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Abstract: Predictive accuracy in wildland fire behavior is contingent on a thorough understanding
of the 3D fuel distribution. However, this task is complicated by the complex nature of fuel forms
and the associated constraints in sampling and quantification. In this study, twelve terrestrial laser
scanning (TLS) plot scans were sampled within the mountain pine beetle-impacted forests of Jasper
National Park, Canada. The TLS point clouds were delineated into eight classes, namely individual-
tree stems, branches, foliage, downed woody logs, sapling stems, below-canopy branches, grass
layer, and ground-surface points using a transformer-based deep learning classifier. The fine-scale 3D
architecture of trees and branches was reconstructed using a quantitative structural model (QSM)
based on the multi-class components from the previous step, with volume attributes extracted and
analyzed at the branch, tree, and plot levels. The classification accuracy was evaluated by partially
validating the results through field measurements of tree height, diameter-at-breast height (DBH),
and live crown base height (LCBH). The extraction and reconstruction of 3D wood components
enable advanced fuel characterization with high heterogeneity. The existence of ladder trees was
found to increase the vertical overlap of volumes between tree branches and below-canopy branches
from 8.4% to 10.8%.

Keywords: terrestrial laser scanning; quantitative structural model; deep learning; forest; lidar; fuel;
3D reconstruction; ladder fuel; point cloud

1. Introduction

An increasing frequency of wildland fires has been reported across North America [1–3]
since the 1980s [4] and is projected to continue to increase in coming decades, mainly due
to changes in climate (warmer, drier conditions) and anthropogenic drivers [5,6]. The
threat of high-intensity fires raises concerns due to reduced environmental resilience and
limited fire control resources [7,8]. In recent years, some wildland fire research has been
dedicated to the optimization of large-scale wildfire systems, for example, the Canadian
Forest Fire Danger Rating System (CFFDRS) [9] and the National Fire Danger Rating System
(NFDRS) [10]. Among the system components, climate and weather have been extensively
studied and are broadly well-established as general indicators of fire spread [11–14]. This
is primarily because weather variables account for the majority of fire intensity and spread
when compared to other factors [15].

The system inclusion of wildland fuel, another fundamental predictor of fire spread
and intensity in fire behavior models, is generalized within a geospatial data layer. For
example, the fuel inputs for the Canadian Fire Behavior Prediction (FBP) system includes
inventory variables such as fuel type, fuel load, and moisture content within relatively
broad areas or fuel types [16] but are not indicative of the spatial heterogeneity of vege-
tation fuels. Despite the general use of fuel types, empirically-based models cannot use
spatially varying fuel structures. Physically-based simulation models enable more com-
plex spatiotemporal factorization of fuels such as fuel breaks and shrub/ladder fuel layer
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mixtures including: (1) 2D raster-based Prometheus [17], FARSITE [18], Burn-P3 [19], and
Cell2Fire [20], (2) 3D terrain-based FIRETEC [21] and QUIC-Fire [22], and (3) 3D tree-level
WFDS [23,24], FastFuel [25,26], and STANDFIRE [26]. The support for spatially-explicit
fuel inputs in modern fire behavior simulators may, in part, be attributed to the availabil-
ity of new observation technologies represented by multi-spectral and thermal remote
sensing systems [27,28].

The increasing availability of LiDAR data can further enhance the opportunity to
create high-resolution 3D vegetation and fuel units for more realistic fire prediction and
simulation [25] and for a better understanding of the distribution of fuels in classified
fuel types [29]. Terrestrial laser scanning (TLS) is particularly useful for measuring the
3D structure of trees, which can be classified into fuel distributions from the ground
level. The high density of returns also improves the identification and quantification of
understory and ladder fuels, which may be occluded or undetectable using reduced point
density airborne lidar systems or from overstory shadowing, which impacts optical re-
mote sensing technologies [30–32]. TLS enables fine-scale measurements of micro-scale
topographic variations, vegetation dimensions, species, and the ability to quantify live and
dead fuel components [33,34]. From these measurements, 3D branch and crown reconstruc-
tion, spatial distribution and the connectivity of fuels, and any unexplored fuel-related
metrics can be quantified from very high spatial resolution 3D point clouds [34]. For ex-
ample, García et al. [35] used TLS to extract fuel attributes including canopy cover, canopy
base height (CBH), and fuel strata gaps, while Alonso-Rego et al. [36] further extracted
canopy fuel load (CFL) and canopy bulk density (CBD) for use in fire behavior models.
Observing and modeling such fine-resolution 3D fuels from TLS are useful for quanti-
fying 3D fuel variability within and across fuel types [37,38], which would normally be
manually measured in fuel plots, identifying changing fuel conditions in climate medi-
ated or otherwise disturbed or changing vegetation [39,40], and for use in future wildfire
behavior simulations [41].

A more in-depth integration between the TLS data and fire simulation models has
potential at the point or voxel level [42], but has rarely been realized in the literature.
Fire simulators typically rely on artificial 3D scenes with tree geometries interpolated
from remotely sensed data or inventory attributes [43]. FUEL3D is one of the 3D scene
generators [44,45] that does not yet incorporate true forest heterogeneity such as litter,
shrub, and ladder fuels, which may be observed in TLS point clouds [46]. An obvious
barrier of applying TLS at the plot scale is the challenge of transferring point data into
volumetric fuel components for fire simulation, which requires: (1) the classification of fuel
types, and (2) a reduction in the potential for point cloud occlusion.

The former step differentiates fine/coarse fuel types of different flammability and
fire spread patterns. For example, Chen et al. [47] classified forest fuels from TLS into
strata of overstory, elevated, near-surface, and surface using a height slicing method.
Loudermilk et al. [37] first used TLS to estimate the fuelbed structure at the submeter scale,
finding that simple partitioning of plots into point cloud groups based on k-means signifi-
cantly improved the fire variable predictions (e.g., temperature) compared to individual
plot models. García et al. [35] reported the first quantitative extraction of fuel-oriented
variables including the canopy height, canopy cover, CBH, and fuel strata gap to facili-
tate the assessment of vertical fire spread risk. Similarly, Rowell et al. [42] counted fuel
surface voxels and fuelbed porosity to estimate the fuel volume, discovering a strong
linear relationship between the TLS-based volume and fuel mass that was higher than the
field measurements, particularly within the lowest 10–20 cm stratum with the highest fuel
concentration. They also suggested that fuel biomass estimation could be further improved
using more sensitive TLS metrics than overall voxel volume occupation. Rowell et al. [43]
emphasized the importance of partitioning fine-scale fuelbeds for fire behavior models
because fuels combust differently based on changes in relative humidity and ambient
temperature. Yrttimaa et al. [33] demonstrated the potential of TLS for mapping coarse
woody debris, detecting 68% volume using an automated method, while Muir et al. [48]
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found it challenging to accurately determine the downed woody debris length from TLS
due to grass and tree trunk occlusion. Without calibration, TLS alone might not be the
superior tool for estimating the downed woody debris volume. Yrttimaa et al. [33] noted
that a maximum of 83% of volume was detectable from TLS with visual interpretation.
Extracting ladder fuels from TLS has also been demonstrated as a viable approach. Ladder
fuel refers to vegetation such as low-hanging branches, shrubs, and leaning trees that
provide a “ladder” for ground fires to climb up into the crown. The presence of ladder fuel
increases the risk of more intense, fast-spreading crown fires. Forbes et al. [49] concluded
that the use of TLS to quantify ladder fuel density variation across strata was the best
predictive model of burn severity among multiple remote sensing approaches. TLS has
also been applied to fuel change analysis, with the TLS voxel density significantly relating
to shrub fuel bulk density from both pre- and post-fire measurements [49]. One notable
constraint of TLS is the limited spectral information from laser returns, meaning that most
TLS use is based on geometric information. However, an experiment using two TLS devices
with different wavelengths demonstrated significant accuracy (r2 = 0.97) in explaining the
fuel moisture content using pulse intensity and its standard deviation in a multiple linear
regression model [50].

