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Abstract: 3D reconstruction of urban scenes is an important research topic in remote sensing.
Neural Radiance Fields (NeRFs) offer an efficient solution for both structure recovery and novel
view synthesis. The realistic 3D urban models generated by NeRFs have potential future applications
in simulation for autonomous driving, as well as in Augmented and Virtual Reality (AR/VR) experi-
ences. Previous NeRF methods struggle with large-scale, urban environments. Due to the limited
model capability of NeRF, directly applying them to urban environments may result in noticeable
artifacts in synthesized images and inferior visual fidelity. To address this challenge, we propose a
sparse voxel-based NeRF. First, our approach leverages LiDAR odometry to refine frame-by-frame
LiDAR point cloud alignment and derive accurate initial camera pose through joint LiDAR-camera
calibration. Second, we partition the space into sparse voxels and perform voxel interpolation based
on 3D LiDAR point clouds, and then construct a voxel octree structure to disregard empty voxels
during subsequent ray sampling in the NeRF, which can increase the rendering speed. Finally, the
depth information provided by the 3D point cloud on each viewpoint image supervises our NeRF
model, which is further optimized using a depth consistency loss function and a plane constraint loss
function. In the real-world urban scenes, our method significantly reduces the training time to around
an hour and enhances reconstruction quality with a PSNR improvement of 1–2 dB, outperforming
other state-of-the-art NeRF models.

Keywords: neural radiation field; voxelization; camera pose estimation; multi-sensor fusion;
3D reconstruction

1. Introduction

The acceleration of urbanization leads to challenges in constructing intelligent/digital
cities, which requires understanding and modeling of urban scenes. Over the past years,
data-driven deep learning models have been widely adopted for scene understanding [1].
However, deep learning models are often hindered by domain gap [2,3] and heavily
depend on a vast amount of annotated training data that is costly and complex to collect
and label, particularly for the multi-sensor data annotation [4]. 3D reconstruction [5,6]
can be used not only for data augmentation but also for direct 3D modeling of urban
scenes [7]. Specifically, in the remote sensing mapping [8–12], it can generate high-precision
digital surface models using multi-view satellite images [13,14] and combine the diversity
of virtual environments with the richness of the real-world, generating more controllable
and realistic data than simulation data.

With the emergence of Neural Radiance Fields (NeRF) [15], the research on 3D recon-
struction algorithms has rapidly progressed [16]. Many researchers have applied the NeRF
model to the field of remote sensing mapping [17,18]. Compared to classic 3D reconstruc-
tion methods with explicit geometric representations, NeRF’s neural implicit representation
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is smooth, continuous, differentiable, and capable of better handling complex lighting ef-
fects. It can render high-quality images from new perspectives based on the camera images
and six degrees of freedom camera poses [19–21]. The core idea of NeRF is to represent the
scene as a density and radiance field encoded by a multi-layer perceptron (MLP) network
and train the MLP using differentiable volume rendering techniques. Although NeRF
can achieve satisfactory rendering effects, the training of deep neural networks is time-
consuming, i.e., in hours or days, which limits its application. Recent studies suggest
that voxel grid-based methods, such as Plenoxels [22], NSVF [23], DVGO [24] and Instant-
NGP [25], can rapidly train NeRF within few hours and reduce memory consumption
through voxel cropping [23,24] and hash indexing [25]. Depth supervision-based methods
such as DsNeRF [26] utilize the sparse 3D point cloud output from COLMAP [27] to guide
NeRF’s scene geometry learning and accelerate convergence.

Although these methods demonstrate robust 3D reconstruction results in bounded
scenes, when they are applied to urban unbounded scenarios, they confront several chal-
lenges. First, it is a common requirement to handle large-scale scenes with relatively fixed
data collection. A NeRF representation requires spatial division of the 3D environment.
Although NeRF++ [28] separates the scene into foreground and background networks for
training, extending NeRF to unbounded scenes, the division of large-scale scenes requires
more storage and computational resources and the algorithm would be difficult to use
without optimization. Yet, the real outdoor scenario, such as urban environments, typically
covers a large area in hundreds of square meters, which presents a significant challenge for
NeRF representation. In addition, urban scene data are usually collected using cameras
mounted on the ground or unmanned aerial vehicles without focusing on any specific part
of the scene. Therefore, some scenes may be less observed or potentially missed by the cam-
eras, while some other scenes may be captured multiple times from multiple viewpoints.
Such uneven observation perspectives increase the difficulty of reconstruction [29,30].

