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Abstract: Hyperspectral Image (HSI) classification methods that use Deep Learning (DL) have
proven to be effective in recent years. In particular, Convolutional Neural Networks (CNNs) have
demonstrated extremely powerful performance in such tasks. However, the lack of training samples
is one of the main contributors to low classification performance. Traditional CNN-based techniques
under-utilize the inter-band correlations of HSI because they primarily use 2D-CNNs for feature
extraction. Contrariwise, 3D-CNNs extract both spectral and spatial information using the same
operation. While this overcomes the limitation of 2D-CNNs, it may lead to insufficient extraction of
features. In order to overcome this issue, we propose an HSI classification approach named Tri-CNN
which is based on a multi-scale 3D-CNN and three-branch feature fusion. We first extract HSI features
using 3D-CNN at various scales. The three different features are then flattened and concatenated. To
obtain the classification results, the fused features then traverse a number of fully connected layers
and eventually a softmax layer. Experimental results are conducted on three datasets, Pavia University
(PU), Salinas scene (SA) and GulfPort (GP) datasets, respectively. Classification results indicate that
our proposed methodology shows remarkable performance in terms of the Overall Accuracy (OA),
Average Accuracy (AA), and Kappa metrics when compared against existing methods.

Keywords: hyperspectral classification; Convolutional Neural Networks; deep learning; feature fusion

1. Introduction

Hyperspectral Imaging (HSI) systems collect spectral and spatial image data simul-
taneously in hundreds of narrow contiguous spectral bands, from visible to infrared
wavelengths. Applications for HSI remote sensing are numerous, such as environmental
monitoring [1,2], agriculture [3–6], mineralogy [7–9], and surveillance [10–12]. Each pixel
in the image consists of hundreds of elements measuring the reflected or emitted energy
as a function of wavelength, known as the spectral response. Unlike common or normal
images, hyperspectral ones carry information about the material’s chemical and physical
properties since the interaction of a substance with light depends on its atomic and molecu-
lar structure, HSIs are rich in spectral information that reflect the material’s chemical and
physical properties, which makes image classification tasks easier.

HSI classification has become one of the most active research topics in the field of HSI
analysis [13,14] and has drawn the attention of researchers in the remote sensing field. It
is defined as the task of assigning each pixel of the HSI to one certain class based on its
spectral characteristics. There are challenges faced in most of the HSI classification tasks
due to high-dimensional characteristics of HSI data and the similarity of spectra and mixed
pixels. The following challenges need to be addressed:

1. The lack of ground-truth data or labeled samples: A typical challenge in remote
sensing is that images are acquired from a far distance, which makes it difficult to
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distinguish the materials by the a simple observation. In many applications, scien-
tists need to go to the field of study to observe the materials in the scene from a
close distance.

2. HSIs have high dimensionality: This is related to the large number of channels (or
bands) that HSI has. As the number grows, the data distribution becomes sparse
and hard to model, which is also known as the curse of dimensionality problem, a
term that was introduced by Bellman et al. [15]. However, multiple adjacent bands
are similar and present redundant information, which enables the ability to use
dimensionality reduction techniques to reduce the amount of involved data and speed
up the classification process.

3. Low spatial quality: Sensors suffer from a trade-off that allows capturing images
either with high spatial resolution or high spectral resolution. Thus, HSIs generally
have relatively low spatial resolution when compared to natural images.

4. Spectral variability: The spectral response of each observed material can be signifi-
cantly affected by atmospheric variations, illumination, or environmental conditions.

Machine Learning (ML) techniques were first used in the early research studies of
HSI classification. These techniques use pixel-wise classification methods to classify each
pixel in HSI data based on spectral information. Support Vector Machine (SVM) [16],
Multinomial Logistic Regression (MLR) [17], Random Forest (RF) [18], and K-Nearest
Neighbor (KNN) [19] are the most common examples of traditional approaches. However,
these methods ignore the spatial information and rely solely on the spectral information of
the pixels, which affects the classification performance. In order to tackle this challenge,
Deep Learning (DL) techniques were utilized to obtain the spatial features along with the
spectral ones. The DL approaches used for HSI classification are mainly Convolutional
Neural Networks (CNNs), Autoencoders [20], Deep Belief Networks [21], Generative
Adversarial Networks (GANs) [22,23], and Recurrent Neural Networks (RNNs) [24,25].

Related Work

As previously mentioned, the high-dimensionality characteristic of HSI data makes
HSI classification a challenging task. Therefore, dimensionality reduction is a necessary
pre-processing step prior to the classification task in order to reduce the redundancy and
complexity of data. Numerous studies have been conducted to find a solution to the HSI’s
curse of dimensionality problem. So far, these dimensionality reduction techniques can be
grouped into two main categories; feature extraction and band selection. Feature extraction
approaches can be divided further into two groups; supervised and unsupervised feature
extraction. Supervised feature extraction approaches utilize label information to maximize
between-class separation, such as Linear Discriminant Analysis (LDA) [26], and Fisher’s
Linear Discriminant Analysis (FLDA) [27]. As for unsupervised feature extraction methods,
they include Principal Component Analysis (PCA) [28,29] and Kernel PCA (KPCA) [30,31]
that extract useful linear and nonlinear features, respectively, from HSI data. As for band
selection dimensionality reduction, it is implemented by selecting the most descriptive
and distinctive band subset from the original band space of the HSIs according to certain
criteria or search strategy. Band selection approaches can be categorized into supervised,
semi-supervised and unsupervised.

