World instances.

(a) (b)

(c) (d)

(e) (f)

Figure 8. Cont.

Remote Sens. 2023, 15, 4503 18 of 20

(g) (h)

Figure 8. Performance comparison of algorithms with 1500 iterations. Each instance size evaluated
across 10 test scenarios. Note: The GA algorithm fails to find a feasible solution when the number
of planning tasks exceeds 200. (a) Scene: Area instance size: 50. (b) Scene: Area instance size: 100.
(c) Scene: Area instance size: 150. (d) Scene: Area instance size: 200. (e) Scene: World instance size:
100. (f) Scene: World instance size: 200. (g) Scene: World instance size: 300. (h) Scene: World instance
size: 400.

5. Conclusions

To address the challenges of large-scale regular mission planning for agile satellites,
the D3RL model based on GAT is established by using the target clustering information.
Building upon the D3RL model, we propose two applications for agile-satellite regular
task planning: DRL and DRL-LNS, and a design for state, action, and reward function is
developed in the MDP. In comparison with the traditional heuristic method (GA, ALNS),
the simulation results show that DRL-LNS with a dynamic destroy operator performs
exceptionally well on large-scale dense regional remote-sensing observation tasks. In the
more challenging large-scale global remote-sensing observation tasks, the DRL method
outperforms the competition. The experimental results demonstrate the proposed D3RL
model is very applicable and efficient for large-scale remote-sensing observation mission
planning and related large-scale planning scenarios.

The proposed dynamic destroy methods, however, may not be suited for dynamic
multi-agent environments. Future research will focus on the multi-satellite AEOS planning
problem with dynamic task scenarios using a multi-agent DRL approach.

Author Contributions: Conceptualization, W.H. and X.H.; methodology, W.H. and Z.L.; software,
W.H.; validation, W.H.; formal analysis, Z.L. and X.H.; investigation, W.H. and J.X.; resources, X.L.;
data curation, X.H.; writing—original draft preparation, W.H. and J.X.; writing—review and editing,
Z.L., X.D. and X.H.; visualization, W.H.; supervision, X.D. and X.L.; project administration, W.H. and
X.L. All authors have read and agreed to the published version of the manuscript.

Funding: This research was funded by National Key R&D Program of China (2022YFB3902800).

Data Availability Statement: The details of the datasets are described in Section 4 and the relevant
reference corresponds to [35].

Acknowledgments: The cooperation and assistance of the labmates are appreciated by the authors.

Conflicts of Interest: The authors declare no conflict of interest.

References
1. Singh, P.; Pandey, P.C.; Petropoulos, G.P.; Pavlides, A.; Srivastava, P.K.; Koutsias, N.; Deng, K.A.K.; Bao, Y. Hyperspectral

remote sensing in precision agriculture: Present status, challenges, and future trends. In Hyperspectral Remote Sensing; Elsevier:
Amsterdam, The Netherlands, 2020; pp. 121–146.

2. Zheng, Z.; Zhong, Y.; Wang, J.; Ma, A.; Zhang, L. Building damage assessment for rapid disaster response with a deep object-based
semantic change detection framework: From natural disasters to man-made disasters. Remote. Sens. Environ. 2021, 265, 112636.
[CrossRef]

http://doi.org/10.1016/j.rse.2021.112636

Remote Sens. 2023, 15, 4503 19 of 20

3. De Bem, P.P.; de Carvalho Junior, O.A.; Fontes Guimarães, R.; Trancoso Gomes, R.A. Change detection of deforestation in the
Brazilian Amazon using landsat data and convolutional neural networks. Remote Sens. 2020, 12, 901. [CrossRef]

4. Chen, J.; Liu, H.; Hou, J.; Yang, M.; Deng, M. Improving building change detection in VHR remote sensing imagery by combining
coarse location and co-segmentation. ISPRS Int. J. Geo-Inf. 2018, 7, 213. [CrossRef]