Another challenge to NeRF methods is complex scenes with highly variable environ-
ments. A scene often contains a variety of target objects, such as buildings, signs, vehicles,
vegetation, etc. These targets have significant differences in appearance, geometric shape,
and occlusion relationships. The reconstruction of diverse targets is limited by model
capacity, memory, and computation resources. Additionally, because cameras usually
adopt automatic exposure, captured images often have high exposure variation, subject
to the lighting condition. NeRF-W [31] addresses occlusions and lighting changes in the
scene through transient object embedding and latent appearance modeling. However, its
rendering quality drops for some areas, such as the ground, that are rarely included in
training images, and blurriness often appears in scenes where the camera pose is incorrect.
Thus, relying solely on image data faces the difficulties of camera pose estimation, leading
to low-quality 3D reconstruction.

This problem can be relieved by using 3D LiDAR for pose inference and urban scene
3D geometric reconstruction [32–35], however, LiDAR point clouds also have inherent
disadvantages. The point cloud resolution is usually low, and it is very difficult to generate
point cloud data on glossy or transparent surfaces. For this issue, Google proposed Urban
Radiance Fields in 2021 [36], which compensates for scene sparsity through LiDAR point
clouds and supervises rays pointing to the sky through image segmentation, addressing
the problem of light changes in the scene.

In this paper, the central aim is to develop a method that not only accelerates the
process of reconstructing urban scenes but also improves the quality of 3D reconstruction.
Therefore, different from Google’s solution, we propose to estimate accurate camera 6-DOF
poses and 3D point cloud models through fine registration of LiDAR odometry output
and per-frame LiDAR point clouds. Then, the space is divided into sparse voxels based
on the prior of the 3D LiDAR point clouds, and a sparse voxel ray sampling method is
designed to ignore empty voxels, so as to speed up training. Finally, depth consistency loss
and local plane constraint loss are built based on the sparse point cloud, and the image is
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used for fine reconstruction. An overview of our method is outlined in Figure 1. The main
contributions of this paper are summarized as follows:

• We can obtain accurate initial camera pose and a priori 3D point cloud models through
LiDAR odometry and LiDAR-camera calibration, which can reduce the artifacts in
synthesizing novel views and enhance the reconstruction quality.

• We propose a novel NeRF 3D reconstruction algorithm that employs sparse voxel
partitioning. By dividing space into sparse voxels and constructing a voxel octree
structure, we can accelerate 3D reconstruction for urban scenes and enhance scene
geometric consistency.

• Experimental results on four urban outdoor datasets indicate that our method can
reduce the training time and significantly improve 3D reconstruction quality compared
with the latest NeRF methods.

Input Novel viewsModel

Figure 1. Overview of Voxel-Based Neural Radiance Field 3D Reconstruction. The input comprises
images, corresponding camera pose, and LiDAR point cloud priors. Model is constructed based on a
MLP framework. The output includes the results of 3D reconstruction and novel view synthesis.

The remainder of this paper is outlined as follows. Section 2 compares the differences
between classic 3D reconstruction methods and NeRF, and discusses the application of
NeRF in urban scenes modelling. Section 3 introduces the sparse voxel-based neural
radiance field and the optimization strategies. Section 4 analyses the results through the
urban scene datasets, and Section 5 concludes this paper and describes future work.

2. Related Works

In this section, we introduce classic 3D reconstruction and NeRF and discuss the recent
advance and applications of NeRF methods in urban scenes.

2.1. Classic Methods of 3D Reconstruction

Classic 3D reconstruction methods initially collate data into explicit 3D scene represen-
tations, such as textured meshes [37] or primitive shapes [38]. Although effective for large
diffuse surfaces, these methods can not well handle urban scenes due to the complexity
of geometric structures. Alternative methods use 3D volumetric representations such as
voxels [39], octrees [40], but their resolution is limited, and their storage demands for
discrete volume are high.

For large-scale urban scenes, Li proposed AADS [41] to utilize images and LiDAR
point clouds for reconstruction, amalgamating perceptual algorithms and manual annota-
tion to formulate a 3D point cloud representation of moving foreground objects. In contrast,
SurfelGAN [42] employed Surfels for 3D modeling, capturing 3D semantic and appearance
information of all scene objects. These methods rely on explicit 3D reconstruction algo-
rithms like SfM [43] and MVS [44], which recover dense 3D point clouds from multi-view
imagery [45]. However, the resulting 3D models often contain artifacts and holes in weakly
textured or specular regions, requiring further processing for novel view image synthesis.
While these methods focus on reconstruction accuracy, our research seeks not only to ensure
high-precision 3D reconstruction but also to reduce the associated training time.
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2.2. Neural Radiance Fields
2.2.1. Theory of Neural Radiance Fields

Neural rendering techniques, exemplified by Neural Radiance Fields (NeRF) [15],
allow neural networks to implicitly learn static 3D scenes from a series of 2D images. Once
the network has been trained, it can render 2D images from any viewpoint. More specifi-
cally, Multilayer Perceptron (MLP) is employed to represent the scene. The MLP takes a 3D
positional vector of a spatial point and a 2D viewing direction vector as inputs and maps
them to the density and color vector of that location. Subsequently, a differentiable volume
rendering method [46] is used to synthesize any new view. Typically, this representation
is trained within a specific scene. For a set of input camera images and poses, the NeRF
employs gradient descent to fit the function by minimizing the color error between the
rendered results and the real images.