In recent years, DL methods, specifically, Convolutional Neural Networks (CNNs),
have received an increased attention and have been widely employed in various computer
vision tasks. CNNs can learn and extract deep features from raw data through a sequence of
hierarchical layers; shallower layers can extract edges and texture features, whilst the deeper
layers extract more complex features. Thus, CNNs have been extended and introduced
for HSI classification [32]. The authors in [33] utilized PCA as pre-processing technique to
handle data dimensionality. Then, the reduced components were fed to three consecutive
2D convolutional layers for feature mapping, followed by a flattening layer to convert all
2D feature maps into 1D feature vectors, which were then passed to fully connected layers
to perform the final classification of the HSI. Similarly, in [34], the authors presented a CNN
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approach based on information measure and enhanced spectral information where both
spectral and spatial information are measured and used as an input to the CNN classifier.
Dimensionality reduction is also employed using entropy calculation in order to select
the three most informative spectra from HSI bands. Accurate classification of HSI was
achieved under the reduced computational complexity.

In another study [35], Li et al. proposed a two-stream spectral and spatial feature ex-
traction and fusion network based on Two-dimensional CNN (2D-CNN) architecture. The
purpose of using the two extraction networks, shallow and deep, with different depth is to
obtain multi-scale spectral, local, and global spatial information. Furthermore, an attention
mechanism based on Squeeze and Excitation (SE) networks was adopted in this study to
improve the capability of extracting useful spectral–spatial features and to overcome the
lack of labeled training data. In addition to 2D-CNNs, Three-dimensional Convolutional
Neural Networks (3D-CNNs) have been extensively studied for HSI classification as well.
The authors in [36] presented a novel 3D-CNN approach for HSI classification, in which
both spectral and spatial information are utilized to boost the classification performance.
In a similar approach, the researchers in [37] introduced a 3D-CNN model for HSI classifi-
cation, the HSI is first split into small overlapping 3D patches, which are then processed to
create 3D feature maps utilizing a 3D kernel function over multiple contiguous bands of
the spectral information in an effective manner. Since then, there has been an increasing
number of HSI studies based on 2D-CNN or 3D-CNN [38–40].

However, there are a few drawbacks to utilizing either 2D-CNN or 3D-CNN for HSI
classification. In the case of 2D-CNN architectures, even though they excel at obtaining
spatial information, they fall short with regards to extracting good discriminating or
informative feature maps from the spectral dimensions. On the other hand, 3D-CNNs are
considered computationally expensive as a large number of 3D convolution operations
are invoked. Deep 3D-CNNs require more training samples, which is not possible due
to the limited dataset size provided by the publicly available HSI datasets. Furthermore,
most of the common 3D-CNN-based approaches consist of stacked 3D convolutions within
their architecture. Hence, they cannot optimize the estimation loss directly through such a
nonlinear structure [41].

In order to tackle these limitations, many authors have introduced a hybrid approach.
For example, in [42], the authors introduced a hybrid model called HybridSN, which fuses
2D-CNN with 3D-CNN to effectively extract both spectral and spatial feature maps from
HSI. This improves the accuracy of the classification results. Similarly, in [43], the authors
used 2D- and 3D-CNNs to extract spatial and spectral features in HSI, respectively. An
attention mechanism is also utilized to combine these two kinds of features. In another
study [44], the researchers presented a 3D fast learning block followed by 2D convolution
for HSI data. The 3D block consists of 3D depthwise separable convolution and fast
convolution blocks. The proposed approach shows superior performance in terms of
training time and learning parameters when compared to existing 2D-CNN and 3D-CNN
architectures. In another study [41], a hybrid model, named Synergistic CNN (SyCNN)
is proposed. The model also combines 2D and 3D convolution to extract the spectral
and spatial information in turn. Moreover, the least important features are removed by
introducing a 3D attention mechanism before the fully-connected layer. To tackle the issue
of a limited number of labeled samples, Zhang et al. [45] proposed a 3D lightweight CNN
model by introducing two different transfer learning strategies; cross-sensor strategy and
cross-modal strategy. The first strategy transfers models between HSI datasets captured by
the same or different sensor, whereas the second one uses a pre-trained 3D-CNN model on
2D RGB, or natural, image data sets to train 3D HSI through fine tuning the model. The
proposed approach also reduces the number of trainable parameters while improving the
classification’s accuracy. Xu et al. [46] introduced a robust self-ensembling network (RSEN)
that consists of two subnetworks; base network and an ensemble network. Experiments
show good performance with very limited labeled training samples when compared to
state-of-the-art methods. Although the CNN-based approaches have proven their efficiency
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in HSI classification task, they still encounter a series of challenges such as, the receptive
field is limited, information is lost in down-sampling layer, and a lot of computing resources
are consumed for training deep networks. To overcome this challenge, transformer-based
network is used to replace the traditional CNN to perform HSI classification tasks. The
authors in [47] introduced a multilevel spectral–spatial transformer network (MSTNet) for
hyperspectral classification. The proposed model incorporates an image-based classification
framework for HSI in order to extract richer global information. Experimental results show
that the proposed approach outperforms other CNN-based methods for classification.