The latter step corrects the bias of occluded wood volume, typically through wood geo-
metrical reconstruction using a quantitative structure model (QSM) or fractal theory [51–55].
To achieve plot-level wood reconstruction, individual trees also need to be isolated and
wood/foliage segmented [56]. Such point cloud algorithm developments are spread across
separate studies on TLS [57–63] and are further extended to more portable options like
mobile laser scanning (MLS). MLS can either be handheld or backpack-mounted with com-
parable accuracy [64,65], or vehicle-mounted for expanded coverage with minor accuracy
loss [66]. However, these methodological developments have yet to be synthesized in the
context of fuel analysis. This gap may be attributed to the relatively recent emergence
of many of these algorithms in need of comprehensive benchmarking, validation, and
software development at the broader level. Among the benchmarked algorithms, the
highest accuracies range from ~90% for tree/ground classification [67], ~80% for individual
tree isolation [68,69], ~90% for wood/leaf classification [70–72], to >98% for QSM wood
volume estimates [73]. However, these have not been investigated for fuel extraction.

The collection of fuel plot data is time consuming, expensive, and does not sample all
attributes of the structure of trees. TLS offers an opportunity for the rapid collection and
processing of data, which represents many of the 3D structural attributes that are important
for characterizing the fuel distribution, change, and their potential use for parameterizing
fire models. This study demonstrates a 3D fuel analysis framework for TLS with novel
processing examples of wood point extraction, classification, isolation, and reconstruction
applied to a variety of pine/fir forests and with mountain pine beetle disturbance at Jasper
National Park, Alberta, Canada. The crown, ladder, and surface fuel components were
characterized at a high-resolution, 3D scale and their distributions were investigated at the
tree- and plot-level, respectively. This study demonstrates the promising application of
TLS for detailed fuel–fire assessment and prediction. The major objectives of this study are:

• Delineation of 3D plot components with deep learning classifiers amenable for multi-
layer fuel analysis;

• Provision of wood volume distribution at the branch, individual tree, and plot level
from the delineated 3D components based on the QSM and scaling methods.

2. Study Area and Data Collection

Our study site is located near the tributary basins of the Athabasca River and Miette
River within the eastern main ranges of the Canadian Rockies in Jasper National Park
(Figure 1). The elevation of the valley basins ranges between 1050 and 1200 m with a
typical annual average temperature of 4.1 ◦C. The predominant species in the park (and
examined in the TLS and field plots) is Pinus contorta (lodgepole pine), categorized as fuel
type C-3 in the Fire Behavior Prediction (FBP) system. A decade long attack of mountain



Remote Sens. 2023, 15, 4778 4 of 27

pine beetle (MPB) has altered the existing fire regime by dehydrating and often killing
many of the pine trees, causing the transition from healthy green trees into the red-phase,
where needles have died but remain on branches (and are red in color), and grey-phase,
where needles have dropped from trees, leaving remaining grey branches on the trees
and causing the accumulation of dry woody debris on the forest floor. This region is
characterized as a lightning-shadow area with a low flash density of less than 0.5 per km2

per year [74]. The majority of lightning events occur during the night-to-morning period
near water bodies, which is atypical of severe lightning commonly associated with local
solar heating for thunderstorms [75]. However, studies have indicated that the eastern
aspect of terrain features within the elevation range between 1200 and 2000 m could enhance
flash density [75,76], consequently increasing the risk of fire occurrence and subsequent
spread into adjacent valley basins. The accumulation of fire fuels from mountain pine
beetle and drying potential is also of significant concern for the town of Jasper, which is
also located at the confluence of the basins (Figure 1). This was exemplified in September
2022 when a fire occurred 15 km north of the town of Jasper, reinforcing the importance of
fuel monitoring, prescribed fires, and fire prediction in the area.
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Figure 1. Study site and TLS plot locations with an in situ photo of the JP9 plot based on a hillshade
relief map. The green star in the top right indicates the location of Jasper town in Alberta.

Twelve adjacent TLS plots coincident with the field data were collected at six locations
along the valley south and west of the town in July 2021. Two plot centers were located
side by side at a distance of 40 m to reduce movement of the TLS and to increase sampling
efficiency at each location (Figure 1). A Teledyne Optech Polaris TLS station (1550 nm) was
placed at each plot center for a 360◦ × 120◦ scan and at four corners 20 m from the plot
center to complement the central scan and reduce the occlusion of returns. TLS scans were
collected at a rate of two plots per day. Trees within an 11.3 m radius from each plot center
were also measured for their species, tree height, diameter-at-breast-height (DBH), live
crown base height (LCBH), dead crown base height (DCBH), tree phases under MPB attack,
and the approximate degree of dead condition (Dead %). A tree with a Dead % value of 100
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characterized a leaf-off tree. A total of 572 trees were surveyed including six major species:
lodgepole pine (Pinus contorta), white spruce (Picea glauca), black spruce (Picea mariana),
trembling aspen (Populus tremuloides), Douglas fir (Pseudotsuga menziesii), and subalpine fir
(Abies lasiocarpa). The selection of twelve plots represented a wide range of fuel conditions
with varying stem density, terrain slopes, sub-canopy thickness, and tree health (Table 1).
Individual trees were not geolocated due to time constraints. Instead, plot quadrants were
separated by four cardinal directions and tree locations within quadrants were visually
identified. Figure 1 shows an example ground-level view of the JP9 plot in which ladder
fuels and downed woody logs are prevalent in the plot.

