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Abstract: Accurate information on snow cover extent plays a crucial role in understanding regional
and global climate change, as well as the water cycle, and supports the sustainable development of
socioeconomic systems. Remote sensing technology is a vital tool for monitoring snow cover’ extent,
but accurate identification of shallow snow cover on the Tibetan Plateau has remained challenging.
Focusing on the Three-Rivers Headwater Region (THR), this study addressed this issue by devel-
oping a snow cover discrimination model (SCDM) using a random forests (RF) algorithm. Using
daily observed snow depth (SD) data from 15 stations in the THR during the period 2001–2013, a
comprehensive analysis was conducted, considering various factors influencing regional snow cover
distribution, such as land surface reflectance, land surface temperature (LST), Normalized Difference
Snow Index (NDSI), Normalized Difference Vegetation Index (NDVI), and Normalized Difference
Forest Snow Index (NDFSI). The key results were as follows: (1) Optimal model performance was
achieved with the parameters Ntree, Mtry, and ratio set to 1000, 2, and 19, respectively. The SCDM
outperformed other snow cover products in both pixel-scale and local spatial-scale discrimination.
(2) Spectral information of snow cover proved to be the most influential auxiliary variable in discrim-
ination, and the combined inclusion of NDVI and LST improved model performance. (3) The SCDM
achieved accuracy of 99.04% for thick snow cover (SD > 4 cm) and 98.54% for shallow snow cover
(SD ≤ 4 cm), significantly (p < 0.01) surpassing the traditional dynamic threshold method. This
study can offer valuable reference for monitoring snow cover dynamics in regions with limited
data availability.

Keywords: snow cover discrimination model; random forests algorithm; shallow snow cover;
Three-Rivers Headwater Region

1. Introduction

Snow cover stands as the cryosphere’s largest element, enveloping 47% of the land
surface in the Northern Hemisphere during winter, with a vast coverage reaching up to
4.7 × 107 km2 [1,2]. This presence holds vital significance within the climate and hydro-
logical systems [3,4]. Snow cover significantly influences the energy balance of the land
surface due to its strong reflectivity in the visible bands [5]. Moreover, its engagement in
the carbon cycle deeply impacts carbon fluxes within the permafrost zone [6]. Additionally,
the snowpack, acting as a seasonal reservoir, plays a pivotal role as a recharge source for

Remote Sens. 2023, 15, 4644. https://doi.org/10.3390/rs15194644 https://www.mdpi.com/journal/remotesensing

https://doi.org/10.3390/rs15194644
https://doi.org/10.3390/rs15194644
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/remotesensing
https://www.mdpi.com
https://orcid.org/0000-0002-1010-9275
https://doi.org/10.3390/rs15194644
https://www.mdpi.com/journal/remotesensing
https://www.mdpi.com/article/10.3390/rs15194644?type=check_update&version=2


Remote Sens. 2023, 15, 4644 2 of 21

rivers in arid and semi-arid regions. This contribution accounts for roughly 16% of the
world’s total fresh water and effectively governs runoff dynamics [7]. Thus, snow cover
plays a crucial role as a requisite input for climate and hydrological models [8,9].

The Tibetan Plateau (TP), known as the “Third Pole”, hosts the region with the largest
snow cover area after the polar regions. Meanwhile, the TP is predominantly characterized
by shallow snow cover, with snow depths typically being less than 5 cm during individual
snowfall events, and the duration of snow cover generally not exceeding 5 days [10]. The
snow cover on the TP exhibits a strong response to global climate change, thus playing a
significant “indicator” role and profoundly affecting summer precipitation in the Yangtze
River Basin and Northeast China, as well as the strength of the summer monsoon in the
South China Sea [11,12]. Furthermore, the TP serves as the source of numerous rivers,
such as the Yangtze, Yellow, Lancang (Mekong), and Brahmaputra rivers. Meltwater
from the snow cover in this region has profound impacts on Eastern China, Southeast
Asia, and several countries in South Asia. Previous studies have shown that even with a
decrease in the extent of snow cover and the number of snow cover days in the context
of global warming [13], the frequency and intensity of extreme snowfall on the TP would
continue to show an increasing trend within a certain range of temperature rise [14–16],
which would severely affect crop growth, energy supply, transportation, and people’s
livelihoods [17]. Thus, obtaining accurate information on snow cover extent is scientifically
important for understanding regional and even global climate changes and water cycle
conditions. It would also contribute to promoting the stable development of socioeconomic
systems [18,19].

While in situ observations of snow cover extent offer high accuracy, they are signif-
icantly challenging to obtain in alpine regions, owing to factors such as transportation
inaccessibility, harsh environments, and high equipment maintenance costs. These chal-
lenges greatly restrict the acquisition of information on snow cover extent in these areas [19].
The extraction of snow cover extent information through remote sensing is a crucial aspect
of snow cover monitoring. The rapid advancement of remote sensing technology has
compensated for the lack of high-altitude stations by effectively enabling the monitoring of
snow cover extent and providing enhanced spatial and temporal continuity [20]. Generally,
optical and microwave remote sensing methods are commonly employed for monitoring
snow cover extent. The key to inverting snow cover extent lies in accurately determining
whether an image pixel represents a snow-covered area. Optical remote sensing imagery
utilizes the characteristic high reflectivity of snow cover in visible bands and its low reflec-
tivity in the shortwave infrared band to extract snow cover extent. Given its higher spatial
resolution, optical remote sensing currently stands as the primary approach for extracting
information on snow cover extent.