5. Liu, R.; Kuffer, M.; Persello, C. The temporal dynamics of slums employing a CNN-based change detection approach. Remote
Sens. 2019, 11, 2844. [CrossRef]

6. Peng, G.; Dewil, R.; Verbeeck, C.; Gunawan, A.; Xing, L.; Vansteenwegen, P. Agile Earth Observation Satellite Scheduling: An
Orienteering Problem with Time-Dependent Profits and Travel Times. Comput. Oper. Res. 2019, 111, 84–98. [CrossRef]

7. Wang, X.; Wu, G.; Xing, L.; Pedrycz, W. Agile Earth Observation Satellite Scheduling Over 20 Years: Formulations, Methods, and
Future Directions. IEEE Syst. J. 2021, 15, 3881–3892. [CrossRef]

8. Lemaître, M.; Verfaillie, G.; Jouhaud, F.; Lachiver, J.M.; Bataille, N. Selecting and Scheduling Observations of Agile Satellites.
Aerosp. Sci. Technol. 2002, 6, 367–381. [CrossRef]

9. Chu, X.; Chen, Y.; Xing, L. A branch and bound algorithm for agile earth observation satellite scheduling. Discret. Dyn. Nat. Soc.
2017, 2017, 7345941. [CrossRef]

10. Beaumet, G.; Verfaillie, G.; Charmeau, M.C. Feasibility of autonomous decision making on board an agile earth-observing satellite.
Comput. Intell. 2011, 27, 123–139. [CrossRef]

11. Sarkheyli, A.; Vaghei, B.G.; Bagheri, A. New tabu search heuristic in scheduling earth observation satellites. In Proceedings of
the 2010 2nd International Conference on Software Technology and Engineering, San Juan, PR, USA, 3–5 October 2010; Volume 2,
p. V2-199.

12. Zhao, Y.; Du, B.; Li, S. Agile Satellite Mission Planning Via Task Clustering and Double-Layer Tabu Algorithm. Comput. Model.
Eng. Sci. 2020, 122, 235–257. [CrossRef]

13. Peng, G.; Song, G.; He, Y.; Yu, J.; Xiang, S.; Xing, L.; Vansteenwegen, P. Solving the Agile Earth Observation Satellite Scheduling
Problem with Time-Dependent Transition Times. IEEE Trans. Syst. Man Cybern. Syst. 2022, 52, 1614–1625. [CrossRef]

14. Tangpattanakul, P.; Jozefowiez, N.; Lopez, P. Multi-objective optimization for selecting and scheduling observations by agile
earth observing satellites. In Proceedings of the Parallel Problem Solving from Nature-PPSN XII: 12th International Conference,
Taormina, Italy, 1–5 September 2012; pp. 112–121.

15. Geng, X.; Li, J.; Yang, W.; Gong, H. Agile satellite scheduling based on hybrid coding genetic algorithm. In Proceedings of the
2016 12th World Congress on Intelligent Control and Automation (WCICA), Guilin, China, 12–15 June 2016; pp. 2727–2731.

16. Zhang, Z.; Zhang, N.; Feng, Z. Multi-satellite control resource scheduling based on ant colony optimization. Expert Syst. Appl.
2014, 41, 2816–2823. [CrossRef]

17. Shaw, P. Using constraint programming and local search methods to solve vehicle routing problems. In Proceedings of the
Principles and Practice of Constraint Programming—CP98: 4th International Conference, CP98, Pisa, Italy, 26–30 October 1998;
pp. 417–431.

18. Sonnerat, N.; Wang, P.; Ktena, I.; Bartunov, S.; Nair, V. Learning a large neighborhood search algorithm for mixed integer
programs. arXiv 2021, arXiv:2107.10201.