Many researchers employ a multi-scale approach. It is an effective way for improving
the classification accuracy due to the different sizes of land covers, which can capture more
important information [48]. The spatial spectral unified network (SSUN) proposed in [49]
utilizes this strategy. This approach combines the long short-term memory (LSTM) model
as the spectral feature extractor with 2D-CNN for extracting spatial features and integrating
the spectral Finite Element (FE), spatial FE, and classifier training into one unified network.
By extracting multi-scale spectral–spatial features simultaneously (since diverse layers in
CNN will produce different scale features) the Multi-Scale Convolutional Neural Network
(MSCNN) [49] encompasses multi-scale characteristics. The experiments showed that the
full use of both spectral and spatial information can considerably boost the classification
accuracy. Although the existing spectral–spatial based methods show excellent performance
in HSI classification but most of them are focusing on processing the pixels adjacent to
the central pixels and neglect the implicit spatial information between features which in
turn affects the performance of the classification model. To tackle this problem, Parallel
Multi-Input Mechanism CNN (PMI-CNN) is introduced by Zhong et al. [50]. This model
employs a parallel multi-input approach by using four parallel convolution branches to
extract spatial features with different levels or window sizes in HSI data. Each branch of
the network adopts four different convolution kernels to carry out multi-scale convolution
on the inputs, of which 1 × 1 convolution kernel is used to extract spectral features of HSIs
that will be fused with spatial information to classify HSI data. Their approach shows
superiority in terms of overall accuracy and kappa metrics.

The following is a list of this paper’s main contributions:

1. A new model that incorporates feature extraction at different filter scales is proposed,
which effectively improves the classification performance.

2. A deep feature-learning network based on various dimensions with varied kernel sizes
is created so that the filters may concurrently capture spectral, spatial, and spectral–
spatial properties in order to more effectively use the spatial-spectral information in
HSIs. The proposed model has a better ability to learn new features than other models
that are already in use, according to experimental results.

3. The proposed model not only outperforms existing methods in the case of smaller
number of samples, but also achieves better accuracy with enough training samples,
according to statistical results from detailed trials on three HSIs that will be reported
and discussed in the next sections.

4. The impact of different percentages of training data on model performance in terms
of OA, AA and kappa metrics are also examined.

The rest of the paper is organized as follows: Section 2 provides a description of the
proposed model, Section 3 explains the experimental procedure and analyzes the findings,
and Section 4 summarizes this paper and presents the future direction of this research.

2. Methodology
2.1. Framework of the Proposed Model

The methodology consists of two parts; data pre-processing and the proposed CNN.
The details of these parts are explained in the next subsections.
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2.1.1. Data Preprocessing

As stated in Section 1, HSI data must be pre-processed to reduce their dimensionality
before processing them with DLmodels. In this research, PCA [28] is used to fulfill this
role. PCA is one of the widely used unsupervised techniques for dimensionality reduction
and feature extraction. It is based on the fact that adjacent bands of HSI exhibit strong
correlation and frequently represent the same information about the object. It is carried
out using an orthogonal transformation, which considers a set of variables that could be
correlated and transforms or projects them into a set of values that are linearly uncorrelated
and are known as Principal Components (PCs). Assuming the size of raw HSI cube is
H × W × C, where H and W are the height and width of the HSI, respectively, and C is the
depth (number of spectral bands). PCA works by downsizing the raw HSI cube’s depth
from C to D in such a way that the reduced HSI cube will be of size H × W × D, where D
is the new spectral dimension and D � C.

2.1.2. Architecture of the Proposed Tri-CNN

Currently, the majority of the models use 2D-CNN or 3D-CNN architectures for HSI
classification tasks. 2D-CNN has the ability to capture the spatial information; however, it
ignores the rich spectral information provided by the HSI. On the other hand, 3D-CNN can
extract both spectral and spatial information simultaneously, which may lead to insufficient
extraction of features. In order to solve these shortcomings, the spatial feature extractor
and the spectral–spatial feature extractor are combined along with spectral-only feature
extractor to form a three-branch feature fusion network. The purpose of adding this path to
the architecture is to enhance the extraction of spectral feature characteristics and improve
the overall feature extraction process.

It is worth mentioned that the spatial feature extractor was designed with multiple
3 × 3 × 1 3D convolution filters. A number of smaller convolution kernels can extract
features more effectively with lower computational cost [51], when compared to large
convolution kernels. To extract the spectral features, multiple 1 × 1 × 3 3D convolution
filters were used. Using a convolution kernel with of this size makes the model only focus
on a specific pixel when extracting the spectral features, This can deal with the problem of
adding unrelated information and improve the model’s classification performance.