Specifically, there are two categories of methods for extracting snow cover extent
from optical remote sensing images: (1) visual interpretation and (2) automated and semi-
automated methods, including the band ratio, normalized difference index, supervised
classification, and decision tree methods [20,21]. In visual interpretation, snow cover
extent is delineated according to experts’ prior knowledge; this approach yields higher
accuracy, but it is time-consuming and subjective. Consequently, it is not well suited for
long-term or extensive snow cover identification, and it often faces limitations in practical
implementation [22]. The band ratio and normalized difference index methods generally
involve the construction of a normalized index through linear operations on different bands,
with a threshold set to automatically extract the snow cover extent. In 1989, Dozier et al.
pioneered the use of land surface reflectance in the green band and shortwave infrared
band to formulate the Normalized Difference Snow Index (NDSI), achieving effective
distinction of clouds from snow cover in the southern Sierra Nevada [23]. To differentiate
between snow cover and water bodies, Hall et al. introduced the SNOMAP algorithm
based on the NDSI, incorporating a condition where the near-infrared band was ≥0.11 [24].
This approach has been adopted by numerous scholars for extracting snow cover extent
in various regions [25–27]. However, the NDSI might significantly underestimate snow
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cover’s extent in forested areas. Thus, Wang et al. devised the Normalized Difference Forest
Snow Index (NDFSI), which is better suited for extracting snow cover extent in forests.
They replaced the green band with the NIR band in the NDSI formula, achieving favorable
outcomes in the Heihe River Basin of China [28]. Broadly, the index threshold method has
emerged as the primary approach for monitoring snow cover extent. Hao et al. utilized
a multilevel decision tree approach, integrating multiple indicators and seeking optimal
thresholds for each indicator, to extract snow cover in China [29]. Nevertheless, these
methods can be influenced by numerous factors, such as terrain, weather, and subsurface
conditions, leading to a potential reduction in snow cover discrimination accuracy and
substantial spatial disparities [30,31]. This effect is particularly pronounced in alpine
regions with intricate terrain and frequent cloud cover [32], limiting the applicability of
the index threshold method to areas such as the Tibetan Plateau (TP). Palermo et al. used
the traditional maximum likelihood method in supervised classification to distinguish
between dry snow and wet snow in the Alps, but they encountered significant errors [33].
Microwave remote sensing offers the possibility of penetrating clouds and circumventing
weather effects, rendering it suitable for all-weather monitoring of snow cover extent on
a large scale. As such, it is widely employed for extensive snow depth inversion [34–36].
However, its spatial resolution often remains relatively lower, and the issue of mixed pixels
cannot be avoided, complicating precise monitoring of snow cover at the watershed level.
Therefore, refining discrimination methods tailored to alpine regions becomes imperative.

Recently, the rapid advancement of machine learning methods has introduced fresh
avenues for distinguishing snow cover extent [37], offering notable benefits in address-
ing multidimensional data and intricate nonlinear issues [38,39]. Presently, numerous
researchers are employing diverse machine learning algorithms such as support-vector
machine (SVM), artificial neural networks (ANNs), and multivariate adaptive regression
splines (MARS) to extract snow cover information from the products of distinct remote sens-
ing satellites [40–42]. In comparison to traditional threshold methods, these approaches
deliver superior outcomes by taking into account additional environmental variables
(e.g., land surface reflectance, land cover, normalized indices). However, the SVM algo-
rithm can become inefficient and complex when handling extensive training sets, whereas
the ANN model demands a considerable number of training samples, thus presenting
limitations in regions with sparse observational data. On the other hand, the random forests
(RF) algorithm, characterized by its low sample size requirement and relatively simple pa-
rameters [43], has been found to possess remarkable advantages in image classification [44].
In this context, classification accuracy is intricately tied to parameter configuration, indica-
tor selection, and data reliability [45].

Previous investigations have predominantly concentrated on regions characterized by
thick snow cover. However, the comprehensive examination of snow cover identification
in regions with prevailing shallow snow cover, particularly in the Tibet Plateau’s Three-
Rivers Headwater Region (THR), remains relatively scant. The lack of consideration for
shallow snow cover stands as a major factor contributing to the uncertainty of existing
methods. Hence, focusing on the THR, an ecologically delicate environment in China, this
study meticulously formulated the snow cover discrimination model (SCDM) based on
the random forests (RF) algorithm. To this end, daily observed snow depth data from
15 stations within the region, spanning from 2001 to 2013, were taken as the “true values”.
The model integrated land surface reflectance, various normalized indices, land surface
temperature, snow cover days, and terrain indicators. This amalgamation was optimized
through the judicious selection of pertinent auxiliary variables and parameter adjustments,
aiming to enhance the recognition of snow cover—particularly shallow snow cover—within
the region. With the constructed model, snow cover was successfully identified, and factors
influencing the distribution of snow cover were systematically and exhaustively analyzed
(Figure 1). The findings of this study provide a scientific basis for augmenting the precision
of snow cover discrimination in regions bereft of comprehensive data. Additionally, they
contribute to the ongoing monitoring of snow cover dynamics at the regional level.
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2. Materials and Methods
2.1. Study Area