Table 1. Summary characteristics of trees within each of the twelve plots (named ‘JP’ for the Jasper
plot). DBH, Height, LCBH, and DCBH plot-level averages from individual tree mensuration within
11.3 m from the plot center are described. Subcanopy height and slope were averaged over a grid at
1 m resolution from the georeferenced TLS plot scans.

Plot Coordinates
Stem Density

(ha−1)
Subcanopy

Height (std) (m)
Slope

(std) (◦)
DBH

(std) (cm)
Height

(std) (m)
LCBH

(std) (m)
DCBH

(std) (m)

JP1 52.669◦, −117.888◦ 801 1.95 (1.44) 12.1 (7.3) 10.2 (4.6) 8.2 (3.4) 2.9 (2.8) 3.2 (1.5)
JP2 52.669◦, −117.888◦ 1626 2.61 (1.94) 12.0 (9.1) 11.1 (5.2) 9.7 (3.7) 4.1 (3.0) 3.7 (1.5)
JP3 52.669◦, −117.888◦ 776 1.40 (1.14) 3.0 (2.1) 13.7 (4.4) 11.1 (3.5) 5.1 (1.7) 2.3 (0.8)
JP4 52.800◦, −118.015◦ 1426 1.37 (1.02) 3.0 (3.5) 12.7 (5.1) 10.6 (4.0) 5.2 (2.6) 2.3 (0.5)
JP5 52.800◦, −118.015◦ 1301 3.24 (2.50) 9.2 (10.0) 11.9 (7.2) 10.4 (5.8) 2.4 (3.3) 5.7 (2.4)
JP6 52.670◦, −117.891◦ 2051 3.21 (2.28) 11.3 (13.6) 10.1 (7.0) 9.0 (5.8) 2.1 (3.7) 4.0 (2.7)
JP7 52.789◦, −118.005◦ 450 1.19 (0.81) 3.5 (3.1) 16.8 (9.2) 12.7 (6.3) 4.5 (4.3) 2.6 (1.0)
JP8 52.788◦, −118.005◦ 300 1.39 (1.17) 2.5 (2.9) 14.0 (8.6) 9.3 (5.3) 0.8 (0.9) 1.6 (0.4)
JP9 52.788◦, −118.005◦ 1876 2.77 (2.09) 23.4 (12.1) 15.2 (5.8) 15.5 (5.8) 6.8 (4.8) 7.1 (3.0)
JP10 52.870◦, −118.253◦ 1501 2.34 (1.69) 20.8 (7.4) 16.1 (5.5) 16.4 (5.6) 9.4 (4.1) 6.8 (3.3)
JP11 52.724◦, −117.929◦ 1101 2.56 (2.43) 7.2 (7.3) 16.1 (5.8) 14.2 (5.4) 6.0 (4.9) 7.5 (2.2)
JP12 52.725◦, −117.930◦ 1101 2.41 (2.17) 6.9 (8.4) 18.2 (6.1) 16.9 (5.9) 1.5 (2.2) 5.8 (3.5)

For each scan, a point cloud was generated using all laser returns, incorporating an
intensity attribute for each point. Point clouds of corner scans from TLS were co-registered
manually based on the 3D tie points with CloudCompare (v2.11) [77]. The selection of tie
points are iterative trial and error based on the sharp branch edges until no obvious visual
displacement is found. A plot consists of 7–10 tie points spread over different corners. The
co-registration error was represented by the root-mean-square error of all tie points in the
plot from CloudCompare. The registration errors per plot are summarized in Figure 2 with
an average error of 1.9 cm. It is worth noting that in situ targets are commonly preferred
for achieving optimal registration accuracy. These were excluded from this study due to
the inefficiency associated with their setup and their limited discernibility in plots rich with
understory vegetation. All registered scans were merged into a single ‘plot’ point cloud,
cropped to a circular radius of 25 m, and then resampled to a spatial resolution of 5 mm for
further processing. A spatial resolution of 5 mm was specifically selected as it provides
a reasonable balance between the ability to discern branches from noise conifer trees and
computational efficiency for subsequent analyses. TLS plot scans were georeferenced to
point clouds acquired from airborne laser scanning (ALS) collected the same summer (early
August, 2021). The georeferencing followed a similar manual registration procedure as that
employed for TLS co-registration. Iterative selection of 10–14 tie points was performed on
the tree tops and crown edges from both the TLS and ALS datasets until visual overlap
of the crown shapes was achieved. The mean error associated with this TLS-to-ALS
georeferencing process was determined to be 24.8 cm.
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3. Methodology
3.1. Workflow and Preprocessing

The primary workflow decomposed TLS point clouds into eight classes, which are
important for quantifying fuels: tree stems, tree branches, tree foliage, seedling stems,
downed woody logs, below-canopy branches, ground points, and other non-wood foliage
and litters (Figure 3). Within this classification scheme, below-canopy branches refer to
non-stem wood points with diameters greater than 5 cm within the saplings, shrubs, and
surface layers. Ladder fuels are further differentiated into categories such as leaning trees,
below-canopy dead branches, and downed woody logs. Within the scope of this paper,
these leaning trees and stems are respectively referred to as “ladder trees” and “ladder
stems”. It is worth noting that some dead fallen trees may not make contact with the
ground but could possess a moderate leaning angle. From our observations, such instances
are relatively infrequent. We identified downed woody debris based on a high inclination
angle exceeding 60◦ as this criterion clearly demarcates the boundary between the leaning
tree layer and the downed woody debris layer. Varying classifiers and filters were used
to extract the class of interest for each point and the eight classes were combined and
used to form a multi-class point cloud per plot. The classifications were programmed
using PyTorch (v1.13), Python, and all the remaining processes using MATLAB (R2022b).
PC configuration included an Intel® Core™ i7-12700K 12 × 3.60 GHz, 128 GB RAM, and
NVIDIA GeForce RTX 3090 (24 GB).
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The subsequent post-classification scheme is illustrated in Figure 4. Individual tree
components such as stem, branch, and foliage were clustered. Wood was reconstructed
into cylinder-shaped 3D architecture models using a custom QSM model. All other coarse
wood components were isolated and reconstructed to estimate the wood volume across
each plot.
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Figure 4. Flowchart illustrating the process of wood component separation and tree architectural
reconstruction following the classification of the TLS plot components.