The flattening layer is used to convert each feature extracted by each branch into
a one-dimensional vector. Then, all vectors are fused to produce the final classification
results. This is achieved by concatenating the three one-dimensional features into a new
one-dimensional vector, whose dimension number equals the total of the three feature
dimensions. The flattened features at each branch are of different length (as shown in
Section 3.3, adding them directly is not possible. Hence, concatenation was the most
suitable choice for feature fusion.

The detailed distribution and parameters of each layer in the proposed approach are
shown in Figure 1. The first branch has 2 layers of 3D-CNN with 64 filters and the kernel
size is set to 1 × 1 × 3 to capture spectral features. The second branch captures the spatial
features by setting the kernel size to 3 × 3 × 1 with the same number of layers and filters
in the first branch. While the third branch is designed to capture both spectral and spatial
features simultaneously by having 3D-CNN layers and using 64 filters and setting the
kernel size of each filter to 3 × 3 × 3. Due to the fact that the pooling layer causes loss of
information, it has not been used within the network architecture. In addition, the network
structure and hyperparameters described above perform well on all HSI datasets used in
this research.
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Figure 1. Framework of the proposed model.

2.2. Loss Function

Cross-Entropy (CE) is used as the loss function in this paper. The formula is given by:

LossCE = − 1
M

M

∑
m=1

L

∑
l=1

ym
l log(ŷm

l ) (1)

where ym
l and ŷm

l are the reference and predicted labels, respectively, M and L are the
overall number of small batch samples and land cover categories, respectively.

3. Experiments and Analysis

In this section, we will present details of the HSI datasets used in this paper. Secondly,
we will introduce the the experimental configuration and parameter analysis. Then, we
will apply the ablation experiments on the proposed model. Finally, we will perform a
comparison between the proposed model against existing methods to prove the model
superiority and its effectiveness both quantitatively and qualitatively.

3.1. Datasets

In our experiments, two of the most commonly used HSI datasets are adopted, namely,
Pavia University and Salinas. Additionally, the Gulfport of Mississippi dataset is also used
as well, although that it has not been widely used for HSI classification tasks, it is of great
interest as it is small in size and consists of 72 spectral bands only. Each of these dataset has
its own specifications, which are listed as follows:

1. Pavia University (PU): This is a scene acquired with the Reflective Optics Imaging
Spectrometer Sensor (ROSIS) during a flight campaign over Pavia, northern Italy. The
image consists of 103 spectral bands with wavelengths ranging from 0.43 to 0.86 µm
and a spatial resolution of 1.3 m. The size of Pavia University is 610 × 340 pixels.
Figure 2a shows RGB color composite of the scene. The reference classification map in
Figure 2b shows nine classes, with the unassigned pixels colored in black and labeled
as Unassigned. Table 1 shows the number of pixels per each class in the data set.

2. Salinas (SA): This scene was collected by the Airborne Visible/Infrared Imaging
Spectrometer (AVIRIS) sensor over Salinas Valley, California. The image consists
of 224 spectral bands with wavelengths ranging from 0.4 to 2.45 µm and a spatial
resolution of 3.7 m. The size of Salinas is 512 × 217 pixels. Bands 108–112, 154–167,
and 224 were removed due to distortions from water absorption. Figure 3a shows
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RGB composite of the scene. The reference classification map in Figure 3b shows that
Salinas ground truth class map contains 16 classes. Similar to PU, unassigned pixels
are colored in black and labeled as Unassigned. Table 2 shows number of pixels per
class in the data set.

3. Mississippi Gulfport (GP): The dataset was collected over the University of Southern
Mississippi’s-Gulfpark Campus [52]. The image consists of 72 bands with wavelengths
ranging from 0.37 to 1.04 µm and a spatial resolution of 1.0 m. The size of GP is
185 × 89 pixels. Figure 4a shows RGB color composite of the scene. The reference
classification map in Figure 4b shows six classes. As with PU and SA datasets, the
unassigned pixels in the image are colored in black and labeled as Unassigned. Table 3
shows the number of pixels per class in the dataset.

(a) (b)
Figure 2. ROSIS Pavia University (a) true-color composite; (b) reference class map.

Table 1. Groundtruth classes for PU scene and their respective samples number.

Class Name Total Samples

1 Asphalt 6631
2 Meadows 18,649
3 Gravel 2099
4 Trees 3064
5 Painted Metal Sheet 1345
6 Bare Soil 5029
7 Bitumen 1330
8 Self-Blocking Bricks 3682
9 Shadows 947

Total 42,776

3.2. Evaluation Metrics

To evaluate the performance of classification results, predicted class maps are com-
pared with the available reference or ground truth data. Verifying the correctness of pixel
assignment in the image with visual inspection is subjective and might not be comprehen-
sive. Therefore, quantitative evaluation is more reliable. The most common example is the
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Overall Accuracy (OA), which computes the number of correctly assigned HSI pixels over
the number of overall samples, and it is expressed as Equation (2):

Overall Accuracy (OA) =
Numbero f CorrectlyAssignedPixels

OverallNumbero f Pixels
(2)

(a) (b)
Figure 3. AVIRIS Salinas (a) true-color composite; (b) reference class map.