The THR is located in the northeastern part of the TP, around 31.55◦–37.14◦N and
89.42◦–102.44◦E, covering an area of approximately 3.75 × 105 km2. It is bordered to
the north by the Kunlun Mountains and the Qaidam Basin, to the west by the Hoh Xili
Mountains and adjacent to the northern TP, to the southwest by the Tanggula Mountains,
with the Bayan Har Mountains running southeast–northwest through the hinterland, and
to the east by the eastern edge of the TP. As shown in Figure 2, the terrain is dominated
by plateaus and mountains, with altitudes ranging from 1962 to 6617 m. The terrain
is undulating, with an overall distribution of high west and low east. The climate is
characterized by a typical plateau continental climate, with no significant variance between
seasons and a large temperature difference between daytime and nighttime, with an
average annual temperature of approximately 2 ◦C and an average annual precipitation
of approximately 420 mm. In particular, snow cover is mainly accumulated in the central
and western high-altitude areas, while snow cover distribution is relatively scattered in
the eastern and southern parts; the annual average snowfall is approximately 150 mm,
and the average number of snow cover days is approximately 90 [20]. The land cover is
dominated by grassland and bare land, accounting for 90.56% of the total area, with a
small area covered by forest land, accounting for 0.43% of the total area. Snow cover and
glaciers are widespread, amounting to approximately 2.4 × 103 km2. As the source of the
Yangtze, Yellow, and Lancang rivers (upstream of the Mekong River), snow meltwater
is an important source of water recharge for the rivers and is of great significance to
industrial and agricultural water use and the development of the socioeconomic system in
the downstream areas [46].
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Figure 2. Study area overview: (a) Location of the THR. (b) Topographic distribution of the THR.
(c) Land cover types in the THR. The points represent the average snow depth at each station during
2001–2013.The rectangular frames 1–8 represent 8 testing areas for evaluating the performance of the
snow cover discrimination model (SCDM) at the local spatial scale.

2.2. Data
2.2.1. MODIS Land Surface Reflectance Datasets

The MODIS Terra/Aqua Surface Reflectance Daily L2G Global 500 m and 1 km
(MOD09GA V6.1) and MOD10A1.061 Terra Snow Cover Daily Global 500 m (MOD10A1
V6) datasets were obtained from the Moderate-Resolution Imaging Spectroradiometer
(MODIS) onboard the Terra/Aqua satellite and downloaded from the Google Earth Engine
(GEE) cloud computing platform (https://code.earthengine.google.com/, accessed on
10 October 2022). Both with a spatial resolution of 500 m and sinusoidal projection
(SIN), MOD09GA V6.1 provides daily land surface reflectance data in 7 bands, while
MOD10A1 V6 provides only daily land surface NDSI values (Equation (1)), without the
binary snow cover (BSC) and fractional snow cover (FSC) values provided by previous
versions. MOD09GA V6.1 and MOD10A1 V6 have been commonly used in studies on snow
cover, owing to their relatively high temporal resolution and convenient acquisition [47–50].

Both MOD09GA V6.1 and MOD10A1 V6 were preprocessed on GEE. Cloud pixels
in the remote sensing images were identified first and removed using GEE’s own cloud
removal algorithm, and then radiometric calibration was performed, after which the
projection was converted. Daily land surface reflectance and NDSI values (Equation (1))
were extracted for each station, and the land surface reflectance data were used to calculate the

https://code.earthengine.google.com/
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Normalized Difference Vegetation Index (NDVI, Equation (2)) and NDFSI values (Equation (3)),
which were collectively used as auxiliary variables for snow cover discrimination.

NDSI =
re f 4− re f 6
re f 4 + re f 6

(1)

NDVI =
re f 2− re f 1
re f 2 + re f 1

(2)

NDFSI =
re f 2− re f 6
re f 2 + re f 6

(3)

where re f 1, re f 2, re f 4, and re f 6 are the land surface reflectance for the red, near-infrared,
green, and shortwave infrared bands, respectively.

2.2.2. Land Surface Temperature Dataset

Land surface temperature (LST) data for 2001–2013 were obtained from the daily
1 km all-weather land surface temperature dataset for the Chinese landmass, and data on
its surrounding areas were provided by the national Tibetan Plateau Data Center (TPDC,
https://data.tpdc.ac.cn, accessed on 1 December 2022) [51]. The data have a temporal
resolution of 2 times per day (daytime and nighttime) and a spatial resolution of 1 km. They
were prepared by integrating Terra/Aqua MODIS LST products, GLDAS data, vegetation
indices, and land surface albedo, with mean deviations of 0.09 K and −0.03 K and standard
deviations of 1.45 K and 1.17 K during the daytime and nighttime, respectively [52].

LST is an important expression of the interaction between land surface and atmo-
spheric energy [53,54], but it also has a complex feedback on ground–climate processes
and is extremely sensitive to climate changes [51]. Therefore, LST is not only a sensitive
indicator of climate change and a crucial prerequisite for understanding climate change
patterns, but also a direct input parameter for numerous models. It is widely applicable
to various fields, such as meteorology, climatology, environmental ecology, and hydrol-
ogy [52,55]. The LST data used in this study reflect daytime and nighttime land surface
temperature conditions; the land surface is the primary medium on which snow cover
exists in the natural environment, and it may be sensitive and show intense responses to
changes in snow cover [52].

In this study, the LST of each station during 2001 to 2013 was extracted, and the missing
LST data (2004D_267-366/2004N_345-366/2012N_103-366) were corrected by establishing
a regression relationship (Equations (4) and (5)), revised for daytime and nighttime with
the available LST data and daily air temperature data at each station; LST was maintained
as an auxiliary variable for snow cover discrimination. The daily air temperature data
for 2001–2013 were obtained from the China Meteorological Forcing Dataset (CMFD,
http://data.tpdc.ac.cn, accessed on 2 December 2022) provided by the TPDC, with high
overall accuracy [56,57]. However, as the spatial resolution of the CMFD is low (0.1◦), a
significant difference was observed between station elevation and grid center elevation.
Therefore, air temperature at the grid center was revised to the station using the daily
vertical temperature gradient (−0.48 ◦C/100 m).