2.2.2. Advance in NeRF

Many research [47–54] have augmented the original NeRF, enhancing reconstruction
accuracy, rendering efficiency, and generalization performance. MetaNeRF [55] improved
accuracy by leveraging data-driven prior training scenes to supplement missing informa-
tion in test scenes. NeRFactor [56] employed MLP-based factorization to extract information
on illumination, object surface normals and light fields. Barron et al. [57] substitute a view
cone for line-of-sight perception, minimizing jagged artifacts and blur. Addressing NeRF’s
oversampling of blank space, Liu et al. [23] proposed a sparse voxel octree structure for 3D
modeling. Plenoxels [22] bypassed extensive MLP models to predict density and color and
instead stored these values directly on the voxel grid. Instant-NGP [25] and DVGO [24]
constructed feature meshes and densities, calculating point-specific densities and colors
from interpolated feature vectors using compact MLP networks.

To improve the model’s generalizability, Yu et al. [20] introduced PixelNeRF, allowing
the model to perform view synthesis tasks with minimal input by integrating spatial image
features at the pixel level. Our work concentrates on the challenges associated with urban
outdoor environments and low rendering efficiency. Recently, Martin-Brualla et al. [31]
conducted a 3D reconstruction of various outdoor landmark structures utilizing data
sourced from the Internet. DS-NeRF [26] reconstructed sparse 3D point clouds from
COLMAP [27], using inherent depth information to supervise the NeRF objective function,
thereby enhancing the convergence of scene geometry.

2.3. Application of NeRF in Urban Scene

Some researchers have applied NeRF to urban scenes. Zhang et al. [28] addressed
parameterization challenges in extensive, unbounded 3D scenes by dichotomizing the
scene into foreground and background with sphere inversion. Google’s Urban Radiance
Field [36] used LiDAR data to counteract scene sparsity and employed an affine color
estimation for each camera to automatically compensate for variable exposures. Block-
NeRF [58] broke down city-scale scenes into individually trained neural radiance fields,
uncoupling rendering time from scene size. Moreover, City-NeRF [59] evolved the network
model and training set concurrently, incorporating new training blocks during training to
facilitate multi-scale rendering from satellite to ground-level imagery.

Although these methods focus on 3D reconstruction precision, they require extended
model training times. In this paper, we integrate LiDAR point cloud data to segment the
space, and build the sparse voxel octree structure, finally perform 3D reconstruction of
urban scenes based on accurate camera pose and images. Our method enhances the perfor-
mance and computational efficiency of the 3D reconstruction model, further broadening
the application of neural radiance fields in urban outdoor environments.
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3. Methodology

In this section, we first introduce the fundamental theory of NeRF, then give a detailed
elaboration on the construction scheme and training optimization strategies of Sparse
Voxel-based NeRF, as shown in Figure 2.

...

...

Tri-linear
MLP

View DirectionVoxel Embeddings

Position Features
Color&Density

Volume Rendering

Gt. Images

Images

Sparse voxel sampling

Point Clouds

Camera Poses

Figure 2. Pipeline of Voxel-Based Neural Radiance Field 3D Reconstruction. We use camera images,
the corresponding camera poses, and LiDAR point clouds as the input to construct a sparse voxel
set. Upon sparse voxel sampling, the voxel embedding is queried and interpolated to yield a feature
representation based on eight corresponding voxel vertices. Finally, the MLP is trained and optimized
based on the results of volume rendering. More details about the model architecture can be found
in Appendix A.

3.1. Preliminaries

NeRF aims to simulteneously accomplish 3D reconstruction and synthesis of novel
viewpoints. NeRF represents a set of continuous scene images {Ii}N

i=1 with known cam-
era pose as an implicit field function FΘ : (x, d) → (c, σ). The inputs include a three-
dimensional position vector x = (x, y, z) and a two-dimensional viewpoint direction
vector d = (θ, φ). The outputs are the voxel density σ at that position and a color vector
c = (r, g, b) related to the viewpoint d.