Table 2. Groundtruth classes for SA scene and their respective samples number.

Class Name Total Samples

1 Brocoli-green-weeds-1 2009
2 Brocoli-green-weeds-2 3726
3 Fallow 1976
4 Fallow-rough-plow 1394
5 Fallow-smooth 2678
6 Stubble 3959
7 Celery 3579
8 Grapes-untrained 11,271
9 Soil-vinyard-develop 6203

10 Corn-senesced-green-weeds 3278
11 Lettuce-romaine-4wk 1068
12 Lettuce-romaine-5wk 1927
13 Lettuce-romaine-6wk 916
14 Lettuce-romaine-7wk 1070
15 Vinyard-untrained 7268
16 Vinyard-vertical-trellis 1807

Total 54,129

(a) (b)
Figure 4. Mississippi Gulfport (a) true-color composite; (b) reference class map.
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Table 3. Groundtruth classes for Gulfport of Mississippi scene and their respective samples number.

Class Name Total Samples

1 Dirt 175
2 Asphalt 1657
3 Dead Grass 438
4 Grass 970
5 Shadow 527
6 Trees 2330

Total 6097

Average Accuracy (AA) [53] is another evaluation criteria used to assess the classification
performance. It estimates the mean of the classification accuracy of all categories or classes.
It is defined as Equation (3):

Average Accuracy (AA) =
1
c

c

∑
i=1

(xi) (3)

where c is the number of classes, and x is the percentage of correctly assigned pixels in a
single class. Additionally, Kappa coefficient (k) [54] is also adopted to evaluate the quality of
the classification results of HSI data. It is expressed as Equation (4):

Kappa Coe f f icient (k) =
OA − Pe

1 − Pe
(4)

where, k determines the agreement between the predicted classified map and the ground
truth, and Pe represents the expected agreement between the model classification map and
the ground truth map by chance probability. Kappa values range between 0 and 1, such
that 1 shows complete agreement between the predicted output and the ground truth, and
vice versa for 0. Usually, Kappa ≥ 0.80 indicates a substantial agreement, while k < 0.4
indicates poor model performance.

3.3. Experimental Configuration

All the experiments have been operated using the compiler and deep learning frame-
works; Python 3.8 and TensorFlow 2.4.0, respectively. Adam is adopted as the optimizer
algorithm, where the learning rate is 1 × 10−3, the batch size is 16 and the training epoch is
set to 100. The network configuration of the proposed model using PU dataset is shown
in Table 4. The number of samples used for training the model is set to 1% for all three
datasets to guarantee a fair comparison.

3.4. Experimental Results

In this section, classification performance of the proposed model is evaluated quantita-
tively and qualitatively using the three aforementioned datasets: Pavia University (PU),
Salinas (SA) and Mississippi Gulfport (GP). Furthermore, the proposed methodology is
compared with six state-of-the art algorithms. In order to reduce the fluctuation of clas-
sification results caused by the randomness of sample selection, the experiments were
repeated 10 times, and the average value of these experiments is used as the final result.
Additionally, classification results for each category are reported.

3.4.1. Analysis of Parameters

In this section, we examine how the spatial dimension and number of principal
components of different datasets affect the proposed model’s ability to classify the HSI data
and determine the window size and spectral dimension that are best suited for the dataset.
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Table 4. The network configuration for the proposed model on the Pavia University dataset.

Proposed Model Configuration

Spectral Feature Learning Spatial Feature Learning Spectral–spatial Feature Learning

Input:(13 × 13 × 15 × 1)

3DConv-(1,1,3,64), stride = 1, padding = 0 3DConv-(3,3,1,64), stride = 1, padding = 0 3DConv-(3,3,3,64), stride = 1, padding = 0

Output10:(13 × 13 × 13 × 64) Output20:(11 × 11 × 15 × 64) Output30:(11 × 11 × 13 × 64)

3DConv-(1,1,3,64), stride = 1, padding = 0 3DConv-(3,3,1,64), stride = 1, padding = 0 3DConv-(3,3,3,64), stride = 1, padding = 0

Output11:(13 × 13 × 11 × 64) Output21:(9 × 9 × 15 × 64) Output31:(9 × 9 × 11 × 64)

Flatten Flatten Flatten

Output12:(118,976) Output22:(77,760) Output32:(57,024)

Concat(Output12,Output22,Output32)

FC-(253,760,512)

Dropout(0.3)

FC-(512,256)

Dropout(0.3)

FC-(256,9)

Output:(9)

The window size indicates how much of the retrieved 3D patch’s spatial informa-
tion can be used to assign a label to the HSI patch. A large window may include a lot
of neighborhood data that may contain information from other classes, which hinders
the feature extraction process. On the contrary, if the chosen window is too small, the
model’s ability to extract features will suffer from a significant loss of spatial information.
This research validates the impact of window size on model performance over the three
aforementioned datasets. In the experiment, the spatial size was set to {5 × 5, 7 × 7, 9 × 9,
11 × 11, 13 × 13, 15 × 15, 17 × 17}, while the spectral dimension was uniformly set to 30.
It is clear from Figure 5 that for the PU, SA and GP datasets, the suitable window size
for the proposed model was 13 × 13, 11 × 11 and 9 × 9, respectively. As seen from the
Figure, the overall accuracy for the GP dataset varies in a notable manner with respect
to the window size. Since the model was trained with only 1% of the data (60 training
samples), we assume that any small change in the initial settings may lead to a large impact
on the model performance.