D = 0.8152T + 17.406, R2 = 0.7147, P < 0.05 (4)

N = 0.9784T − 8.3193, R2 = 0.8982, P < 0.05 (5)

where D is the corrected daytime land surface temperature, N is the corrected nighttime land
surface temperature, and T is the corrected air temperature of the SD observation station.

https://data.tpdc.ac.cn
http://data.tpdc.ac.cn
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2.2.3. Snow Depth Dataset

Snow depth (SD) refers to the vertical depth from the surface of the snow cover to the
ground. It is an important parameter for characterizing snow cover and a key element of
routine meteorological observations. In this study, the Tibetan Plateau Station SD Dataset
for the period 2001–2013 was obtained from the TPDC. There were 23 stations within the
study region (Figure 2), and the observation data were obtained at 8 o’clock Beijing time and
quality-controlled for accuracy with a daily temporal resolution. In this study, missing data
for some years and months were excluded. We displayed the MODIS grid cells where the
sites were located on Google Earth and excluded sites with relatively complex underlying
surfaces. In the end, we retained only 15 sites that we considered relatively homogeneous
for SCDM construction. The selected sites primarily consisted of grassland and bare land,
and the terrain was relatively flat. Therefore, we believed that they could better represent
the overall conditions of the MODIS pixels in which they were located. Furthermore, the
observational data from the sites that were not selected would be used in the model testing
phase. Furthermore, snow cover samples with SD greater than 2 cm were selected for
model training to avoid the influence of mixed pixels. Then, the SD data were binarized.
Specifically, if the SD was greater than 2 cm, the value was “1”, indicating snow cover;
otherwise, the value was “0”, indicating a snow-free condition [35].

2.2.4. Other Dataset Sources

The digital elevation model Shuttle Radar Topography Mission (SRTM1 V3), with a
spatial resolution of 30 m, was used in this study, having been downloaded through the
GEE. The SRTM data were obtained from measurements conducted by the Endeavour
space shuttle, jointly launched by the National Aeronautics and Space Administration
(NASA) and the National Imagery and Mapping Agency (NIMA) in February 2000 [58].
The SRTM system onboard the Endeavour shuttle conducted a total of 222 h and 23 min
of data collection. This mission covered over 80% of the Earth’s land surface, ranging
from 60◦N latitude to 56◦S latitude, and included a comprehensive coverage of the entire
territory of China; it is considered to be a reliable DEM source [59,60].

We used a 3 × 3 pixel moving window to calculate the mean elevation (MEAN),
standard deviation (terrain standard deviation, STD), and relief amplitude (RA) within
the window. The elevation coefficient of variation was calculated using STD/MEAN.
Subsequently, we used the ”Aggregate” tool in ArcMap 10.5 to resample them to a spatial
resolution of 500 m, matching the resolution of the MODIS pixels.

The dataset of snow cover days (SCD) was obtained from the National Cryosphere
Desert Data Center (www.ncdc.ac.cn, accessed on 1 January 2023). The spatial resolution
was 500 m, and the temporal resolution was 1 year, which can reflect the continuity of snow
cover distribution in time to a certain extent and use it as the auxiliary variable.

Then, the auxiliary variables (Table 1) were matched to each station based on location
and date attributes.

Table 1. Potential indicators of factors affecting snow cover distribution in the THR.

Variable Name Code Unit Note

Surface reflectance for band 1 ref1

nm

620–670
Surface reflectance for band 2 ref2 841–876
Surface reflectance for band 3 ref3 459–479
Surface reflectance for band 4 ref4 545–565
Surface reflectance for band 5 ref5 1230–1250
Surface reflectance for band 6 ref6 1628–1652
Surface reflectance for band 7 ref7 2105–2155

www.ncdc.ac.cn
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Table 1. Cont.

Variable Name Code Unit Note

Normalized Difference Vegetation Index NDVI
Normalized Difference Snow Index NDSI
Normalized Difference Forest Snow Index NDFSI
Land surface temperature in the day LST_DAY ◦C
Land surface temperature in the night LST_NIGHT ◦C
Snow cover days SCD Day
Slope SLOPE ◦

Aspect ASPECT ◦

Elevation ELEVATION m
Relief amplitude RA
Elevation coefficient of variation ECV
Terrain standard deviation STD

2.3. Random Forests Algorithm

Random forests (RF) is a machine learning algorithm proposed by Leo Breiman and
Adele Cutler based on ensemble learning, through which missing values can be efficiently
estimated and handled and model accuracy can be ensured [43]. The basic unit is the
decision tree, which grows by autonomous sampling with put-back and the random
selection of some input variables to discriminate between samples. The RF classification
algorithm is a composite classification model composed of many individual classification
models {h(X, Θk), k = 1, . . . }. It consists of independently and identically distributed
random vectors {Θk)}. Through multiple rounds of training, it obtains a sequence of
classification models {h1(X), h2(X), . . . , hk(X)}. The final classification is determined by
using a voting mechanism. The equation is as follows:

H(x) = arg max
Y

k

∑
i=1

I(hi(x) = Y) (6)

where H(x) represents the composite classification model, hi(x) is an individual deci-
sion tree classification model, Y represents the output variable, and I(·) represents the
indicator function.

The random feature selection in RF involves randomly choosing a small subset of
input variables for splitting at each node. As a result, the node splits in the decision tree are
determined based on these selected features, rather than by considering all features. Then,
the trees are fully grown using the CART method without pruning, which helps reduce tree
bias. Once the decision trees are constructed, a majority voting method is used to combine
the predictions [61]. Obviously, a single decision tree is a weak classifier, and the collection
of classification results from multiple decision trees forms a strong classifier, which is
known as “Random Forests”. The “random” attribute is able to fully learn the mapping
relationship between dependent and independent variables without overfitting, and the
“forests” attribute is more accurate and resistant to interference than a single decision tree.