NeRF first uses a high-frequency mapping function ζ(.) to map the three-dimensional
point coordinate x and direction vector d to a high-dimensional space using the following
Equation (1):

ζ(k) = (sin(20πk), cos(20πk), . . . , sin(2L−1πk), cos(2L−1πk)) (1)

where k represents the input of the function, and L indicates the dimensional information
in the high-frequency space. For coordinate encoding, L = 10, while for direction encoding,
L = 4. Coordinate encoding is used as the input into MLP to obtain σ and intermediate
features e, which, in combination with d, are fed into additional fully connected layers to
predict the color c as follows:

(σ, e) = MLP(pos)(x)

c = MLP(rgb)(e, d)
(2)

Here, the density σ is a function related to spatial position σ(x), while color c is a
function of both spatial position and viewing direction c(x, d). Consequently, when the
same location is observed from different angles, the color will change according to the
viewpoint. To ensure that the network can be trained, density and color obtained from
NeRF use a differentiable rendering method. For a ray r(t) = o + td emanating from



Remote Sens. 2023, 15, 4628 6 of 18

the camera center o, the color value of any pixel it passes through is obtained by the
following integral:

C(r) =
∫ ∞

0
T(t) · σ(r(t)) · c(r(t), d)δt (3)

where T(t) = exp(−
∫ t

0 σ(r(s)))δs represents the cumulative transparency along the ray
in direction t. The model is optimized by the L2 color consistency loss function using a
gradient descent method:

Lcolor(Θ) = ∑
r∈R(P)

‖C(r)− Cgt(r)‖2
2 (4)

where P represents a given camera viewpoint. By computing the projection of each rays
R(P) from this viewpoint, the image can be rendered for that viewpoint. The color
consistency loss minimizes the per-pixel difference between the rendered result C(r) and
the ground truth image Cgt(r).

3.2. Sparse Voxel NeRF Representation

Assuming the non-empty parts of the scene are contained in a set of sparse voxels,
we divide the space into a collection of sparse voxels, V = {V1, . . . , VK}, based on point
clouds. The implicit field function can then be represented as FΘ(gi(v), d), where v ∈ Vi
denotes the point position information within the voxel. The implicit field function FΘ is
represented by an MLP with shared weights Θ:

FΘ : (gi(v), d)→ (c, σ), ∀v ∈ Vi (5)

where c and σ represent the color and density of point v respectively, and gi(v) denotes the
position encoding at point v:

gi(v) = ζ(χ(g̃i(p?
1), . . . , g̃i(p?

8))) (6)

Here, p?
1 , . . . , p?

8 ∈ R3 are the 8 vertices of the voxel set Vi, and g̃i(p?
1), . . . , g̃i(p?

8)
are the feature vectors stored at all vertices. Additionally, χ(.) is a trilinear interpolation,
and ζ(.) is a post-processing function. In our experiments, ζ(.) is the positional encoding
proposed in NeRF, as shown in Equation (1).

Trilinear interpolation notably outperforms simple nearest-neighbor interpolation.
The benefits of interpolation are twofold. First, it can enhance the resolution by representing
sub-voxel variations of color and density. Second, continuity induced by interpolation is
crucial for the optimization process. While most previous works employ the 3D coordi-
nates of point v as the input to FΘ, we use the feature vector gi(v) aggregated from the
embeddings of the corresponding 8 voxels. These voxels can embed information specific to
particular regions, such as geometry and color. This approach significantly simplifies the
learning of the subsequent FΘ implicit field function and promotes high-quality rendering.

Sparse Voxel Sampling Method

As illustrated in Figure 3, naive sampling methods waste computational resources in
sampling spaces not covered by effective voxels, like the hierarchical random sampling
employed by the original NeRF. Therefore, we propose a sparse voxel sampling method
inspired by NSVF [23]. An AABB intersection test [60] is initially conducted on all sam-
pling pixels to ascertain voxel-ray intersections and any pixel with no hits is masked out.
Given that urban outdoor environments are unbounded, we set a parameter Mh that one
single pixel can see the maximal number of voxels. Unlike the original NSVF, where the
parameter is set according to empirical values, we dynamically adjust it based on a specified
maximum sampling distance Dmax.
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(a) Uniform sampling (b) Importance sampling (c) Sparse voxel sampling

Figure 3. Visual Demonstration of Ray Sampling Methods: Compared to the prior two ray sampling
methods, sparse voxel sampling offers superior computational efficiency by eliminating sampling
points within empty spaces.

3.3. Optimization
3.3.1. Multi-Sensor Fusion

The platform to collect outdoor large-scale images and 3D point cloud data consists of
a Livox Avia LiDAR and an OAK-D-Pro camera. They have been time-synchronized and
spatially aligned. In Figure 4, we employ LiDAR odometry and LiDAR-camera calibration
to refine the 3D point cloud model and obtain the accurate camera pose.

LiDAR Point Cloud

Original Images

LiDAR Odometry

LiDAR Pose Camera Pose

Keyframe Extration

Images

Point Cloud

LiDAR-camera calibration

Figure 4. The illustration of the data preprocessing. We employ LiDAR-camera calibration to get
accurate camera pose. Through keyframe extraction, we are able to obtain image data and 3D point
cloud, which has been optimized from LiDAR odometry.