3.2. Classification of Tree Point and Coarse Wood Components

The major components, namely, tree, stem, and downed woody log points were
extracted using a state-of-the-art deep learning classifier SegFormer [78] customized in a 3D
voxel version (Figure 5a). The definition of trees in this study did not include saplings with
a height < 5 m. SegFormer replaces the classic convolutional neural network (CNN) layers
with self-attention-based transformers, surpassing well-recognized semantic classifiers
such as DeepLab V3 [79] and Swing Transformer [80] in terms of an overall rating of
computation efficiency and accuracy. The SegFormer parameter values remained set to
default and its configuration of voxelization, sampling, training, and testing followed the
scheme in Xi et al. [71] except for the block size and voxel resolution (Table 2). A block of
voxels was the input unit to the SegFormer. The block size was selected as 128 × 128 × 128,
which maximally exploited the GPU RAM capacity. The voxel resolution was customized
based on the scale of interest: for example, smaller features such as downed woody logs
matched a finer classification resolution (Table 2). The laser intensity was appended to each
voxel as an additional layer to enhance the detection of coarse wood (stems and downed
woody logs). Four plots with manually delineated tree and non-tree classes were used as
the training sample (Figure 5b) with another single plot used as the independent testing
sample. It was manually intensive to label wood and non-wood points as the training
and testing reference over entire plots. Therefore, a subset of the plot scan with a size of
~8 × 8 m2 was clipped. A total of 10 and 21 clips (or subsets) were created from the TLS
scans to train the classifiers for the stems (Figure 5c) and downed woody logs and branches
(Figure 5d), respectively, along with two and three clips for testing. A training block was
randomly located within each random clip and was also rotated horizontally by a random
degree. This was considered as a data augmentation process to mitigate overfitting under a
small sample size. The accuracy evaluation metric was the mean inter intersection over
union accuracy (mIoU). Incorrectly classified points were edited and cleaned for the wood
isolation and tree clustering processes.
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Figure 5. SegFormer classifier and example reference: (a) network structure of the SegFormer, where
MLP is the multilayer perceptron, the 3D size of data block after each layer operation is labeled
as the numbers below, and the feature number of the data block is labeled inside each colored bar;
(b) labeled tree (red) and non-tree (blue) points of JP1; (c) labelled stem (red) and non-stem (blue)
points of a JP9 clip; (d) labelled downed woody log (red) and remaining (blue) points of the JP9 clip.
The point clouds in (b) were rendered using a screen space ambient occlusion (SSAO) shader [81] to
enhance the ambient shadowing and tree visibility. The point transparency of (c,d) was adjusted for
the clear visualization of stems or downed woody logs.

Table 2. Customization of SegFormer for the different wood component classes of interest.

Classifier Block Size Voxel Resolution Attributes Sample Size
(Training)

Sample Size
(Testing)

Tree 128 × 128 × 128 10 × 10 × 10 cm3 Binary (0, 1) 4 plots 1 plot
Stem 128 × 128 × 128 4 × 4 × 4 cm3 Binary (0, 1) + Intensity 10 clips (~8 × 8 m2) 2 clips

Downed logs 128 × 128 × 128 2 × 2 × 2 cm3 Binary (0, 1) + Intensity 21 clips (~8 × 8 m2) 4 clips

3.3. Individual Wood Isolation

The classified stem points inevitably contained small isolated fragments detectable
using the connected component analysis [82]. Any connected fragment with a length
or width < 5 cm was considered as noise and discarded. The remaining points were
then clustered into small segments using an l0 cut-pursuit algorithm [83]. The cut-pursuit
algorithm has two main parameters: the number of neighbors (K) from the nearest neighbor
search as the minimal unit, and the regularizer λ as the overall graph scale [69]. The greater
the K and λ set, the coarser the clusters that would be generated. Both were set to 20 in
this study, and the resulting clusters were mainly sized between 0.1 and 10 m. Due to
stem occlusions in the crown area, these clusters did not encompass the complete stem
components and required merging.
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Clusters were sectioned at 0.1 m intervals along their principal directions, as de-
termined by the first component of principal component analysis (PCA). These sections
captured the general shape of each cluster. A region-growing method was developed to
merge clusters belonging to the same stem, representing a cluster by a sequence of its
slice centroids. The nearest pair of clusters was tentatively combined and fitted with a
3D third-order polynomial curve. If the curve fitting error fell below a threshold, these
clusters were merged. These steps were repeated for the remaining clusters until no suitable
fitting was found. In practice, noise and adjacent stems could lead to incorrect curve fitting
such as the lower part of one stem merging with the upper part of neighboring stems. To
enhance the robustness of the 3D polynomial curve fitting and prevent over-merging across
stems, a RANSAC selection scheme was employed, rejecting outlier centroids. The criteria
for “goodness of fit” of the points along the curve were represented by the smoothness
and consistency of the points surrounding the curve. The smoothness, represented by the
absolute median deviation (MAD) between the fitted curve and slice centroids, should
be less than 30 cm (corresponding to the maximum stem cylinder radius in this study).
When fitting a pair of clusters, the median deviation of the curve fitting for one cluster was
compared to that of the other cluster. The resulting ratio, which represents the curve-fitting
consistency between the two clusters, was constrained to be less than 4. Depending on the
practical situation, this ratio could be set more stringently such as 3. The RANSAC-based
region growing merged well-fitted clusters iteratively until smooth and consistent stem
curves were segmented from the stem classification points. The same method was applied
to segment the downed woody logs into individual components.

3.4. Individual-Tree Clustering

In the study plots, it is common for trees to be densely packed and occasionally
intersect with inclined ladder woods. Conventional individual-tree segmentation, based
solely on point density, may underestimate fuel levels in areas where trees overlap or cluster
together. Our method adapted the simple morphological rule that a tree stem forms the
base for branch and foliage attachment. Among the classified trees, points were segmented
into individual stem and non-stem points. The latter were transformed to the cluster scale
using the cut-pursuit algorithm described above, but at a finer spatial resolution (K = 5,
λ = 1). This resolution matched the typical size of branch and foliage clusters, where each
cluster defined a graph node N. The non-stem clusters were assigned to the nearest stems
based on a closeness measure adapted from the method by Wang [58]: (1) any non-stem
nodes within 10 cm of the stem points were considered ‘seed nodes’ (Ns), while other nodes
were considered to be ‘non-seed’ nodes (Nn ); (2) the shortest path ( Lmin) to each seed node
Ns was calculated for each Nn using Dijkstra’s algorithm [84]; (3) two distances (Dc and
Dp) along the shortest path Lmin were calculated for each Nn, where Dc was determined
by the accumulated distance from the centroid of Nn to the centroid of Ns, and Dp by the
accumulated 3D point gaps from the point cloud of Nn to the point cloud of Ns, respectively;
(4) the projected distance Dm between Nn and the medial line of Ns was calculated; (5) a
distance score, defined by a weighted average of the three distances Dc, Dp, and Dm, was
determined as the closeness measure; (6) an Ns was clustered to the Ns with the minimum
score, and both were assigned with the ID of the stem nearest to the Ns. The weights of Dc,
Dp, and Dm, defined as 0.4, 0.3, and 0.3, respectively, were customizable but did not require
lengthy optimization for satisfactory individual-tree clustering. In practice, individual
stems from previous steps could contain errors. A typical error is the misclassification of
thick branches in the crown as a stem and isolated as an incorrect stem in the classification.
Our amendment was to repeatedly merge two individual trees if the bottom of one tree
fell above the top of the other tree with a projected horizontal overlap of >80%. Overall,
individual trees were isolated using the shortest-path and conditional merging rules.
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3.5. Branch Classification

A similar deep learning model for branch classification is also feasible, however,
creating sufficient branch references to train deep learning from fuel-rich plots is laborious
and impractical. Furthermore, human-interpreted thin branch samples can be erroneous
and difficult to identify within a dense and crowded canopy. This study proposed an
alternative solution to deep learning, circumventing the dilemma of reference making
while potentially achieving a similar level of accuracy compared to the branch filtering
accuracy of 0.54 reported by Xi et al. [85].