The generation of RF is determined by three main parameters: (1) the number of
decision trees used to construct the random forests (Ntree), (2) the number of randomly
selected factors when the decision trees are split (Mtry) [62], and the proportion of snow-
free samples to snow-covered samples (ratio). The presence or absence of snow cover in
this study is a simple binary classification problem, and the classification is based on the
model of the voting results of all decision trees. We calculated the following metrics based
on the confusion matrix to assess the model’s performance in snow cover discrimination:
accuracy, Cohen’s kappa (kappa), F1 score (F1), area under the curve (AUC), precision, and
recall. The meaning and calculation of each metric can be found in references [63,64].
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3. Results
3.1. Parameters of the RF Model: Ntree, Mtry, and Ratio

To enhance the performance and stability of the SCDM, a parameter search was
conducted utilizing the grid search method. This involved systematically exploring all
conceivable parameter values for the model. However, considering that the computational
complexity of constructing an RF model escalates with elevated values of Ntree and Mtry,
we designated specific values for Ntree (100, 500, 1000, 1500, and 2000), Mtry (ranging from
2 to 7 in increments of 1), and ratio (ranging from 1 to 26 in increments of 1, along with the
inclusion of the maximum value of 26.91531 for ratio). By amalgamating permutations of
these three parameters, a total of 810 models (5 × 6 × 27) were iteratively constructed to
identify the optimal parameter configuration.

As depicted in Figure 3a, the mean values of accuracy, AUC, F1, kappa, and precision
reached their peaks when Ntree was set to 1000. Concurrently, the mean value of recall
was notably high. Hence, based on this observation (i.e., Ntree = 1000), as illustrated in
Figure 3b, the highest mean values for accuracy, AUC, F1, kappa, precision, and recall
were achieved when Mtry equaled 2. More specifically, as demonstrated in Figure 3c, with
Ntree set at 1000 and Mtry at 2, a fluctuating trend was observed in the model metrics
when ratio was less than 19. Accuracy oscillated within the range of 96.07–99.47%, kappa
within 0.9208–0.9520, F1 within 0.9366–0.9636, AUC within 0.9843–0.9940, precision within
0.9559–0.9971, and recall within 0.9065–0.9483. However, the model metrics achieved
stability when ratio exceeded or equaled 19. During this phase, accuracy fluctuated between
99.49% and 99.60%, kappa between 0.9370 and 0.9473, F1 between 0.9393 and 0.9498,
AUC between 0.9881 and 0.9940, precision between 0.9459 and 0.9498, and recall between
0.9233 and 0.9434. Therefore, considering the metrics and the computational overhead of
the model, the parameters Ntree, Mtry, and ratio within the SCDM were determined as
1000, 2, and 19, respectively.
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3.2. Evaluation of the SCDM

The sample was divided into a training set (2001–2010) and a testing set (2011–2013)
by year, and the training set was randomly divided in a 60%:40% ratio for model train-
ing and validation, respectively, 10 times. To avoid the influence of interactions between
potential variables on the model performance, the factors were filtered through 10 inter-
mediate models built using the varSelRF package in R. The final factor system (factors
with ≥7 occurrences in the 10 intermediate models) was determined, which comprised
eight factors (Figure 4). Subsequently, the final SCDM was constructed. The testing set,
observation data from the remaining eight unselected sites in the THR, and a shallow snow
cover sample set (SD ≤ 2 cm) were used to evaluate the generalization ability of the SCDM.

Logit(P) = ln
P

1− P
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As shown in Table 2, the metrics for both the testing and training sets exhibited a high
level of consistency. However, as observation data from the remaining eight unselected
sites in the THR and the shallow snow cover sample set (SD ≤ 2 cm) from the training
model were excluded, their metrics displayed a slight decline compared to the training
set, and this decline was more pronounced in the latter. Nonetheless, the accuracy of all
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threesets of testing data remained generally satisfactory. Therefore, the SCDM can be used
for snow discrimination in the THR.

Table 2. Performance of the SCDM.

Data Set Accuracy AUC Kappa F1 Precision Recall

Training set (2001–2010) 0.9951 0.9940 0.9470 0.9496 0.9658 0.9339
Testing set (2011–2013) 0.9908 0.9875 0.9063 0.9111 0.8966 0.9262
Unselected sites 0.9842 0.9080 0.7144 0.7221 0.9186 0.5949
Shallow snow cover sample
set (SD ≤ 2 cm) 0.9798 0.8775 0.5925 0.6018 0.8861 0.4556

3.3. Analysis of the Factors Influencing Snow Cover Distribution

As shown in Figure 4, based on the SCDM, the importance of the factors affecting
snow cover distribution in the THR was ranked, and the relationship between each factor
and the snow cover distribution in the region was further clarified through a partial
dependence plot.