For the LiDAR point cloud registration and camera pose optimization step, an im-
proved LiDAR odometry approach based on Lego-LOAM [61] is adopted to perform
refined scan-to-map matching for frame-by-frame LiDAR point clouds. We incorporate
IMU pre-integration to eliminate motion distortion in the point cloud. Considering that
our primary focus is 3D reconstruction of static urban scenes, we integrate a dynamic
object processing feature in the odometry. This aids in filtering out ghost points caused by
dynamic objects in the scene, thereby enhancing the accuracy of the 3D point cloud model.

In the LiDAR and camera extrinsic calibration step, following the sensor calibration
scheme proposed by Yuan [62] and the LiDAR pose output from the LiDAR odometry, we
obtain a precise initial camera pose corresponding to the images, which serves as the input
to the sparse voxel-based neural radiance field.

3.3.2. Self-Pruning

We first learn an implicit function for a set of initial voxels, roughly bounding the
scene. In this paper, LiDAR point clouds are used for initialization, with the voxel size set
to 0.125. We implement a self-pruning strategy for coarse geometric information based on
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NSVF. This can effectively remove unnecessary voxels during the training process. A voxel
needs to be pruned when the following conditions are met:

min
j=1...G

exp(−σ(gi(vj)) > γ, ∀vj ∈ Vi (7)

where {vj}G
j=1 represents G uniformly sampled points in the ray direction within voxel

Vi, σ(gi(vj) predicts the voxel density at point vj, and γ is a threshold set to 0.5 in our
experiments. Periodically self-pruning voxels after the appearance of coarse scene geometry
can gradually adjust voxelization to adapt to the underlying scene structure.

In our experiments, we train real urban outdoor scenes in three stages. Specifically, we
first initialize the ray marching step size and voxel size for training optimization. After a
certain number of iterative training steps, the step size and voxel size for the next phase
are halved, effectively subdividing all voxels into 23 sub-voxels and initializing the feature
representation of the new vertices. Essentially, we gradually increase the model’s capability
to understand more scene details.

3.3.3. Loss Function

The optimization loss is composed of three parts: color consistency loss Lcolor, sparse
point cloud depth loss LDepth, and local plane constraint loss LPlane:

Lner f = Lcolor + αLDepth + µLPlane (8)

where α and µ are weight hyperparameters and Lcolor is given by Equation (4). The sparse
point cloud depth is similar to the image rendering process in Equation (3). Given a
viewpoint ray r(t) = o + td, the depth rendering from near end tn to far end t f can be
expressed as:

D(r) =
∫ t f

tn
T(t) · σ(r(t))tδt (9)

Given the camera viewpoint P and loss function in Equation (8), we calculate the
rendered depth of the ray set R′(P) with existing LiDAR point cloud data from this
viewpoint. The sparse point cloud depth loss function minimizes the difference between
this rendered depth and the actual depth Dgt(r):

LDepth(Θ) = ∑
r∈R′ (P)

‖D(r)−Dgt(r)‖2
2 (10)

To enhance the structural constraints of the 3D model, this paper introduces the
slanted plane model into the NeRF training framework. It assumes that all pixels within
a superpixel are located on the same 3D plane. Specifically, we define the set of all pixel
positions within a superpixel as matrix S, represented in homogeneous coordinates. The set
of all depth values is D? and the identity matrix is represented as I. The local plane
constraint loss is to minimize the distance sum of all points to this plane as follows:

LPlane(Θ) = ‖[I− S(STS)−1ST ]/D?‖ (11)

4. Experiments

In this section, we demonstrate a series of experiments on self-collected urban outdoor
scene datasets to evaluate our proposed model. The experiments are used to assess whether
the proposed algorithm can improve the efficiency of training and render more accurately.

4.1. Experimental Settings
4.1.1. Dataset and Metrics

Our sensor platform is equipped with Livox Avia LiDAR and OAK-D-Pro camera as
shown in Figure 5, and was designed for handheld data collection. The datasets comprise
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four urban scenes, which are named as a landmark: Gym, Office Building, CS Building,
and Library. For each scene, approximately 300 images and 100 LiDAR point cloud frames
were collected. More details about the datasets can be found in Appendix B. After refined
registration using LiDAR odometry, key frames were identified through traditional feature
extraction and matching, generating 50 images and corresponding downscaled 800,000 Li-
DAR points. Each scene includes a free camera trajectory and multiple focused foreground
objects, posing a significant challenge to the 3D reconstruction.

Livox-Avia LiDAR

OAK-D-Pro

Gym

Library

Office Building

CS Building

Figure 5. The left satellite image illustrates the location of our data collection. The right image shows
our handheld multi-sensor platform, which includes a Livox Avia LiDAR and an OAK-D-Pro camera.