Ideally, branches are linear geometrical features detectable using a linearity-based
filter. The linearity metric can be derived from PCA components [71]. The challenge is the
weak signal of smaller diameter branch points surrounded by foliage and shrubs. The point
clouds of larger diameter branches might also become fragmented and indiscernible due to
the high occlusion of points by objects closer to the TLS. In this situation, the geometric
identity of a branch can diminish, but its spectral identity remains visible, characterized by
the intensity of laser returns [86]. The intensity alone, however, is not a robust indicator
of branches when there are other environmental factors that influence the return intensity
(e.g., local surface ruggedness) [87]. Therefore, a weighted-linearity-intensity index (WLI)
combining the return intensity and the linearity of the branch was adapted in this study
(Equation (1)):

WLI = w × sigmoid(Linearity) + sigmoid(Intensity), (1)

Here, a weight parameter w was used to leverage the importance of either term, which
was set to 1.0 for simplicity. Approximate branch points were classified using a WLI > 0.75.

Despite this initial filter, the classified branch points were still noisy. A Frangi ves-
selness (FV) filter, which is used in multi-scale vessel detection from 3D X-ray medical
images [88], was adopted to enhance the branch pattern. In this study, the filtered point
clouds were voxelized at a resolution of 1.5 cm. Five levels of scales (2, 4, 6, 8, and 12 times
voxel resolution) were input to the FV filter corresponding to the range of branch thick-
nesses between 3 and 18 cm. A 3D voxel morphological operator was then used to remove
the isolated blank voxels surrounding them. Branch points were then filtered within each
individual tree. Ten pine trees within the twelve plots were manually cleaned and delin-
eated based on the results of branch filtering as the validation reference. It is important
to note that while the WLI, noise filtering, and QSM branch delineation collectively con-
tributed to mitigating the noise issues associated with branch identification solely based
on intensity, they did not fully address the attenuation of intensity signals caused by the
distance and angle incidence. While multi-scan co-registration alleviated the attenuation
effect, the inclusion of intensity calibration is expected to further optimize the accuracy of
branch detection.

3.6. Tree Architecture Reconstruction

Tree architecture reconstruction, also known as QSM, not only includes the 3D geomet-
ric modeling of branches and stems using cylindrical proxies, but also the establishment of
the topologic relationship between wood components. Each individual branch requires
isolation and to be subsequently arranged in a hierarchical order, beginning with the main
branch connected to the stem, followed by the smaller branches attached to it, and contin-
uing in this manner. This is achieved in a similar manner to the tree clustering approach
(Section 3.4). Here, branch points are first clustered using the cut-pursuit algorithm. Branch
clusters near stem points are considered as seed nodes. The shortest paths from the re-
maining nodes to the seed nodes are generated with a maximum point gap between two
clusters of 3 cm. The shortest path with the greatest accumulated distance is classified as
an individual branch, and all nodes along this path become branch nodes. As an example,
Figure 6 demonstrates that the parent node of a branch is the stem node closest to the
first node of the path. Likewise, nodes along the path with the next greatest accumulated
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distance form the second branch. The second branch discards any nodes already belonging
to other branches, where the parent node is the joint node (i.e., the last node of the discarded
part) of the previous branch. The branch generation process is repeated until no close
clusters (gap < 3 cm) are found. The remaining isolated clusters with a gap between 3
and 30 cm are further attached to the existing branch architecture using the same shortest
path rule, except that the seed nodes are closest to the existing branches instead of to the
stem. Remaining isolated clusters are discarded. All individual branches are fitted with
a sequence of circles [89] every 10 cm (customizable) using least-square minimization,
which determines the branch direction and radius at each segment [85]. The branch radii
occasionally encounter large values due to the inclusion of locally noisy points included in
the circle fitting algorithm. To address this issue, the impact of outlier points on the branch
radius was reduced using a moving-window median filter along each branch, employing a
maximum cut-off value based on the median of all branch radii and a minimum cut-off
value of 2.5 mm for the branch radius. This approach mitigated the problem of volume
overestimation for small branches with diameters < 5 cm as reported by Demol et al. [90].
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Figure 6. Example of the branch reconstruction steps: (a) orderly connection of branch nodes based
on the shortest path rule; (b) reconstructed meshes of branch cylinders. The color of each point cluster
was rendered based on the cluster ID. The scale bar is in meters.

3.7. Fuel Attribute Extraction and In Situ Validation

The above-described classifications of specific plot components such as stems and
branch points are not mutually exclusive. Some points can be associated with more than
one class. Consequently, an additional step was needed to synthesize the classes and
prevent ambiguous one-to-many class mappings. Specifically, the tree, within-tree stem,
branch, and foliage classes were labelled with class 1, 2, and 3, respectively. Non-tree points
mainly included subcanopy shrubs, sapling layers, and surface grass. From the viewpoint
of fuel analysis, these points were treated as a whole without the individual segmentation
used for individual trees. Point clouds of downed woody logs within the non-tree class
were assigned class 4. Stems and branches detected within the non-tree class represented
sapling stems (class 5) and branches of seedlings and shrubs (class 6), respectively. The
elevations of the lowest points per 3 × 3 m2 area of the non-tree class were extrapolated
into a plot-size grid as a digital elevation model (DEM). Any points within the 20 cm buffer
of the DEM were filtered as ground points including litter and surface grass (class 7). The
remaining points presented tall grass and any below-canopy foliage (class 0). The class
labeling followed a priority order to avoid ambiguity: class 1 > class 2 > class 3 > class 5 >
class 4 > class 7 > class 6 > class 0.
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This multi-class plot delineation enabled the fine-scale attribute extraction of separate
fuel components. The stem tilt angle (TA) was quantified using the third coefficient of
the first principal component of the stem point clouds from the PCA analysis. Ladder
stems (including stems from shrubs and saplings) were filtered from individual stems
with a TA > 10◦. The ladder stems with any attached branches constituted ladder trees.
The live crown base height (LCBH), which was measured in the field, was approximated
based on the height of a point with the maximum curvature along the height-specific voxel
volume profile, in other words, the knee point or inflection point similar to Popescu and
Zhao [91]. Branch and stem volumes were determined as the total volume of 3D fitted
cylinders from the QSM model described in Section 3.6. At the plot level, it is difficult to
reconstruct complete geometries of downed woody logs and branches near the ground
and in the duff layers of the soil due to the high occlusion of returns and complex shapes.
The volumes of these components were inferred based on the linear relationship between
the voxel volumes of the stems and branches, namely, SVOL and BVOL, and their QSM
volumes of the counterparts, namely, QSVOL and QBVOL.