When utilizing the SCDM for snow cover discrimination within the THR, snow
cover indices emerged as pivotal components. Among these, the NDSI assumed the
most influential role, followed by the Normalized Difference Forest Snow Index (NDFSI).
Overall, the likelihood of snow cover distribution exhibited a positive correlation with both
indices. Specifically, when the NDSI and NDFSI were below 0.39 and 0.62, respectively,
the probability of widespread snow cover swiftly escalated with the elevation of these
two indices. Beyond these thresholds, the likelihood of distributed snow cover stabilized at
a high and consistent level. Similarly, the reflectance values of the green (ref4) and blue (ref3)
bands also manifested a positive correlation with the probability of snow cover distribution.
This correspondence is intrinsically linked to the conspicuous reflectance characteristics
of snow cover within the visible-light spectrum. In particular, when ref4 and ref3 were
below 0.58 and 0.56, respectively, the probability of extensive snow cover witnessed a
rapid surge with the amplification of these two indices. Subsequently, the probability
plateaued at a relatively elevated and unchanging level. Conversely, the likelihood of
snow cover distribution exhibited a negative correlation with reflectance in the shortwave
infrared band (ref7). This inverse relationship is attributable to the subdued reflectance
properties of snow within the shortwave infrared spectrum. When ref7 descended below
0.26, the probability exhibited a precipitous decrease in tandem with rising ref7 values.
Conversely, when ref7 surpassed 0.26, the probability dwindled to a relatively low and
consistent state. In the broader picture, the spectral insights garnered from snow cover
proved adept at differentiating between snow-covered and snow-free areas. This attribute
underscores the significance of spectral information as a vital auxiliary variable in snow
cover discrimination. Furthermore, the Normalized Difference Vegetation Index (NDVI)
played a key role in snow cover discrimination owing to its inverse correlation with the
probability of snow distribution. When the NDVI surpassed 0, the probability experienced
an initial sharp decline, reaching its nadir at roughly NDVI 0.12, before slightly rebounding.
Beyond an NDVI threshold of 0.36, the probability remained at a low and steady level.

Land surface temperature (LST) also contributed to the discrimination of snow cover
within the THR, with both LST_DAY and LST_NIGHT displaying negative correlations
with the probability of snow cover distribution. Notably, when LST_DAY was below
0 ◦C and LST_NIGHT was less than −29 ◦C, the probability exhibited a relatively high and
steady state. However, as the land surface temperature escalated, the probability experi-
enced a rapid decline. A further reduction in probability was observed when LST_DAY
exceeded 24 ◦C and LST_NIGHT surpassed 0.7 ◦C, resulting in an exceedingly low and
stable probability.

As illustrated in Figure 5a, the impacts of the NDVI and LST on the performance
of the SCDM were quantified across samples featuring varying SD. The inclusion of the
NDVI and LST independently improved the average accuracy of the SCDM by 0.05% and
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0.01%, respectively. When the NDVI and LST were simultaneously considered, the average
accuracy surged by 0.39%. Correspondingly, the area under the curve (AUC) increased
by 0.64%, 0.4%, and 0.90%; kappa increased by 0.46%, 0.08%, and 3.63%; F1 score (FS)
increased by 0.43%, 0.07%, and 3.43%; precision increased by 0.43%, 0.17%, and 0.53%;
and recall increased by 0.42%, 0.002%, and 5.56%. Evidently, in the context of snow cover
discrimination within the THR, the NDVI exerted a more substantial influence than LST.
Moreover, the improvement in model performance by incorporating both the NDVI and
LST was notable.

Figure 5. (a) Comparison of the snow cover discrimination results of the SCDM: SCDM exclud-
ing LST (E-LST), SCDM excluding NDVI (E-NDVI), and SCDM excluding both LST and NDVI
(E-LST + NDVI). (b) Snow cover discrimination accuracy based on the NDSI dynamic threshold
method and SCDM.

3.4. Model Discrimination Capability of Snow Cover at Different Snow Depths

To assess the accuracy of the SCDM in discriminating various SDs within the THR, a
comparison was made with the dynamic thresholds method. This method was selected to
discriminate snow cover by configuring dynamic thresholds as follows [65]: snow cover
samples with SD ranging from 1 to 16 cm, in increments of 0.1 cm, were combined with
snow-free samples based on the predetermined ratio. The threshold spanned from −1 to
1 in increments of 0.01. If the NDSI was greater than or equal to the threshold and the
reflectance of ref2 and ref4 exceeded 0.11 and 0.1, respectively, snow cover was designated
as accumulating; otherwise, it was considered to be non-accumulating. Notably, this
method incorporated the temporal variability of the NDSI threshold, setting it apart from
the SNOMAP approach (which employs a fixed NDSI threshold of 0.4) introduced by
Hall [24].

As depicted in Figure 5b, when the SD exceeded 1 cm, the discrimination accuracy
generally exhibited an upward trend with increasing SD, eventually stabilizing. Specifically,
for the dynamic threshold method, the average discrimination accuracy reached 95.88% for
SD≤ 4 cm and 98.30% for SD > 4 cm. Meanwhile, for the SCDM, the average discrimination
accuracy was 98.54% and 99.04% for the same respective ranges. Notably, irrespective of
thick or thin SD, the latter method proved significantly superior (p < 0.01) to the former.
This substantiates the suitability of the SCDM for effectively discriminating snow cover
extent within the THR.
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4. Discussion
4.1. Temporal Comparison with Other Snow Cover Products

To further clarify the capability of the SCDM to discriminate snow cover in the THR,
we attempted to compare the accuracy of the SCDM with other snow cover products that
have been used commonly. We downloaded the “Long-term series of daily snow depth
dataset over the Northern Hemisphere based on machine learning” developed by Che
(SDML_Che, https://cstr.cn/18406.11.Snow.tpdc.271701, accessed on 1 May 2023) [66],
the MODIS daily cloud-free snow cover area product for Sanjiangyuan from 2000 to 2019
developed by Hao (MODIS_Hao, http://www.ncdc.ac.cn, accessed on 2 May 2023) [67],
and the “MODIS daily cloud-free snow cover product over the Tibetan Plateau” developed
by Qiu (MODIS_Qiu, https://www.scidb.cn, accessed on 2 May 2023) [68]. We extracted
the number of snow cover samples for all 23 stations in the THR on a daily basis, station by
station, and matched them with the full samples. Subsequently, SDML_Che was binarized
(SD > 2 cm:1; SD ≤ 2 cm:0) with reference to Che’s method [35], and the missing values
were removed. Additionally, the extracted values from the other two snow cover products
were also binarized.