Moreover, the spectral dimension (or number of principal components) shows how
much of the 3D patch’s collected spectral data can be used to assign a label to the HSI
patch. It is intuitive that the model performance increases with the increase of the spectral
dimension. However, having many principal components may contain redundant infor-
mation, which causes the OA to fall after a certain value. This paper validates the impact
of spectral dimension on model performance on the three datasets. In the experiment, the
spectral dimension was set to 10, 15, 20, 25, 30, 35, 40, 45, 50, and the spatial size of the
three datasets of PU, SA and GP were set to 13 × 13, 11 × 11, 9 × 9, respectively. As can be
seen from Figure 6, for PU, SA and GP datasets, the most suitable spectral dimensions for
the proposed model were 15, 35, and 45, respectively.
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Figure 5. The OA of the proposed model using different values of window size in the three datasets.

Figure 6. The OA of the proposed model using different spectral dimension in the three datasets.

Based on the above parameter analysis, Table 5 summarizes the optimal values of
window size and spectral dimension for the proposed model.

Table 5. The optimal window size and spectral dimension of the proposed model on three HSI datasets.

Dataset Window Size Spectral Dimension

PU 13 × 13 15

SA 11 × 11 35

GP 9 × 9 45

3.4.2. Ablation Studies

To fully demonstrate the effectiveness of the proposed model, the influence of different
combinations of the model components that belong to the network on the GP dataset is
investigated and reported in Table 6. The results show that our proposed fusion technique
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obtains the best performance compared with other combination or fusion approaches
such as spectral, spatial, spectral–spatial, spectral+spatial, spectral+spectral–spatial, and
spatial+spectral–spatial in terms of AA, OA, and Kappa metrics.

Table 6. Results of ablation studies on different combination of model branches over the GP dataset.

Method Spectral
Only

Spatial
Only

Spectral–Spatial
Only

Spectral
+

Spatial

Spectral
+

Spectral–Spatial

Spatial
+

Spectral–Spatial
Proposed

Overall Accuracy (%) 85.63 ± 4.42 89.45 ± 2.58 91.43 ± 1.93 90.88 ± 3.74 91.41 ± 1.57 91.51 ± 2.18 92.96 ± 1.05

Average Accuracy (%) 82.44 ± 3.28 85.21 ± 3.30 88.23 ± 2.32 87.70 ± 2.55 88.67 ± 2.84 89.48 ± 3.90 89.53 ± 1.39

Kappa × 100 79.31 ± 4.28 87.90 ± 2.40 89.26 ± 2.43 88.89 ± 3.74 90.06 ± 1.13 90.16 ± 1.23 90.56 ± 2.53

3.4.3. Comparison with Other Methods

For the sake of validating the proposed classification algorithm, SVM [16], 2D-CNN [55],
3D-CNN [56], PMI-CNN [50], HybridSN [42], and MSCNN [49] are used as comparison
algorithms. As mentioned earlier, the experiments were conducted and repeated 10 times.
For all algorithms, only the classification results with the highest accuracy in 10 trials
are recorded. The quantitative comparisons of these compared methods are shown in
Tables 7–9, and the best results in each Table are shown in bold.

Table 7. Classification results on the PU dataset with 1% labeled training samples. The best accuracy
is shown in bold.

Class Train Test SVM 2DCNN 3DCNN PMI-CNN HybridSN MSCNN Proposed

1 66 6565 83.59 92.91 94.7821 99.17 94.48 91.96 81.01
2 186 18,463 88.88 98.83 99.10 99.31 99.66 99.22 97.04
3 21 2078 63.22 76.22 71.89 77.37 77.46 70.98 86.08
4 31 3033 85.73 85.08 87.46 76.72 83.25 82.99 85.47
5 13 1332 99.40 99.85 99.33 99.22 99.85 98.51 99.43
6 50 4979 79.39 76.21 78.38 89.93 89.73 84.19 99.32
7 13 1317 61.42 79.69 90.30 59.47 90.00 74.66 73.30
8 37 3645 75.58 77.59 83.70 55.48 74.47 85.95 95.00
9 10 937 99.23 83.10 94.19 94.82 91.34 82.36 99.36

Overall Accuracy (%) 84.03 ± 3.33 90.42 ± 4.80 92.13 ± 2.19 90.40 ± 2.42 92.34 ± 2.74 91.48 ± 2.07 92.66 ± 2.24
Average Accuracy (%) 81.89 ± 4.41 85.50 ± 2.50 88.29 ± 2.41 83.59 ± 4.82 88.80 ± 2.86 85.65 ± 3.16 90.65 ± 2.37