In situ measurement of tree heights, DBH, and LCBH were used to partly validate the
accuracy of the diameter and length extraction from the delineated plot components using
TLS. RMSE and Pearson’s r were used as the accuracy metrics. DCBH, while measured,
was not used here due to the interpretation of what constitutes the height of dead branches
vs. live ones (as a proportion), and therefore there is measurement uncertainty due to the
vision occlusion from the under-canopy and shrub layers. Measured trees from each field
quadrant (separated by cardinal coordinates) were manually linked to the isolated TLS
trees based on tree orientation, DBH, LCBH, species, and tree height.

4. Results
4.1. Classification, Segmentation, and Filtering Accuracy

The SegFormer tree classification is visualized in Figure 7 with trees in red. Large
variations in the tree distribution pattern and density were observed in the classified tree
points due to time since post mountain pine beetle attack (and phase). JP8 had the visually
sparsest tree distribution and JP9 the densest, also observed in the stem density survey in
Table 1. A species mixture of mature pine, fir, and aspen was also observed in JP5 and JP6,
and fir saplings were visible in JP7, JP8, JP11, and JP12. The crown apices of fir saplings
were prone to misclassification as trees (e.g., in JP 8 and JP11) due to their intermediate
height. Note that the intent of tree classification might be identical to the ground removal
scenario [67] where algorithms such as the cloth simulation filter (CSF) [92] abound. The
subtle difference is that a tree classifier needs to identify tree points from the subcanopy
complexes instead of simple height slicing using the ground DEM buffer (e.g., CSF). The
stem bottoms within the DEM buffer need to be preserved as the stem class. Deep learning
addressed this complexity, yielding a high mIoU accuracy of 0.91 from four testing plots
(Table 3).

The stem point classification was contrasted with the reference in the example JP9 clip
in Figure 8. The SegFormer could identify most stem points with slight over-detection:
major stems were thickened, and additional linear shapes in the crown were misclassified
as stems. The former edge issue could be caused by the setup of a slightly coarse voxel
resolution of 4 cm and the latter inscrutable noise is a common issue of deep learning [93].
The challenge was to detect sparse stem signals within dense, needle-leaf fir crowns
where existing studies either excluded the classification of fir species or demonstrated
insufficient accuracy [94], however, for wildland fire, fir is an important species because it
is highly flammable. These issues were mitigated in Figure 8, where the mIoU of the fir
stem classification was 0.89, and the stem classification over all testing samples was 0.94
on average (Table 3). The example classification results of downed woody logs are also
visualized in Figure 8. SegFormer tended to detect outlying small, round-shaped pieces
of wood in addition to the reference ones. Using the manual reference as the baseline,
the mIoU of woody log classification was 0.81. Figure 8 also shows the example of stem
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and downed woody log classification over JP1. From the birds-eye view, not all coarse
woody log points from the reference were captured by SegFormer, especially among the
oblique stems and highly-occluded thin ground logs. This issue partially arose because
the manually created training samples did not represent sufficient instances of oblique or
highly-occluded woody logs, and the deep learning model was not adequately trained
to handle such intricate situations. While increasing the representation of these complex
instances in the training dataset could potentially address this issue, such an approach
would require further manual editing, a resource-intensive task that was beyond the scope
of this study.
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Figure 7. Visualization of tree point classification results from each plot. Tree points are in red and all
others in blue. The colors were enhanced with the screen space ambient occlusion (SSAO) shader.
The scale bar unit is in meters, and the radius of each circular plot is 25 m, exceeding the dimensions
of the field plot.

Table 3. Average testing accuracy and total processing time of the twelve plots for each main step.
The accuracy of QSM wood reconstruction was not investigated directly.

Process Accuracy (mIoU) Processing Time (Minutes)

Tree point classification 0.91 38
Stem point classification 0.94 48

Downed woody log point classification 0.81 70
Stem and downed woody log isolation 0.73 61

Individual-tree clustering 0.86 259
Branch filtering 0.62 1193

QSM wood reconstruction - 1534
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Figure 8. Classification results comparing the (a) stem reference of the JP9 clip; (b) stem classification
using SegFormer; (c) downed woody log reference; (d) downed woody log classification using
SegFormer; (e) stem classification of JP1 using SegFormer; (f) downed woody log classification of JP1
using SegFormer.

The example results of cut-pursuit clustering and individual wood isolation are illus-
trated in Figure 9 using a JP2 clip as an example. The classified stem points were manually
cleaned before the clustering and isolation. Small stem clusters with linear shapes were
generated by cut-pursuit and further merged into complete wood segments using the
RANSAC-based region growing method. Some bending and occlusion (Figure 9c) could be
overcome due to the polynomial fitting of the RANSAC method. The intersection of two or
more stems or downed woody logs, a typical barrier for correct segmentation, can also be
addressed to a certain extent using our method. Issues with the segmentation included the
failure of merging several small irregular or highly curved clusters. Plot-level tree cluster-
ing based on individual stems is illustrated in Figure 9d–f using JP1 as a second example
in this figure. The classified stems were uncleaned, resulting in an issue of over-isolation
(Figure 9e), where more stems were isolated than actually exist. This could be mitigated by
the use of overlap-based merging during tree clustering (Section 3.3) (Figure 9f). Many trees
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that were intersected in the crown could be separated with well-delineated boundaries
due to the morphology-based shortest path rule (Figure 9f). Accuracy assessment did
not include incomplete and sparse trees near the edge of the plot caused by the partial
scan coverage. The mIoU of stem isolation and individual tree clustering was 0.73 and
0.86, respectively.
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Figure 9. Post-classification processing example: (a) example point cloud clip from JP2 (color:
laser intensity); (b) cut-pursuit clustering of stem points with random colors; (c) connected cluster
centroids using RANSAC-based region growing with random colors; (d) example JP1 tree point
clouds; (e) individual stem isolation; (f) individual-tree clustering.