19. Liu, X.; Laporte, G.; Chen, Y.; He, R. An adaptive large neighborhood search metaheuristic for agile satellite scheduling with
time-dependent transition time. Comput. Oper. Res. 2017, 86, 41–53. [CrossRef]

20. Pisinger, D.; Ropke, S. Large neighborhood search. Handbook of Metaheuristics; Springer: Cham, Switzerland, 2019; pp. 99–127.
21. Mara, S.T.W.; Norcahyo, R.; Jodiawan, P.; Lusiantoro, L.; Rifai, A.P. A survey of adaptive large neighborhood search algorithms

and applications. Comput. Oper. Res. 2022, 146, 105903. [CrossRef]
22. Ropke, S.; Pisinger, D. An adaptive large neighborhood search heuristic for the pickup and delivery problem with time windows.

Transp. Sci. 2006, 40, 455–472. [CrossRef]
23. Pisinger, D.; Ropke, S. A general heuristic for vehicle routing problems. Comput. Oper. Res. 2007, 34, 2403–2435. [CrossRef]
24. Hottung, A.; Tierney, K. Neural large neighborhood search for the capacitated vehicle routing problem. arXiv 2019,

arXiv:1911.09539.
25. da Costa, P.; Rhuggenaath, J.; Zhang, Y.; Akcay, A.; Kaymak, U. Learning 2-opt heuristics for routing problems via deep

reinforcement learning. SN Comput. Sci. 2021, 2, 1–16. [CrossRef]
26. Wu, G.; Wang, H.; Li, H.; Pedrycz, W.; Qiu, D.; Ma, M.; Liu, J. An adaptive Simulated Annealing-based satellite observation

scheduling method combined with a dynamic task clustering strategy. arXiv 2014, arXiv:1401.6098.
27. Bello, I.; Pham, H.; Le, Q.V.; Norouzi, M.; Bengio, S. Neural combinatorial optimization with reinforcement learning. arXiv 2016,

arXiv:1611.09940.
28. Wang, H.; Yang, Z.; Zhou, W.; Li, D. Online Scheduling of Image Satellites Based on Neural Networks and Deep Reinforcement

Learning. Chin. J. Aeronaut. 2019, 32, 1011–1019. [CrossRef]
29. Chen, M.; Chen, Y.; Chen, Y.; Qi, W. Deep Reinforcement Learning for Agile Satellite Scheduling Problem. In Proceedings of the

2019 IEEE Symposium Series on Computational Intelligence (SSCI), Xiamen, China, 6–9 December 2019; pp. 126–132. [CrossRef]
30. Huang, Y.; Mu, Z.; Wu, S.; Cui, B.; Duan, Y. Revising the Observation Satellite Scheduling Problem Based on Deep Reinforcement

Learning. Remote Sens. 2021, 13, 2377. [CrossRef]
31. He, Y.; Xing, L.; Chen, Y.; Pedrycz, W.; Wang, L.; Wu, G. A Generic Markov Decision Process Model and Reinforcement Learning

Method for Scheduling Agile Earth Observation Satellites. IEEE Trans. Syst. Man Cybern. Syst. 2022, 52, 1463–1474. [CrossRef]

http://dx.doi.org/10.3390/rs12060901
http://dx.doi.org/10.3390/ijgi7060213
http://dx.doi.org/10.3390/rs11232844
http://dx.doi.org/10.1016/j.cor.2019.05.030
http://dx.doi.org/10.1109/JSYST.2020.2997050
http://dx.doi.org/10.1016/S1270-9638(02)01173-2
http://dx.doi.org/10.1155/2017/7345941
http://dx.doi.org/10.1111/j.1467-8640.2010.00375.x
http://dx.doi.org/10.32604/cmes.2020.08070
http://dx.doi.org/10.1109/TSMC.2020.3031738
http://dx.doi.org/10.1016/j.eswa.2013.10.014
http://dx.doi.org/10.1016/j.cor.2017.04.006
http://dx.doi.org/10.1016/j.cor.2022.105903
http://dx.doi.org/10.1287/trsc.1050.0135
http://dx.doi.org/10.1016/j.cor.2005.09.012
http://dx.doi.org/10.1007/s42979-021-00779-2
http://dx.doi.org/10.1016/j.cja.2018.12.018
http://dx.doi.org/10.1109/SSCI44817.2019.9002957
http://dx.doi.org/10.3390/rs13122377
http://dx.doi.org/10.1109/TSMC.2020.3020732