To evaluate our method, given an image with a camera pose, we render and compare it
with the ground truth. Evaluation metrics are based on PSNR, SSIM, and LPIPS [63]. PSNR
is a standard measure for image quality assessment, gauging the difference between the
original image and the rendered image. A higher PSNR value indicates the better quality
of the reconstructed image. SSIM is another index used to assess the similarity between
two images, which pays more attention to the structure and texture information of the
image. If SSIM is closer to 1, it signifies the higher similarity between two images. LPIPS
is a perceptual image similarity metric based on deep learning, it trains a neural network
model to learn the sensitivity of human eyes to image differences, so as to measure the
perceptual differences between two images. The smaller the value, the more similar the
two images are perceptually.

4.1.2. Baseline Methods

We compare our method with the state-of-the-art NeRF-like methods as shown in
Table 1. Except for NeRF, other methods can handle unbounded scenes. DVGO and
Plenoxels are voxel-based methods. Only DSNeRF and our method use depth supervision.
DSNeRF uses 3D sparse point clouds obtained from COLMAP, while our method constructs
a sparse voxel NeRF using point clouds gathered by LiDAR.

4.1.3. Implementation Details

We implemented an octree structure for voxels and set the learned feature vector
of voxel vertices to 32 dimensions. The overall network architecture in Figure 2 was
implemented in Pytorch. Following the general NeRF setup, one image was set as the test
image out of every five images, the rest forming the training set. Training was conducted
on a single Nvidia-V100-32 GB, with 2048 rays sampled from all images and only rays that
hit at least one voxel were sampled.
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Table 1. Comparison of 3D reconstruction methods for NeRF. Unbouded means.

Methods Image Unbounded Voxel Depth LiDAR

NeRF [15] X
NeRFactor [56] X X
NeRF++ [28] X X
Plenoxels [22] X X X

DVGO [24] X X X
DsNeRF [26] X X X

Ours X X X X X

Note: The tick symbol (X) indicates that the feature is supported by the respective method.

4.2. Result Analysis

As demonstrated in Tables 2 and 3, we conduct quantitative comparisons on four
urban scene datasets. The original NeRF model struggles with unbounded scenes, yielding
poorer reconstruction and longer training times than other methods. Both DVGO and
Plenoxels, which are voxel-based methods, achieve fast convergence within 40 min due to
their voxel ray sampling strategy, but the reconstruction quality lags behind our method.
NeRF++ trains foreground and background separately and achieves similar reconstruc-
tion quality as ours but suffers from low computational efficiency—it takes two days for
training. Through accurate initial camera pose, 3D point cloud priors, and loss functions
designed in this paper, our model outperforms all recent NeRF-like models, and achieves
the highest quality for view synthesis with the improvement of 4–7% over the baseline,
while converging time is around an hour. Specifically, we observe the PSNR increase to
around 30 dB, the SSIM improvement to approximately 0.9, and a decrease in LPIPS to
about 0.2, underlining the accuracy and precision of our reconstruction method.

Figure 6 presents the qualitative comparison of the rendered scenes. Given the variabil-
ity of perspectives in the scene, DsNeRF yields blurry reconstruction details due to the im-
precise camera pose and sparse 3D point cloud obtained from COLMAP. DVGO and Plenox-
els, although employing voxel methods, produce blurry synthesized images due to limited
resolution, incapable of representing arbitrary camera pose trajectories. While NeRF++
offers clearer results, it still lags behind our method in scene details, such as nearby vegeta-
tion and distant vehicles. Our method utilizes the point cloud prior for depth supervision,
enhancing the precision of the scene’s geometric structure. The camera poses, derived
from LiDAR odometry and LiDAR-camera extrinsic calibration, support unrestricted long
trajectories, accommodating perspective shifts inherent, such as in urban scenes.

Table 2. Comparison of NeRF 3D Reconstruction Results on Gym and Office Building Datasets.

Methods
Gym Office Building

Tr. Time PSNR↑ SSIM↑ LPIPS↓ Tr. Time PSNR↑ SSIM↑ LPIPS↓
NeRF [15] 53 h 19.77 0.661 0.455 53 h 19.84 0.672 0.430

NeRFactor [56] 27 m 23.78 0.769 0.224 29 m 22.64 0.707 0.185
DsNeRF [26] 8 h 26.48 0.799 0.291 8 h 24.05 0.779 0.267
Plenoxels [22] 40 m 24.86 0.758 0.333 37 m 24.37 0.791 0.254

DVGO [24] 49 m 26.28 0.804 0.292 52 m 27.26 0.868 0.193
NeRF++ [28] 48 h 28.20 0.870 0.221 48 h 29.21 0.905 0.147

Ours 68 m 30.96 0.909 0.175 72 m 31.03 0.915 0.094

Note: The up arrow (↑) indicates that higher values are better, and the down arrow (↓) indicates that lower values
are better. The bold figures in the last row highlight the best performance among all methods.
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Table 3. Comparison of NeRF 3D Reconstruction Results on CS Building and Library Datasets.