The branch processing and classification results are shown in Figure 10. The WLI
index, which integrates the intensity (Figure 10a) and linearity (Figure 10b), filtered out
dense foliage (Figure 10c, without stems), and the FV filter smoothened and enhanced
linear shapes (Figure 10d). Figure 10c also reveals that a fraction of the twig points was also
filtered out, which can underestimate the fuels available for fire as these burn more readily
than larger diameter branches. There was a tradeoff between the partial loss of branch
points and the need to exclude foliage and noise points from the classification. The plots in
our sites consisted of mostly mature, high foliage trees, which also contributed to a high
level of return noise. Therefore, a high threshold of 0.75 was set for the WLI, leading to the
filtering of branches from fine branch material and needles. Using our testing reference,
branch filtering had an mIoU of 0.62.
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Figure 10. Example tree point clouds from JP7: (a) colored by intensity; (b) colored by linearity within
a search radius of 4 cm; (c) colored by the WLI index with stems in blue; (d) branch point centroids
after the FV filtering. For optimal clarity, please view the figure in high-resolution format.

Following the synthesis of classifications into eight classes, the fine-scale composition
of a plot could be represented, as demonstrated in detail for a small area of the JP7 clip
(Figure 11a) and across the larger plot using JP1 (Figure 11b). It is evident that foliage in the
dark green color (class 3) was primarily distributed among fir trees, short pine trees, and
the lower portions of tall pine trees in JP1. Occlusion occurred mostly near the plot edges
and on the ground near the corner TLS stations. Understory grass and herbaceous layers
indicated by light green (class 0) tended to have an overstory of large crown diameter trees
or tree clusters, which enhance shading and reduce water loss, while large spaces between
trees had shorter/less dense grasses and was primarily represented by ground returns. The
horizontal orientations of ladder trees appeared randomly distributed.
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The complete QSM reconstruction at the tree- and plot levels is presented in Figure 12.
Results of the branch clustering based on the shortest path rule, skeletonization, and
cylinder-fitting are illustrated in Figure 12a–c, respectively, based on the same point cloud
in Figure 10 (JP7) and the 3D wireframes from QSM reconstruction (Figure 12d,e) based on
the point clouds in Figure 11 (also for JP7). Here, narrow branch diameter branch structures
were also captured by the 3D reconstruction. A notable issue was the exaggeration (or
artificial increase) in the reconstructed stem diameters near the apex of the tree crown due
to the noise points during the circle fitting.
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Figure 12. Tree QSM reconstruction: (a) connected branch clusters based on the shortest path rule,
cluster points in random colors and stems in blue; (b) skeleton of branches; (c) reconstructed branch
meshes based on circle fitting; (d) reconstructed subset of JP7; (e) reconstructed individual-tree wood
of JP1.
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4.2. Field Validation

A total of 269 trees with field measurements were matched to isolated TLS trees within
the twelve plots. From these, a subset of 84 trees had live crowns, which was used to
calculate LCBH. The r2 between the field measurements and TLS extraction was 0.95 for
tree height, 0.96 for DBH, and 0.60 for LCBH, respectively (Figure 13). RMSE (RMSE%)
was 1.3 m (9.0%) for tree height, 1.3 cm (8.7%) for DBH, and 2.6 m (39.6%) for LCBH,
respectively. The bias of TLS height, DBH, and LCBH was −0.53 m (−3.8%), 0.54 cm (3.5%),
and −0.35 m (−5.3%), respectively, compared to the field measurement. TLS tended to
underestimate the LCBH. The differences are algorithm- and species-specific, and are not
consistent among the different studies that have used TLS [95,96].

When comparing the QSM approach for volume calculation, the wood volume de-
termined by counting voxels was subject to the choice of voxel size and the completeness
of the scanned surface. Utilizing a voxel size equal to the point cloud resolution of 5 mm
led to the underestimation of individual tree wood volume by 81% (branch)–92% (stem),
respectively, compared to the wood volume derived from QSM reconstruction. Increas-
ing the voxel size might mitigate the underestimation but would introduce complexity
in adjusting the voxel size for different tree and plot components. A linear relationship
between these two volumes was observed excluding minor extreme outliers (Figure 14).
The r2 was 0.54 between SVOL and QSVOL from all individual trees, smaller than the r2 of
0.95 between BVOL and QBVOL. The diameter of stems was mostly greater than 5 cm, and
simple voxelization of stem surface points did not account for the volumes within the stem
body. Conversely, branch diameters were smaller with many contained by voxels, causing
better agreement between the voxel and QSM volumes.
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and 53.2%, respectively) in the steepest slope (mean slope angle = ~20°), and the lowest 
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aligned with the visual appearance in Figure 7 that trees in JP9 and JP10 were dense and 
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Figure 13. Validation of the TLS attribute extraction of individual trees with field measurement:
(a) tree height; (b) DBH; (c) LCBH. The green line in each chart denotes the fitted line of linear
regression and the green area buffer denotes its 95% confidence interval. The top- and right-side
curves are attribute distribution histograms.
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Figure 14. Comparison between the QSM volumes and total voxel volumes for: (a) individual-tree
stems; (b) individual-tree branches.

4.3. Plot-Level Attribute Analysis and Volume Calibration

At the plot level, the downed woody volume, sapling stem volume, and ladder stem
volume were scaled from the voxel volumes based on the ratio of QSVOL to SVOL, and the
below-canopy branch volume and ladder tree branch volume based on the ratio of QBVOL
to BVOL. The result component volumes and other plot-level attributes are provided with
a summary chart in Figure 15. Except for JP12, which was heavily affected by MPB, JP9
and JP10 had the highest concentration of stem to the total plot volume (58.3% and 53.2%,
respectively) in the steepest slope (mean slope angle = ~20◦), and the lowest branch volume
proportions to the total tree volumes (19.5% and 23.3%, respectively). This aligned with the
visual appearance in Figure 7 that trees in JP9 and JP10 were dense and straight but with
narrow individual tree crowns. JP5 and JP6 presented another distinct plot configuration:
mixed species (pine% = 65–75%, fir% = 13–16%) and a thick sapling layer (~4% of the total
plot volume compared to the average of 2% among other plots). However, the concentration
of ladder tree volume in both plots remained at an average level compared to other plots.
In contrast, JP7 and JP8 had only four ladder trees and few saplings. JP8 had the lowest
wood volume concentration (60.7%). JP1 and JP2 had the highest ladder stem volume (4–6%
compared to the average of 2% among other plots). The ladder stem volume was strongly
associated with stem density (r = 0.85), existing straight stem volume (r = 0.49), and DEM
slope (r = 0.81), indicating a positive effect from competition and gravity factors. The
vertical distributions of each fuel component with slope correction are visualized as stacked
area charts in Figure 16. It can be seen that the plot-level composition varied significantly
with geographic locations but remained similar between neighboring plots. The stem
volume distribution mimicked a Weibull curve, descending at a faster rate toward the tree
top than the branch volume distribution. The vertical distribution of foliage volumes was
similar to that of branch volumes. Ladder fuels and saplings contributed to a negligible
proportion at the plot level in terms of tree volumes in Figure 16. In most plots (JP2, 3, 7, 8,
9, 10, 12), a boundary existed between the tree branch layer and the below-canopy branch
layer. The presence of a ladder tree layer between them created a noticeable connection
between the two potentially combustible layers. The average overlapping area of the
vertical volume profile excluding the ladder tree layer was 8.4% relative to the union area
of the tree layer (stem, branch, foliage) and the below-canopy layer (all other components).
Including the ladder layer, the overlapping degree increased to 10.8%.
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foliage volume were derived from vertical trees excluding those from ladder trees. The ladder tree
volume encompassed all three components: stem, branch, and foliage.
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5. Discussion