Remote Sens. 2023, 15, 4503 20 of 20

32. Zhang, C.; Vinyals, O.; Munos, R.; Bengio, S. A study on overfitting in deep reinforcement learning. arXiv 2018, arXiv:1804.06893.
33. Schulman, J.; Wolski, F.; Dhariwal, P.; Radford, A.; Klimov, O. Proximal policy optimization algorithms. arXiv 2017,

arXiv:1707.06347.
34. Iacopino, C.; Harrison, S.; Brewer, A. Mission planning systems for commercial small-sat earth observation constellations. In

Proceedings of the 9th International Workshop on Planning and Scheduling for Space (IWPSS), VenueBuenos Aires, Argentina,
25–27 June 2015; pp. 45–52.

35. He, L.; de Weerdt, M.; Yorke-Smith, N. Time/sequence-dependent scheduling: The design and evaluation of a general purpose
tabu-based adaptive large neighbourhood search algorithm. J. Intell. Manuf. 2020, 31, 1051–1078. [CrossRef]

36. Wei, L.; Chen, Y.; Chen, M.; Chen, Y. Deep reinforcement learning and parameter transfer based approach for the multi-objective
agile earth observation satellite scheduling problem. Appl. Soft Comput. 2021, 110, 107607. [CrossRef]

37. Wu, G.; Liu, J.; Ma, M.; Qiu, D. A two-phase scheduling method with the consideration of task clustering for earth observing
satellites. Comput. Oper. Res. 2013, 40, 1884–1894. [CrossRef]

38. Veličković, P.; Cucurull, G.; Casanova, A.; Romero, A.; Lio, P.; Bengio, Y. Graph attention networks. arXiv 2017, arXiv:1710.10903.
39. Chung, J.; Gulcehre, C.; Cho, K.; Bengio, Y. Empirical evaluation of gated recurrent neural networks on sequence modeling. arXiv

2014, arXiv:1412.3555.
40. Chen, M.; Gao, L.; Chen, Q.; Liu, Z. Dynamic Partial Removal: A Neural Network Heuristic for Large Neighborhood Search.

arXiv 2020, arXiv:2005.09330.
41. Jazzbin, J. Geatpy: The Genetic and Evolutionary Algorithm Toolbox with High Performance in Python. Available online:

http://www.geatpy.com/ (accessed on 31 July 2020).
42. Wouda, N.A.; Lan, L. ALNS: A Python implementation of the adaptive large neighbourhood search metaheuristic. J. Open Source

Softw. 2023, 8, 5028. [CrossRef]

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

http://dx.doi.org/10.1007/s10845-019-01518-4
http://dx.doi.org/10.1016/j.asoc.2021.107607
http://dx.doi.org/10.1016/j.cor.2013.02.009
http://www.geatpy.com/
http://dx.doi.org/10.21105/joss.05028

	Introduction
	Problem Description
	Problem Assumption
	Variables
	Mathematical Formulation
	Constraint Conditions
	Optimization Objective

	Modeling Process
	Clustering Graph
	GAT-Based Network
	Graph Attention Layer
	GAT-Based Actor-Network

	Markov Decision Process Modeling
	State Space
	Action Space
	Reward
	Training Process

	Applications

	Experimental Simulation
	Simulation Scenarios
	Task Scheduled Rate
	Algorithm Parameters

	Training Performance
	Testing Performance
	Model Generalization Test
	Comparison of Algorithms Test

	Conclusions
	References