Kappa × 100 78.98 ± 3.44 87.13 ± 2.35 89.44 ± 1.25 87.14 ± 2.57 89.17 ± 1.59 88.57 ± 1.09 90.31 ± 1.31

From Tables 7–9, we conclude that the proposed Tri-CNN model outperforms other
methods. Among the datasets used in this paper, PU has 42776 labeled samples of which
1% (428 samples) was used for training the model, it has only 9 classes, which makes it
easier to classify. SA has a large number of labeled samples where 542 of them where
used for training, so it is no surprising that the classification performance on SA is higher.
GP is relatively small dataset where it has only 6079 labeled samples, which results in
lower classification accuracy since the training has been conducted with only 1% of the
labeled samples.

On the PU dataset, SVM method had the lowest overall accuracy, since it utilizes
only spectral information. 2D-CNN further improved the accuracy by almost 6% when
compared to SVM, 2D-CNN that uses 2D filters to extract spatial information for classifi-
cation. 3D-CNN had higher accuracy with 92.13%, it uses 3D filters to extract spatial and
spectral information simultaneously to further improve classification accuracy. PMI-CNN
extracts spatial features by using four parallel branches of two dimensional kernels, ex-
tracted features are then fused and used as the input of the classifier; however, it did not
show any improvement over 3D-CNN and the accuracy was less by 1.73%. HybridSN
uses 3 layers of 3D-CNN followed by one layer of 2D-CNN to extract both spectral–spatial
(3D-CNN) and spatial (2D-CNN), it had higher accuracy when compared to the aforemen-
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tioned models. The multi-scale CNN (MSCNN) Fuses the spatial features of different scales
by using multiple two dimensional kernels to classify HSIs. Our proposed method was
approximately 0.32% higher than HybridSN in terms of overall accuracy and outperformed
other methods in 5 categories. The results of comparison are shown in Table 7. To have
a visual comparison of the results, Figure 7 shows the classification results of the seven
methods along with the reference map. It is clearly observed from Figure 7a that the results
of SVM has a large number of incorrectly assigned pixels and the classification accuracy
is low. The classification map of our proposed Tri-CNN method was the closest to the
reference map, specially at the area bounded with the white box.

Table 8. Classification results on the SA dataset with 1% labeled training samples. The best accuracy
is shown in bold.

Class Train Test SVM 2DCNN 3DCNN PMI-CNN HybridSN MSCNN Proposed

1 20 1989 98.65 99.75 100.00 98.35 100.00 99.15 100.00
2 37 3689 99.38 100.00 100.00 100.00 99.91 99.94 100.00
3 20 1956 93.01 99.69 100.00 99.54 98.48 99.94 97.72
4 14 1380 96.05 98.63 99.56 99.13 98.85 95.33 96.05
5 27 2651 97.16 96.19 99.25 98.80 100.00 97.49 97.16
6 39 3920 99.36 99.57 100.00 100.00 99.92 99.94 99.44
7 36 3543 99.05 99.18 99.77 99.87 99.63 99.69 99.94
8 113 11,158 80.03 87.88 90.61 85.67 88.20 90.95 98.65
9 62 6141 99.41 99.98 99.88 100.00 99.90 100.00 100.00

10 33 3245 95.79 96.27 97.52 99.20 96.70 96.36 98.16
11 11 1057 95.22 95.31 99.15 98.22 96.25 98.40 99.53
12 19 1908 88.16 95.53 97.40 99.74 96.26 98.33 95.95
13 9 907 64.19 63.75 79.58 79.47 61.68 96.83 99.78
14 11 1059 89.81 86.16 97.28 96.54 98.13 97.19 98.41
15 72 7196 60.29 77.43 85.23 84.35 90.54 77.49 82.42
16 18 1789 97.45 97.95 99.16 99.28 99.05 97.67 99.88

Overall Accuracy (%) 88.08 ± 2.56 92.68 ± 1.69 95.30 ± 1.43 94.22 ± 2.85 95.54 ± 1.12 94.29± 2.23 96.68 ± 2.11
Average Accuracy (%) 90.81 ± 2.11 93.33 ± 2.77 96.52 ± 9.26 96.14 ± 1.47 95.31 ± 1.17 96.54 ± 1.14 97.69 ± 1.09

Kappa × 100 86.70 ± 1.10 91.85 ± 1.10 94.76 ± 1.59 93.57 ± 2.95 94.49 ± 1.24 93.63 ± 2.23 96.30 ± 2.10

Table 9. Classification results on the GP data set with 1% labeled training samples. The best accuracy
is shown in bold.