The study of forest component classification from TLS has gained prominence in the
research community over the last decade. Among the available methods, many geomet-
ric algorithms have demonstrated excellence in stem detection [97–100] and wood and
foliage classification [70,101–103], which are alternatives to the emerging deep learning
solutions [71,85,104]. However, the limitations of this method are also obvious, whereby
rule-based algorithms are too specified to be adaptive to complex environments, which
include standing and ladder trees, saplings, and downed woody logs. In comparison,
deep learning classifiers can exhibit flexibility without sacrificing accuracy. In this study,
SegFormer was employed as a binary classifier (e.g., tree vs. non-tree, and stem vs. non-
stem). Altering SegFormer to function as a multi-class classifier, which simultaneously
classifies stems and downed woody logs together, resulted in a reduced accuracy. The
mIoU decreased by 0.05 (6%) to 0.82 compared to the average mIoU of 0.87 when classifying
these components separately. This finding coincides with a recent study by Li et al. [105]
where binary CNN-based classifiers exceeded the multi-class situation in wetland vege-
tation classification with an mIoU increase by 22%. However, the processing time would
significantly increase if each class is trained individually.

In addition, deep learning was not used for branch classification due to the low
efficiency of branch sample delineation from dense conifers. The detection of fine branches
in spruce remains an issue. The geometrical algorithm developed by Hui et al. [70] has
demonstrated overall superiority in branch filtering, with the exception of narrow spruce
branches. The filter in our study could detect twigs but also contains cones and some noise
as a function of the point cloud distribution. Several tree species such as the subalpine
fir and Douglas fir were not widely sampled within the training data but coexisted with
other conifers found in the plots, adding to the uncertainty of the stem classification. In
addition, one stem per tree was the underlying assumption of our stem isolation algorithm,
which could be violated by the “co-dominant stem” strategy where two leader stems grow
from single trees to withstand environmental stressors [106]. This phenomenon was found
occasionally within plots and could potentially result in the underestimation of the true
stem volume. It was also observed in the field that dead pine trees in grey phase following
mountain pine beetle attack retain some mosses and lichens on the branches. Lichens could
be mistaken for foliage from TLS without field validation [107] and may increase return
classification biases to increase the branch volume.

The result RMSE% of tree height and DBH in Figure 14 fell within the average range of
13–30% and 5–15%, respectively, a common range from a benchmarking study on eighteen
contemporary methods in 2018 [108]. Tree heights were underestimated by TLS (Figure 14),
as also observed in other studies [95,108]. The near-zero biases of the TLS DBH aligned with
studies [108] using similar extraction methods. Compared to the height and DBH, the TLS
LCBH had weaker correspondence with the field measurement. Causes could be an unclear
definition of LCBH from an abnormal crown shape, especially the unhealthy trees [109],
and the fallible measurement of crown bases from heavily overlapped crowns [110]. From
the literature, the former cause was insignificant regarding the strong r2 (>0.9) between the
human-interpreted and the automatically extracted crown base height (CBH) from TLS by
Seidel et al. [111]. The field measurement error of CBH was considered the main issue [112].
The literature with TLS CBH validation is rare due to the strenuous efforts of obtaining
CBH from the field [112]. Among the available studies, Jung et al. [110] reported a high r2 of
0.82 but had a limited validation sample size of fifteen trees. Fernández-Sarría et al. [113]
validated the LCBH accuracy with thirteen field trees and reported an r2 of 0.52, in line with
this study. A stand-level assessment of CBH accuracy was conducted by Pyörälä et al. [114]
with a relatively lower validation r2 of 0.20. All of these studies demonstrated a significantly
stronger r2 from the height and DBH validation compared to CBH, indicating a reliability
issue of field mensuration to determine CBH.
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6. Conclusions

The capability of TLS has facilitated the enhancement of our understanding of fuels
within forests, from landscape- and stand-based scales to a more nuanced focus on indi-
vidual trees and branches. While TLS is gaining wider application in fire fuel studies as a
replacement for inventory mensuration, it is primarily based on voxel profile information,
without the in-depth incorporation of advanced data processing and AI techniques. An
analysis of the fine-scale forms of trees and branches based on AI methods provides a
more detailed understanding of the intricate nature of forest fuels and their connectivity,
which may be further assessed along with local climate including the drying potential. This
study broadens the extent of existing TLS investigations to characterize fuel components
at the plot scale based on deep learning, incorporating ladder trees, fallen woody logs,
subcanopy branches, and surface layers. Twelve TLS plot scans were collected from a C3
fuel type with lodgepole pine that were, in many plots, at various stages of mountain pine
beetle attack and mortality. The TLS extraction of tree height, DBH, and LCBH matched
the in situ mensuration, while TLS provided additional detail of the volume distribution
of each plot component along the vertical height. This scheme of component division
could help refine the fuel load quantification among materials with different flammability
and also indicate the vertical continuity of different fuel components. The existence of
a ladder tree layer enhanced the overlap degree between the two combustible layers of
individual-tree branches and below-canopy branches from 8.4% to 10.8%. In addition, a
significant underestimation of wood volume based on conventional voxel-based counting
at fine resolution was found compared to the more reasonable QSM method due to scan
occlusion. It is suggested that QSM is applied to calibrate voxel-based wood volumes for
fine-scale fuel analysis.

The differentiation of forest components serves as a foundational dataset for a range
of fire-related studies. With respect to fire fuels, the grass and litter layer is associated
with fine fuels, coarse fuels represented by individual-tree stems and downed woody logs,
and intermediate fuel loading embodied by branches. The fraction, length (or height),
and diameters of individual fuel components provide essential input in the allometric
equations of fuel load [115]. Overall, the parameters of the wood components and terrain
hold significance for the planning (e.g., prescribed burns), the potential for ignition, and
the prediction of the fire rate of spread. The proof-of-concept in this study illustrates the
bright future of TLS in accurately quantifying the fuel physical properties for wildland
fire analysis.
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