Methods
CS Building Library

Tr. Time PSNR↑ SSIM↑ LPIPS↓ Tr. Time PSNR↑ SSIM↑ LPIPS↓
NeRF [15] 53 h 17.89 0.487 0.549 53 h 19.23 0.524 0.491

NeRFactor [56] 28 m 22.38 0.681 0.335 29 m 21.39 0.597 0.372
DsNeRF [26] 8 h 19.41 0.571 0.476 8 h 22.70 0.648 0.411
Plenoxels [22] 32 m 19.15 0.563 0.482 35 m 21.74 0.636 0.405

DVGO [24] 54 m 24.70 0.778 0.311 50 m 22.56 0.656 0.412
NeRF++ [28] 48 h 26.11 0.815 0.280 48 h 25.39 0.786 0.289

Ours 70 m 27.72 0.868 0.202 75 m 26.74 0.841 0.215

Note: The up arrow (↑) indicates that higher values are better, and the down arrow (↓) indicates that lower values
are better. The bold figures in the last row highlight the best performance among all methods.

In Figure 7, the depth maps of rendered images in the scene dataset are visualized.
The vegetation, steps, and library buildings in the scene exhibit clear depth distinctions.
By utilizing depth loss supervision, the rendering quality can be improved, particularly for
scenes with a hierarchical depth structure.

In our method, the voxel size is set to 0.125 based on empirical values. As shown
in Table 4, we conducted the experiments to compare the performance with voxel sizes of
0.05, 0.08, 0.25, and 0.40. The smaller the voxel size, the finer the representation of scene
space details, thus improving the quality of rendered images. However, it also increases
computational complexity and prolongs the model training time. As the voxel size is set
smaller, the improvement in image rendering quality tends to saturate. Therefore, 0.125 is
chosen as the suitable empirical voxel size for 3D reconstruction using the NeRF.
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Figure 6. Visual comparison on the four outdoor scene datasets.
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Table 4. Result analysis of voxel size on Library Datasets.

Voxel Size Tr. Time PSNR↑ SSIM↑ LPIPS↓
0.05 2 h 27.05 0.852 0.190
0.08 90 m 26.97 0.850 0.211

0.125 75 m 26.74 0.841 0.215
0.25 55 m 25.11 0.797 0.256
0.40 32 m 24.94 0.793 0.278

Note: The up arrow (↑) indicates that higher values are better, and the down arrow (↓) indicates that lower values
are better. The bold figures indicate the values employed in the paper.

Gt.Image Rendering Image Depth Image

Figure 7. Depth image visualization on Library datasets.

4.3. Ablation Studies

To fully validate the effectiveness of our 3D reconstruction algorithm based on sparse
voxel NeRF, we conducted ablation experiments on the trained loss function and image
resolution using the Library datasets.

As shown in Table 5, on the Library dataset, the rendering quality drops significantly
when only using the color consistency loss. The local plane constraint is targeted at the
3D planar structure of scene reconstruction, and such constraint is helpful to improve the
quality of rendering. With the addition of depth supervision from the sparse point cloud,
the synthesis effect of novel views is significantly improved, which suggests that depth
prior information can effectively guide the model to learn the geometric structure of the
scene and carry out precise 3D reconstruction.

In Section 4.2, we employ 720 p image resolution, a LiDAR detection range of 400 m,
and a maximum camera FOV of 81◦ for our experiments. Table 6 elucidates the impact
of varying image resolutions on the quality of reconstructions, supplemented by NIQE
evaluation metrics. Although an uptrend in image resolution results in marginal improve-
ments in reconstruction quality, the gains are modest. Future work could focus on nuanced
analyses tailored to the specific attributes of high-resolution imagery.

Table 5. Ablation Study of Loss Functions on Library Datasets.

Lcolor LDepth LPlane PSNR↑ SSIM↑ LPIPS↓
X� � � 22.42 0.628 0.434
X� X� � 25.91 0.793 0.224
X� X� X� 26.74 0.841 0.215

Note: The tick symbol (X) inside the boxes indicates the inclusion of the respective loss function. The up arrow (↑)
indicates that higher values are better, and the down arrow (↓) indicates that lower values are better. The bold
figures in the last row highlight the best performance among all methods.
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Table 6. Ablation Study of Image Resolution on Library Datasets.

Image Resolution PSNR↑ SSIM↑ LPIPS↓ NIQE↓
720 p 26.74 0.841 0.215 4.256
1080 p 26.91 0.839 0.202 3.849

2 k 27.18 0.845 0.204 3.913
4 k 27.44 0.851 0.197 3.157

Note: The up arrow (↑) indicates that higher values are better, and the down arrow (↓) indicates that lower values
are better. The bold figures indicate the values employed in the paper.