Class Train Test SVM 2DCNN 3DCNN PMI-CNN HybridSN MSCNN Proposed

1 2 173 1.71 2.28 16.00 3.42 13.42 2.28 86.85
2 16 1641 84.12 96.25 98.61 99.63 92.43 84.73 99.69
3 4 434 1.14 26.48 10.04 12.10 46.74 5.47 86.98
4 10 960 29.38 91.34 99.27 99.07 93.37 86.59 81.64
5 5 522 13.47 94.87 76.47 79.50 67.46 49.33 85.95
6 23 2307 98.71 93.13 94.03 95.83 97.95 94.72 96.05

Overall Accuracy (%) 66.55 ± 3.39 86.45 ± 1.29 86.32 ± 3.32 87.30 ± 4.95 87.79± 2.48 77.72 ± 3.28 92.96 ± 1.39
Average Accuracy (%) 38.09 ± 2.13 67.39 ± 3.57 65.74 ± 4.92 64.93 ± 3.72 69.06± 1.59 53.85 ± 2.73 89.53 ± 2.58

Kappa × 100 49.44 ± 3.53 81.56 ± 2.42 81.24 ± 3.41 82.58 ± 4.29 82.41 ± 2.69 68.69 ± 3.44 90.56 ± 1.53

Table 8 shows the results of SA dataset. Our proposed method was the highest in
terms of OA, AA and Kappa. The model had the highest accuracy in nine out of the sixteen
classes, three of which reached 100% accuracy. Figure 8 shows the classification maps of
the methods used in this research along with the reference map. The classification maps
of our method are closest to the ground-truth map. The area in the white box (Class #8)
shows the part that easily distinguished, which matches the results shown in Table 8.
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(a) (b) (c) (d)

(e) (f) (g) (h)

Figure 7. Classification maps for PU dataset. (a) SVM; (b) 2D-CNN; (c) 3D-CNN; (d) HybridSN;
(e) PMI-CNN; (f) MSCNN; (g) Proposed method (h) Reference map.

The classification results of GP dataset are shown in Table 9. Our proposed method
was the highest in terms of OA, AA and Kappa when compared to the other methods. The
model had the highest accuracy in three classes. Figure 9 shows the classification results
of the methods used in this research. it is very clear that our proposed methods has the
closest classification map to the reference data, specially the area in the white box (Class #1).
This particular class had only 2 samples for training, and yet, our model had achieved a
classification score of 86.85%, which is extremely higher than the second best (3D-CNN)
where the score was only 16%. A similar result is shown in Class #3 (labeled in Green color),
where the training was conducted with only 4 samples. This shows the ability of our model
to be trained on very small datasets and still good results.

Based on the experimental results, the proposed Tri-CNN produces better results
when compared to the other classification methods used in this research. SVM has the
worst classification performance since it utilizes spectral features only and loses the spatial
information. 2D-CNN, PMI-CNN and MSCNN take into account the spatial information
and the overall accuracy was improved when compared to SVM. 3D-CNN extracts spectral
and spatial features simultaneously from the 3 dimensional image patch, which preserves
the features in the data given. HybridSN combines both 2D-CNN and 3D-CNN to extract
the spectral and spatial features to perform the image classification. Our proposed Tri-CNN
method produced the best results when applied to the three datasets used in this research.
Our model combines the advantage of each branch to extract features at each scale to
improve the classification performance.
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(a) (b) (c) (d)

(e) (f) (g) (h)

Figure 8. Classification maps for Salinas SA. (a) SVM; (b) 2D-CNN; (c) 3D-CNN; (d) HybridSN;
(e) PMI-CNN; (f) MSCNN; (g) Proposed method; (h) Reference map.

(a) (b) (c) (d)

(e) (f) (g) (h)

Figure 9. Class maps of GP. (a) SVM; (b) 2D-CNN; (c) 3D-CNN; (d) HybridSN; (e) PMI-CNN;
(f) MSCNN; (g) Proposed method; (h) Reference map.
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3.4.4. Performance of Different Models at Different Percentages of Training Data

The performance of the model can be well inferred from the classification accuracy
under various percentages of training data. We randomly select 1%, 2%, 3%, 4% and 5% of
labeled samples for training and the remaining was used for testing. Classification results
of each dataset are shown in Figure 10. It is seen that for all the methods used in this study,
classification accuracy improves as the number of training samples increases. The proposed
model, which performs the best on all training sample proportions on the three datasets,
uses 3D-CNN with various kernel sizes to extract various degrees of features from the HSI.

(a) (b)

(c)

Figure 10. Classification accuracy at different percentages of training data (a) PU; (b) SA; (c) GP.

4. Conclusions

In this paper, we propose a new three-branch CNN model namely Tri-CNN for HSI
classification. The proposed model builds a three-branch feature fusion structure and
optimizes the creation of the CNN-based model in order to address the current issues with
HSI classification. The model feeds the data into three branches of multiscale 3D-CNN after
PCA, features generated of each branch are then flattened and fused,fully connected and
dropout layers are utilized to produce the final classification result. Experimental results
indicate that the proposed model performs well in terms of OA, AA, and Kappa. With just
a little amount of training data, the model produces nearly identical classification results.

For future work, we will examine the use of a lighter architecture with less training
parameters to reduce the computational complexity without weakening the model per-
formance. In addition, the classification accuracy of the GP dataset was relatively lower
compared to other two datasets. Therefore, the focus of our future study will be on investi-
gating a more compact neural network model, broadening the generalization ability, and
achieving adequate classification accuracy on different datasets.
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