As shown in Figure 6a, the simulated monthly snow cover sample count based on the
SCDM presented strong consistency with the observed values. Specifically, as shown in
Figure 6b, the R2 between the SCDM results and the observed values was 0.96 (p < 0.01),
indicating the best performance. The R2 between SDML_Che, MODIS_Qiu, MODIS_Hao,
and the observed values was 0.7 (p < 0.01), 0.9 (p < 0.01), and 0.78 (p < 0.01), respectively.
Therefore, in terms of the time series, the SCDM showed the best performance.
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Figure 6. (a) Comparison of four methods of discriminating snow cover samples with station
observations during 2001–2013 (the “number of snow cover sample” refers to the sum of snow cover
samples at a given time for all stations), and (b) correlation analysis between station observations
and SCDM, SDML_Che, MODIS_Qiu, and MODIS_Hao.

It is important to note that the spatial resolution of SDML_Che is 0.25◦ (≈25 km).
We directly used the snow depth values within the 0.25◦ pixel where the snow depth
monitoring station was located, assuming that the snow depth was uniform within this
0.25◦ × 0.25◦ range. This assumption introduced considerable uncertainty. Therefore, we
discussed the relationship between SDML_Che and the observational data for different
seasons. As shown in Figure S2, the correlation coefficients between SDML_Che and the
observational data were relatively high in summer (June–August) and winter (December–
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February), at 0.94 (p < 0.05) and 0.81 (p < 0.05), respectively. This was because the snow
cover was extensive in winter and limited in summer, resulting in relatively consistent
snow cover distribution within the same pixel range. However, in spring (March–May)
and autumn (September–November), the correlation coefficients between SDML_Che and
the observational data were lower, at 0.62 (p < 0.05) and 0.59 (p < 0.05), respectively. This
was due to spring being the snow melt period and autumn being the snow accumulation
period, resulting in relatively heterogeneous snow cover distribution within the same pixel
range and, hence, greater uncertainty. Nevertheless, overall, SDML_Che showed good
consistency with the observational data. Therefore, if it was solely used for snow cover
discrimination and time-series analysis, we believed it was reasonable. However, due
to its lower spatial resolution, it could not be used for the subsequent spatial analysis
and comparisons.

4.2. Spatial Comparison with Other Snow Cover Products

The SCDM was employed to assess snow cover discrimination across different regions,
encompassing diverse terrain, imaging times, and snow cover fractions. To evaluate the
spatial discrimination capability of the SCDM, four areas within the study region and four
areas outside the study region were selected (as depicted in Figures 2 and 7(a1–h1)). In
the process of selecting Landsat-7 ETM images corresponding to the testing areas, care-
ful consideration was given to factors such as spatial/temporal heterogeneity, known
to influence the generalization ability of the model. In this manner, the spatial general-
ization capacity of the SCDM was quantitatively assessed to the maximum extent. The
specific methodology is outlined as follows: First, Landsat-7 ETM images were selected
and subjected to automatic classification using the ISODATA algorithm to extract snow
cover, generating binary images. These images were then resampled to a spatial resolution
of 500 m (Figure 7(a2–h2)) and used as the reference “true values”. Next, auxiliary vari-
ables corresponding to the same dates and regions (selected by the SCDM) were extracted.
The SCDM was then applied, binarizing the model output and generating binary images
(Figure 7(a3–h3)) (SCDM). Additionally, the MODIS_Qiu (Figure 7(a4–h4)) and MODIS_Hao
(Figure 7(a5–h5)) datasets were extracted for spatial comparison.

As shown in Figure 7(a1–d1), four testing areas within the study region were selected.
In comparison to the MODIS_Qiu and MODIS_Hao datasets, the SCDM exhibited the
highest overall discrimination accuracy. Among the testing areas, the highest accuracy
(98%) was achieved in testing area 4. This was followed by testing areas 1 and 2, with
accuracies of 97.7% and 87.8%, respectively. Notably, the snow cover discrimination
accuracy for testing area 3 was relatively lower. This was attributed to the presence of
discontinuous and shallow snow cover in the northeastern part of the area, coupled with its
smaller distribution area. This information was challenging to capture in MODIS imagery,
resulting in unsuccessful discrimination. MODIS_Qiu and MODIS_Hao faced similar
challenges. In contrast, the SCDM outperformed MODIS_Qiu and MODIS_Hao in snow
cover discrimination within the study region.

As shown in Figure 7(e1–h1), four testing areas outside the study region were also
selected. While the overall accuracy of the SCDM decreased compared to the testing
areas within the region, it still exhibited superior performance over MODIS_Qiu and
MODIS_Hao. Among these areas, the highest discrimination accuracy (95.2%) was achieved
in testing area 8. This was followed by testing areas 5 and 7, with accuracies of 95.2% and
88.4%, respectively. However, the accuracy was relatively lower in testing area 6, which
was primarily attributable to the misclassification of snow-free areas in central valleys as
snow cover, resulting in some degree of overestimation. Nevertheless, MODIS_Qiu and
MODIS_Hao tended to underestimate snow cover—especially the latter, which exhibited
significant underestimation.
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In summary, both within and outside the study region, the SCDM exhibited superior
capability in snow cover discrimination compared to MODIS_Qiu and MODIS_Hao.