5. Conclusions

This paper introduces a novel method for the 3D reconstruction of neural radiance
fields based on sparse voxels with the aid of LiDAR point cloud prior, which can accomplish
the 3D reconstruction of urban outdoor environments. Specifically, the paper first delineates
the existing issues of the original neural radiance fields, including slow convergence speed
during training and mainly focusing on small object reconstruction and the inapplicability
of rendering for urban scenes. Subsequently, we propose a method for acquiring initial
camera pose values based on the positional information output from LiDAR odometry
and LiDAR-camera calibration, which allows for a frame-by-frame refined registration
of the point cloud to procure a 3D point cloud model. Our method uses the point cloud
prior for voxelization and space partitioning, then combines it with the image for the scene
reconstruction. Experimental results demonstrate that our algorithm not only accelerates
the convergence speed of neural radiance field training to approximately one hour but
also enhances the quality of scene reconstruction by 4–7% compared with recent neural
radiance field methods.

However, in the data acquisition part, considering the large-scale features of urban
scenes, the processing time for 3D point cloud models and images increases with the
expansion of the scene area. Therefore, optimizations can be made to the LiDAR odometry
algorithms and adjustments to the downsampling parameters to reduce data acquisition
time. Our algorithm also has its limitations. It is primarily focused on the 3D reconstruction
of static urban scenes and struggles with dynamic foreground elements like moving vehicles
or walking pedestrians. Moreover, due to the sensitivity of sensors to weather conditions
such as smog and rainfall, the quality of reconstruction is adversely affected. Therefore, we
plan to extend the NeRF algorithm in the future. By freely combining multi-object models
and controlling implicit encoding of environmental factors, we can generate image synthesis
with new perspectives and targets. We can also extend this capability to reconstruct
moving underwater objects through the introduction of learnable medium parameters,
which mitigate the interference between the camera and the scene. Furthermore, we will
integrate denoising and restoration techniques into the preprocessing steps to better cope
with complex weather conditions. We hope the research will pave the way for further
enhancements in the domain of urban scene reconstruction and further leverage it for
Augmented/Virtual Reality (AR/VR) applications.
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Appendix A. Model Architecture Details

In our algorithms, a 32-dimensional learnable voxel embedding is first assigned
to each voxel vertex, and undergoes positional encoding with a maximum frequency
of L = 6. The features, aggregated from voxel embeddings of eight vertices, are then
trilinearly interpolated. Figure A1 presents the structure of the MLP, we simplified based
on the NSVF [23]. The resulting feature representation and view direction vector are fed
into a hidden layer of width 128 to obtain the scene features and volume density. The scene
features and view direction vector are then jointly fed into another MLP comprising three
hidden layers, each with a width of 128, to get the RGB color. The number of parameters
for the entire model is less than 0.5 M.

128 128

64

128 128 128
24

Fully-connected

Concat

Output

Figure A1. A visualization of the voxel-based MLP architecture.

Appendix B. Datasets

As shown in Figure A2, we independently collected urban scene datasets using the
Livox Avia LiDAR and OAK-D-Pro camera, which includes four scenarios: Gym, Office
Building, CS Building and Library. Table A1 presents the specs on Livox Avia LiDAR and
OAK-D-Pro camera. Each scenario includes 3D point cloud priors, images, LiDAR-camera
extrinsics, and LiDAR trajectory poses. The 3D point cloud priors are obtained through
LiDAR odometry, which are cropped and manually denoised after accumulating multiple
frames, extracting keyframes and voxel downsampling. The images have a resolution of
1920 × 1080 without further processing. The camera pose can be obtained through the
LiDAR-camera extrinsics from calibration and the LiDAR trajectory poses from LiDAR
odometry. In Figure A3, We show the scenarios of LiDAR-camera calibration along with
the corresponding visualization results.
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Figure A2. The left image illustrates the four urban scene datasets which we collected. The right
image shows the result of 3D point cloud priors.

Figure A3. The left image illustrates the scene used for LiDAR-camera calibration. The right image
shows the result of projecting the LiDAR point cloud onto the image using extrinsics between LiDAR
and camera.
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Table A1. Descriptions of the specs on Livox Avia LiDAR and OAK-D-Pro Camera.

Livox Avia LiDAR OAK-D-Pro Camera

Parameter Value Parameter Value

Laser Wavelength 905 nm Image Sensor Sony IMX378
Angular Precision <0.05◦ Active Pixels 12 MP@60 fps
Range Precision 2 cm1 EFL 4.81

Data Latency ≤2 ms Focous Type AF: 8 cm–∞/FF: 50 cm–∞
HFOV/VFOV 70.4◦/77.2◦ DFOV/HFOV/VFOV 81◦/69◦/55◦

Noise <45 dBA F.NO 2.0
Weight 498 g Shutter Type Rolling shutter

IMU Built-in: BMI088 IR Sensitive No

Note: The range precision of 2 cm1 refers to the standard deviation (1σ) of the ranging error at a distance of 20 m.
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