4.3. Uncertainties and Limitations

To ensure the authenticity and accuracy of the training set, we attempted to construct
the SCDM at the station scale (or pixel scale). Given the intricate nature of underlying
surfaces and the potential for mixed pixels in regions with shallow snow cover, we chose to
include only thick snow cover samples (SD > 2 cm) from 15 relatively homogeneous sites
for training the SCDM. While the accuracy of the SCDM at the station scale (Figure 6) and
local spatial scale (Figure 7) exceeded that of other snow cover products, it is important
to acknowledge that the limited number of sites (15) substantially constrained the gener-
alization capacity of the model. This limitation may serve as a significant factor affecting
the SCDM, especially in areas with greater heterogeneity than the selected sites, where
potential shortcomings in snow cover discrimination may arise. Additionally, the predomi-
nant land cover types within the THR consist of grassland and bare land (as outlined in
Section 2.1). The SCDM was specifically developed for these particular underlying surface
types. Consequently, its snow cover discrimination capability might be constrained in
regions with different land cover characteristics, such as forests or artificial surfaces. In
contrast, the unselected sites were primarily located in urban areas, where the land cover
within the MODIS pixels was more heterogeneous. This heterogeneity led to missed detec-
tion of snow cover by the SCDM. Additionally, when the observed snow depth was ≤2 cm,
it implied that, at that time, the station and its surroundings likely had predominantly
shallow snow cover and a lower snow cover fraction. Consequently, the issue of mixed
pixels was unavoidable, which may have led to the presence of shallow snow cover being
underestimated. Even if shallow snow cover was observed, the spectral response of the
MODIS pixel to which it belonged may not have been very strong. So, at this point, the
representativeness of binary classification pixels may be a significant source of uncertainty.
Furthermore, due to the time difference between the MOD09GA data overpass time (local
time at 10:30 every day) and the station observation time (Beijing time at 8:00 every day),
snow cover may have undergone melting or accumulation during this period, also resulting
in missed detection and false detection. As part of our future efforts, we intend to enhance
the temporal and spatial density of site observations in order to expand the size of the
training set. This expansion would aim to strengthen the performance of the SCDM in
diverse land cover type areas. Through these endeavors, we hope to address the model’s
limitations and further improve its applicability to a broader range of scenarios.

During the development of the SCDM, we identified the ratio parameter as a crucial
factor influencing the model’s performance. In the parameter optimization stage, the
highest overall performance (on average) of the SCDM was achieved at ratio = 19. However,
during the onsite validation stage, the situation was different. In other words, the SCDM
did not necessarily present the highest accuracy at ratio = 19 in different validation areas.
This disparity was assumed to be possibly linked to the snow cover fraction (SCF) within
the validation areas. Hence, SCF was calculated for each area based on the results of
Landsat-7 ETM image classification, and the optimal ratio (OR) was further subjected to a
simple linear regression analysis. As depicted in Figure 8a, a significant positive correlation
emerged between these two variables (p < 0.05), with an R2 value of 0.65. This finding
suggests that the optimal ratio for the SCDM tends to increase with a corresponding increase
in SCF. Therefore, different ratio values are recommended for different SCFs, as illustrated
in Figure 8b. It is essential to note that the optimal ratio was not 1 but approximately
16 when the SCF reached 0.5. This peculiarity might stem from the greater complexity of
surface characteristics in snow-free areas compared to snow-covered areas. Consequently,
the SCDM might require a larger number of snow-free samples to effectively capture the
distinct surface features in such regions.
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Furthermore, the assumptions of the confusion matrix (such as pure pixels) are often
challenging to meet. Large-scale remote sensing mapping often involves issues such as
mixed pixels, representativeness of defined classes, and matching ground data with remote
sensing data. These assumptions are more difficult to satisfy, especially with 500 m spatial
resolution MODIS data. However, currently, the confusion matrix is the core method
for accuracy assessment in remote sensing image classification, because it can describe
classification accuracy and reveal the confusion between classes. Therefore, regarding this
issue, in our future work, we will attempt to use higher-spatial-resolution remote sensing
images or employ methods like pixel unmixing to enhance the representativeness and
credibility of the defined classes, reducing the uncertainty in this evaluation system.

5. Conclusions

In this study, based on the SD observation data from the stations, the RF algorithm
was used to construct an SCDM for the THR, taking into account land surface reflectance,
normalized indices, and LST. In addition, factors affecting the snow cover distribution in
the area and the simulation capability of the SCDM were systematically analyzed. The
main conclusions are as follows:

(1) The model performance was optimal when the parameters Ntree, Mtry, and ratio were
set at 1000, 2, and 19, respectively. There was a significant positive correlation between
OR and SCF (p < 0.05), with an R2 value of 0.65. Compared with other snow cover
products, the SCDM showed superior performance for snow cover discrimination,
whether at the pixel scale or the local spatial scale.

(2) The spectral information of snow cover was an important auxiliary variable in snow
cover discrimination. For example, the NDSI, NDFSI, ref4, ref3, ref7, and NDVI
appeared as crucial indicators for the SCDM, and a more pronounced improvement
in model performance could be achieved by considering both the NDVI and LST.
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(3) Specifically, the average discrimination accuracy of the dynamic threshold method was
95.88% when SD ≤ 4 cm and 98.30% when SD > 4 cm, and the corresponding average
discrimination accuracy of the SCDM was 98.54% and 99.04%. Irrespective of thick
(SD > 4 cm) or thin (SD ≤ 4 cm) snow cover, the SCDM showed significantly higher
performance (p < 0.01) than the traditional dynamic threshold method. Therefore, the
SCDM is more suitable for discriminating snow cover’s extent in the THR.
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(c) autumn; (d) winter; Table S1: Variable selection results of 10 intermediate models.
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